
Versatile yet Scalable and Accurate Simulation of
Distributed Applications and Systems:

The SimGrid Project

Arnaud Legrand et Al.

Grenoble University, CNRS, France

SimuTools. Cannes, France
March 07 2013

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications 1/54

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today
I HPC (clusters, petascale systems,

soon exascale...)

I Grid platforms

I Peer-to-peer file sharing

I Distributed volunteer computing

I Cloud Computing
562,960 coresComplex platforms with many open issues

I resource discovery and monitoring

I resource & data management

I energy consumption reduction

I resource economics

I application scheduling

I fault-tolerance and availability

I scalability and performance

I decentralized algorithms

Such applications and systems deserve very advanced analysis

I Their debugging and tuning are technically difficult

I Their use induce high methodological challenges

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications 2/54

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today
I HPC (clusters, petascale systems,

soon exascale...)

I Grid platforms

I Peer-to-peer file sharing

I Distributed volunteer computing

I Cloud Computing

Complex platforms with many open issues
I resource discovery and monitoring

I resource & data management

I energy consumption reduction

I resource economics

I application scheduling

I fault-tolerance and availability

I scalability and performance

I decentralized algorithms

Such applications and systems deserve very advanced analysis

I Their debugging and tuning are technically difficult

I Their use induce high methodological challenges

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications 2/54

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today
I HPC (clusters, petascale systems,

soon exascale...)

I Grid platforms

I Peer-to-peer file sharing

I Distributed volunteer computing

I Cloud Computing

Complex platforms with many open issues
I resource discovery and monitoring

I resource & data management

I energy consumption reduction

I resource economics

I application scheduling

I fault-tolerance and availability

I scalability and performance

I decentralized algorithms

Such applications and systems deserve very advanced analysis

I Their debugging and tuning are technically difficult

I Their use induce high methodological challenges

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications 2/54

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today
I HPC (clusters, petascale systems,

soon exascale...)

I Grid platforms

I Peer-to-peer file sharing

I Distributed volunteer computing

I Cloud Computing

540,000+
hosts
7.3+

PetaFLOPS

Complex platforms with many open issues
I resource discovery and monitoring

I resource & data management

I energy consumption reduction

I resource economics

I application scheduling

I fault-tolerance and availability

I scalability and performance

I decentralized algorithms

Such applications and systems deserve very advanced analysis

I Their debugging and tuning are technically difficult

I Their use induce high methodological challenges

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications 2/54

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today
I HPC (clusters, petascale systems,

soon exascale...)

I Grid platforms

I Peer-to-peer file sharing

I Distributed volunteer computing

I Cloud Computing

G
o

o
g

le
D

at
a

C
en

te
r

Complex platforms with many open issues
I resource discovery and monitoring

I resource & data management

I energy consumption reduction

I resource economics

I application scheduling

I fault-tolerance and availability

I scalability and performance

I decentralized algorithms

Such applications and systems deserve very advanced analysis

I Their debugging and tuning are technically difficult

I Their use induce high methodological challenges

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications 2/54

Large-Scale Distributed Systems Research

Large-scale parallel and distributed systems are in production today
I HPC (clusters, petascale systems,

soon exascale...)

I Grid platforms

I Peer-to-peer file sharing

I Distributed volunteer computing

I Cloud Computing

G
o

o
g

le
D

at
a

C
en

te
r

Complex platforms with many open issues
I resource discovery and monitoring

I resource & data management

I energy consumption reduction

I resource economics

I application scheduling

I fault-tolerance and availability

I scalability and performance

I decentralized algorithms

Such applications and systems deserve very advanced analysis

I Their debugging and tuning are technically difficult

I Their use induce high methodological challenges

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications 2/54

Methodological Approaches

T
h

e
B

ig
B

a
n

g
T

h
eo

ry

Analytical works?
I Some purely mathematical models exist

, Allow better understanding of principles in spite
of dubious applicability
impossibility theorems, parameter influence, . . .

/ Theoretical results are difficult to achieve
I Everyday practical issues (routing, scheduling) become NP-hard problems

Most of the time, only heuristics whose performance have to be assessed are proposed
I Models too simplistic, rely on ultimately unrealistic assumptions, fail to capture

key characteristics of real systems

⇒ One must run experiments

; Most published research in the area is experimental

I In vivo: Direct experimentation

I In vitro: Emulation

I In silico: Simulation

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 3/54

In vivo approach to HPC experiments (direct experiment)

, Eminently believable to demonstrate the proposed
approach applicability.

/ Experiments can be too expensive, slow, dangerous
/ Very time and labor consuming

I Entire application must be functional

/ Choosing the right testbed is difficult
I My own little testbed?

, Well-behaved, controlled,stable / Rarely representative of production platforms
I Real production platforms?

I Not everyone has access to them; CS experiments are disruptive for users
I Experimental settings may change drastically during experiment

(components fail; other users load resources; administrators change config.)

/ Results remain limited to the testbed
I Impact of testbed specificities hard to quantify ⇒ collection of testbeds...
I Extrapolations and explorations of “what if” scenarios difficult

(what if the network were different? what if we had a different workload?)

/ Real experiments are often uncontrolled and unrepeatable
No way to test alternatives back-to-back (even if disruption is part of the experiment)

Difficult for others to reproduce results
even if this is the basis for scientific advances!

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 4/54

In vivo approach to HPC experiments (direct experiment)

L
ar

g
e

H
a

d
ro

n
C

o
ll
id

er

, Eminently believable to demonstrate the proposed
approach applicability.

/ Experiments can be too expensive, slow, dangerous

/ Very time and labor consuming
I Entire application must be functional

/ Choosing the right testbed is difficult
I My own little testbed?

, Well-behaved, controlled,stable / Rarely representative of production platforms
I Real production platforms?

I Not everyone has access to them; CS experiments are disruptive for users
I Experimental settings may change drastically during experiment

(components fail; other users load resources; administrators change config.)

/ Results remain limited to the testbed
I Impact of testbed specificities hard to quantify ⇒ collection of testbeds...
I Extrapolations and explorations of “what if” scenarios difficult

(what if the network were different? what if we had a different workload?)

/ Real experiments are often uncontrolled and unrepeatable
No way to test alternatives back-to-back (even if disruption is part of the experiment)

Difficult for others to reproduce results
even if this is the basis for scientific advances!

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 4/54

In vivo approach to HPC experiments (direct experiment)

L
ar

g
e

H
a

d
ro

n
C

o
ll
id

er

, Eminently believable to demonstrate the proposed
approach applicability.

/ Experiments can be too expensive, slow, dangerous
/ Very time and labor consuming

I Entire application must be functional

/ Choosing the right testbed is difficult
I My own little testbed?

, Well-behaved, controlled,stable / Rarely representative of production platforms
I Real production platforms?

I Not everyone has access to them; CS experiments are disruptive for users
I Experimental settings may change drastically during experiment

(components fail; other users load resources; administrators change config.)

/ Results remain limited to the testbed
I Impact of testbed specificities hard to quantify ⇒ collection of testbeds...
I Extrapolations and explorations of “what if” scenarios difficult

(what if the network were different? what if we had a different workload?)

/ Real experiments are often uncontrolled and unrepeatable
No way to test alternatives back-to-back (even if disruption is part of the experiment)

Difficult for others to reproduce results
even if this is the basis for scientific advances!

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 4/54

In vivo approach to HPC experiments (direct experiment)

L
ar

g
e

H
a

d
ro

n
C

o
ll
id

er

, Eminently believable to demonstrate the proposed
approach applicability.

/ Experiments can be too expensive, slow, dangerous
/ Very time and labor consuming

I Entire application must be functional

/ Choosing the right testbed is difficult
I My own little testbed?

, Well-behaved, controlled,stable / Rarely representative of production platforms
I Real production platforms?

I Not everyone has access to them; CS experiments are disruptive for users
I Experimental settings may change drastically during experiment

(components fail; other users load resources; administrators change config.)

/ Results remain limited to the testbed
I Impact of testbed specificities hard to quantify ⇒ collection of testbeds...
I Extrapolations and explorations of “what if” scenarios difficult

(what if the network were different? what if we had a different workload?)

/ Real experiments are often uncontrolled and unrepeatable
No way to test alternatives back-to-back (even if disruption is part of the experiment)

Difficult for others to reproduce results
even if this is the basis for scientific advances!

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 4/54

Example of Tools for Direct Experimentation

I Principle: Real applications, controlled environment
I Challenges: Hard and long. Experimental control? Reproducibility?

Grid’5000 project: a scientific instrument for the HPC
I Instrument for research in computer science (deploy your own OS)

I 9 sites, 1500 nodes (3000 cpus, 4000 cores); dedicated 10Gb links

Luxembourg

Brésil

Other existing platforms

I PlanetLab: No experimental control ⇒ no reproducibility
I Production Platforms (EGEE): must use provided middleware
I FutureGrid: future US experimental platform loosely inspired from Grid’5000

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 5/54

Emulation (in vitro) as an Experimental Methodology

Execute your application in a perfectly controlled environment

I Real platforms are not controllable, so how to achieve this?
I Let’s look at what engineers do in other fields

When you want to
build a race car ...adapted to wet tracks in a dry country

Why don’t you just control the climate? or tweak the car’s reality?

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 6/54

Emulation (in vitro) as an Experimental Methodology

Execute your application in a perfectly controlled environment

I Real platforms are not controllable, so how to achieve this?
I Let’s look at what engineers do in other fields

When you want to
build a race car ...adapted to wet tracks in a dry country

Why don’t you just control the climate? or tweak the car’s reality?

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 6/54

Emulation (in vitro) as an Experimental Methodology

Execute your application in a perfectly controlled environment

I Real platforms are not controllable, so how to achieve this?
I Let’s look at what engineers do in other fields

When you want to
build a race car ...adapted to wet tracks in a dry country

Why don’t you just control the climate? or tweak the car’s reality?

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 6/54

Emulation in other Sciences

Studying earthquake effects on bridges Studying tsunamis

Studying Coriolis effect and Studying climate change effects on
stratification vs. viscosity ecosystems

(who said that science is not fun??)

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 7/54

In vitro approach to HPC experiments (emulation)

I Principle: Injecting load on real systems for the experimental control
≈ Slow platform down to put it in wanted experimental conditions

I Challenges: Get realistic results, tool stack complex to deploy and use, control
often induces bias

Wrekavoc: applicative emulator

I Emulates CPU and network

I Homogeneous or heterogeneous platforms

Nodes Virtualization

Host machine 2Host machine 1

Host machine 3 Host machine 4

Emulated Network

Other existing tools

I Network emulation: ModelNet, DummyNet, . . .
Tools rather mature, but limited to network

I Applicative emulation: MicroGrid, eWan, Emulab
Rarely (never?) used outside the lab where they were created

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 8/54

In silico approach to HPC experiments (simulation)

C
ar

M
es

h

Simulation solves some difficulties raised by in vivo experiments
I No need to build a real system, nor the full-fledged

application

I Conduct controlled and repeatable experiments

I (Almost) no limits to experimental scenarios

I Possible for anybody to reproduce results

Simulation in a nutshell
Computer prediction of the behavior of a system using a (approximate) model

I Model: Set of equations; Objects whose state evolution is governed by a set of
rules; ...

I Simulator: Program solving equations or computing the evolution according to
the rules

I Wanted features:
I Accuracy: Correspondence between simulation and real-world

I Scalability: Actually usable by computers (fast enough)
I Tractability: Actually usable by human beings (simple enough to understand)
I Instanciability: Can actually describe real settings (no magical parameter)
I Relevance: Captures object of interest

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 9/54

In silico approach to HPC experiments (simulation)

C
ar

M
es

h

Simulation solves some difficulties raised by in vivo experiments
I No need to build a real system, nor the full-fledged

application

I Conduct controlled and repeatable experiments

I (Almost) no limits to experimental scenarios

I Possible for anybody to reproduce results

Simulation in a nutshell
Computer prediction of the behavior of a system using a (approximate) model

I Model: Set of equations; Objects whose state evolution is governed by a set of
rules; ...

I Simulator: Program solving equations or computing the evolution according to
the rules

I Wanted features:
I Accuracy: Correspondence between simulation and real-world

I Scalability: Actually usable by computers (fast enough)
I Tractability: Actually usable by human beings (simple enough to understand)
I Instanciability: Can actually describe real settings (no magical parameter)
I Relevance: Captures object of interest

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 9/54

In silico approach to HPC experiments (simulation)

C
ar

M
es

h

Simulation solves some difficulties raised by in vivo experiments
I No need to build a real system, nor the full-fledged

application

I Conduct controlled and repeatable experiments

I (Almost) no limits to experimental scenarios

I Possible for anybody to reproduce results

Simulation in a nutshell
Computer prediction of the behavior of a system using a (approximate) model

I Model: Set of equations; Objects whose state evolution is governed by a set of
rules; ...

I Simulator: Program solving equations or computing the evolution according to
the rules

I Wanted features:
I Accuracy: Correspondence between simulation and real-world

I Scalability: Actually usable by computers (fast enough)
I Tractability: Actually usable by human beings (simple enough to understand)
I Instanciability: Can actually describe real settings (no magical parameter)
I Relevance: Captures object of interest

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 9/54

In silico approach to HPC experiments (simulation)

C
ar

M
es

h

Simulation solves some difficulties raised by in vivo experiments
I No need to build a real system, nor the full-fledged

application

I Conduct controlled and repeatable experiments

I (Almost) no limits to experimental scenarios

I Possible for anybody to reproduce results

Simulation in a nutshell
Computer prediction of the behavior of a system using a (approximate) model

I Model: Set of equations; Objects whose state evolution is governed by a set of
rules; ...

I Simulator: Program solving equations or computing the evolution according to
the rules

I Wanted features:
I Accuracy: Correspondence between simulation and real-world

I Scalability: Actually usable by computers (fast enough)
I Tractability: Actually usable by human beings (simple enough to understand)
I Instanciability: Can actually describe real settings (no magical parameter)
I Relevance: Captures object of interest

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 9/54

In silico approach to HPC experiments (simulation)

C
ar

M
es

h

Simulation solves some difficulties raised by in vivo experiments
I No need to build a real system, nor the full-fledged

application

I Conduct controlled and repeatable experiments

I (Almost) no limits to experimental scenarios

I Possible for anybody to reproduce results

Simulation in a nutshell
Computer prediction of the behavior of a system using a (approximate) model

I Model: Set of equations; Objects whose state evolution is governed by a set of
rules; ...

I Simulator: Program solving equations or computing the evolution according to
the rules

I Wanted features:
I Accuracy: Correspondence between simulation and real-world
I Scalability: Actually usable by computers (fast enough)

I Tractability: Actually usable by human beings (simple enough to understand)
I Instanciability: Can actually describe real settings (no magical parameter)
I Relevance: Captures object of interest

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 9/54

In silico approach to HPC experiments (simulation)

C
ar

M
es

h

Simulation solves some difficulties raised by in vivo experiments
I No need to build a real system, nor the full-fledged

application

I Conduct controlled and repeatable experiments

I (Almost) no limits to experimental scenarios

I Possible for anybody to reproduce results

Simulation in a nutshell
Computer prediction of the behavior of a system using a (approximate) model

I Model: Set of equations; Objects whose state evolution is governed by a set of
rules; ...

I Simulator: Program solving equations or computing the evolution according to
the rules

I Wanted features:
I Accuracy: Correspondence between simulation and real-world
I Scalability: Actually usable by computers (fast enough)
I Tractability: Actually usable by human beings (simple enough to understand)

I Instanciability: Can actually describe real settings (no magical parameter)
I Relevance: Captures object of interest

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 9/54

In silico approach to HPC experiments (simulation)

C
ar

M
es

h

Simulation solves some difficulties raised by in vivo experiments
I No need to build a real system, nor the full-fledged

application

I Conduct controlled and repeatable experiments

I (Almost) no limits to experimental scenarios

I Possible for anybody to reproduce results

Simulation in a nutshell
Computer prediction of the behavior of a system using a (approximate) model

I Model: Set of equations; Objects whose state evolution is governed by a set of
rules; ...

I Simulator: Program solving equations or computing the evolution according to
the rules

I Wanted features:
I Accuracy: Correspondence between simulation and real-world
I Scalability: Actually usable by computers (fast enough)
I Tractability: Actually usable by human beings (simple enough to understand)
I Instanciability: Can actually describe real settings (no magical parameter)

I Relevance: Captures object of interest

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 9/54

In silico approach to HPC experiments (simulation)

C
ar

M
es

h

Simulation solves some difficulties raised by in vivo experiments
I No need to build a real system, nor the full-fledged

application

I Conduct controlled and repeatable experiments

I (Almost) no limits to experimental scenarios

I Possible for anybody to reproduce results

Simulation in a nutshell
Computer prediction of the behavior of a system using a (approximate) model

I Model: Set of equations; Objects whose state evolution is governed by a set of
rules; ...

I Simulator: Program solving equations or computing the evolution according to
the rules

I Wanted features:
I Accuracy: Correspondence between simulation and real-world
I Scalability: Actually usable by computers (fast enough)
I Tractability: Actually usable by human beings (simple enough to understand)
I Instanciability: Can actually describe real settings (no magical parameter)
I Relevance: Captures object of interest

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 9/54

In silico approach to HPC experiments (simulation)

C
ar

M
es

h

Simulation solves some difficulties raised by in vivo experiments
I No need to build a real system, nor the full-fledged

application

I Conduct controlled and repeatable experiments

I (Almost) no limits to experimental scenarios

I Possible for anybody to reproduce results

Simulation in a nutshell
Computer prediction of the behavior of a system using a (approximate) model

I Model: Set of equations; Objects whose state evolution is governed by a set of
rules; ...

I Simulator: Program solving equations or computing the evolution according to
the rules

I Wanted features:
I Accuracy: Correspondence between simulation and real-world
I Scalability: Actually usable by computers (fast enough)
I Tractability: Actually usable by human beings (simple enough to understand)
I Instanciability: Can actually describe real settings (no magical parameter)
I Relevance: Captures object of interest

V
er

sa
ti

lit
y

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 9/54

Simulation in Computer Science

Microprocessor Design

I A few standard “cycle-accurate” simulators are used extensively
http://www.cs.wisc.edu/~arch/www/tools.html

⇒ Possible to reproduce simulation results
I You can read a paper,
I reproduce a subset of its results,
I improve

Workshop on Duplicating, Deconstructing, and Debunking

Networking

I A few established “packet-level” simulators: NS-2, DaSSF, OMNeT++, GTNetS
I Well-known datasets for network topologies
I Well-known generators of synthetic topologies
I SSF standard: http://www.ssfnet.org/

⇒ Possible to reproduce simulation results

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 10/54

http://www.cs.wisc.edu/~arch/www/tools.html
http://www.ssfnet.org/

Simulation in Distributed Systems Research

Little common methodologies and tools

I Experimental settings rarely detailed enough in literature

I No established simulator up until a few years ago

I Simulators are short-lived and rarely made available

I Most people build their own “ad-hoc” solutions
Naicken, Stephen et Al., Towards Yet Another Peer-to-Peer Simulator, HET-NETs’06.

From 141 P2P sim.papers, 30% use a custom tool, 50% don’t report used tool

Why?

I Understanding and controlling the simulator code is important.

I Researchers lack trust in a simulator developed by others. . .

I . . . or researchers don’t care. All they want is a paper.

Consequence
Most published simulation results are impossible to reproduce by re-
searchers other than their authors

Yet, simulation results should be easily repeatable by design!

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 11/54

Simulation in Distributed Systems Research

Little common methodologies and tools

I Experimental settings rarely detailed enough in literature

I No established simulator up until a few years ago

I Simulators are short-lived and rarely made available

I Most people build their own “ad-hoc” solutions
Naicken, Stephen et Al., Towards Yet Another Peer-to-Peer Simulator, HET-NETs’06.

From 141 P2P sim.papers, 30% use a custom tool, 50% don’t report used tool

Why?

I Understanding and controlling the simulator code is important.

I Researchers lack trust in a simulator developed by others. . .

I . . . or researchers don’t care. All they want is a paper.

Consequence
Most published simulation results are impossible to reproduce by re-
searchers other than their authors

Yet, simulation results should be easily repeatable by design!

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 11/54

Simulation in Distributed Systems Research

Little common methodologies and tools

I Experimental settings rarely detailed enough in literature

I No established simulator up until a few years ago

I Simulators are short-lived and rarely made available

I Most people build their own “ad-hoc” solutions
Naicken, Stephen et Al., Towards Yet Another Peer-to-Peer Simulator, HET-NETs’06.

From 141 P2P sim.papers, 30% use a custom tool, 50% don’t report used tool

Why?

I Understanding and controlling the simulator code is important.

I Researchers lack trust in a simulator developed by others. . .

I . . . or researchers don’t care. All they want is a paper.

Consequence
Most published simulation results are impossible to reproduce by re-
searchers other than their authors

Yet, simulation results should be easily repeatable by design!

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 11/54

The Specialization Excuse

But again... Why ?

I Most simulators are are domain-specific (P2P, HPC, grid, cloud, . . .).

One simulator to rule them all?

I Although many simulators claim to be generic, they were developed with a
specific purpose in mind and can hardly be used beyond their initial purpose.

I Hence, simulators are developed by researchers for their own research field and
these researchers are domain experts, not simulation experts.

Popular Wisdom 1
Simulators are toys that any MSc. C.S. student can write. ,

Popular Wisdom 2
Specialization allows for “better” simulation, i.e., simulations that achieve
a desired trade-off between accuracy (low simulation error) and scalability
(ability to run big and/or fast simulations).

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 12/54

The Specialization Excuse

But again... Why ?

I Most simulators are are domain-specific (P2P, HPC, grid, cloud, . . .).

One simulator to rule them all?

I Although many simulators claim to be generic, they were developed with a
specific purpose in mind and can hardly be used beyond their initial purpose.

I Hence, simulators are developed by researchers for their own research field and
these researchers are domain experts, not simulation experts.

Popular Wisdom 1
Simulators are toys that any MSc. C.S. student can write. ,

Popular Wisdom 2
Specialization allows for “better” simulation, i.e., simulations that achieve
a desired trade-off between accuracy (low simulation error) and scalability
(ability to run big and/or fast simulations).

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 12/54

The SimGrid Project

SimGrid: a generic simulation framework for distributed applications
I 13 years old open-source project. Collaboration between

I France (INRIA, CNRS, Univ. Lyon, Nancy, Grenoble, ...)
I USA (UCSD, U. Hawaii), . . .

I Started like others (unsatisfied with practice, no simulation specialists):

Wouldn’t it be possible to have both accuracy, scalability and versatility?

I Scalable (time and memory), modular, portable. +140 publications.

Other existing tools
I Large amount of existing simulator for distributed platforms:

GridSim, ChicSim, OptorSim, GES; P2PSim, PlanetSim, PeerSim, CloudSim.

I Few are really usable: Diffusion, Software Quality Assurance, Long-term availability

I No other study the validity, the induced experimental bias

Purpose of this talk

I Present some efforts and results obtained in the SimGrid project related to
improving accuracy, scalability and versatility.

I Explain how it compares to other domain-specific simulators.
Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 13/54

Agenda

Experiments for Large-Scale Distributed Systems Research
Main Methodological Approaches: In Vivo, In Silico, In Vitro
Bad Practices in Large-Scale Distributed Systems Research

The SimGrid Project
User Interface(s)
How accurate? The Validation Quest
How big and how fast ?

Conclusions
Keynote Recap
Going Further: Experiment planning and Open Science
Take-home Messages

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Experiments for Large-Scale Distributed Systems Research 14/54

Outline

Experiments for Large-Scale Distributed Systems Research
Main Methodological Approaches: In Vivo, In Silico, In Vitro
Bad Practices in Large-Scale Distributed Systems Research

The SimGrid Project
User Interface(s)
How accurate? The Validation Quest
How big and how fast ?

Conclusions
Keynote Recap
Going Further: Experiment planning and Open Science
Take-home Messages

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 15/54

User-visible SimGrid Components

MSG

Simple application-

level simulator

SimDag

Framework for

DAGs of parallel tasks
applications on top of

a virtual environment

Library to run MPI
SMPI

XBT: Grounding features (logging, etc.), usual data structures (lists, sets, etc.)

and portability layer

SimGrid user APIs
I SimDag: study heuristics handling DAG of (parallel) tasks
I MSG: model applications as Concurrent Sequential Processes

(Java/Ruby/Lua bindings available)
I SMPI: simulate MPI codes

Which API should I choose?
I Your study scheduling of DAG structured applications ; SimDag
I You have an MPI code to study ; SMPI
I Your system comprises concurrent processes with possibly complex interactions

; MSG
I Most popular API (for now): MSG

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 16/54

User-visible SimGrid Components

MSG

Simple application-

level simulator

SimDag

Framework for

DAGs of parallel tasks
applications on top of

a virtual environment

Library to run MPI
SMPI

XBT: Grounding features (logging, etc.), usual data structures (lists, sets, etc.)

and portability layer

SimGrid user APIs
I SimDag: study heuristics handling DAG of (parallel) tasks
I MSG: model applications as Concurrent Sequential Processes

(Java/Ruby/Lua bindings available)
I SMPI: simulate MPI codes

Which API should I choose?
I Your study scheduling of DAG structured applications ; SimDag
I You have an MPI code to study ; SMPI
I Your system comprises concurrent processes with possibly complex interactions

; MSG
I Most popular API (for now): MSG

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 16/54

MSG: Heuristics for Concurrent Sequential Processes

(historical) Motivation

I Centralized scheduling does not scale

I SimDag (and its predecessor) not adapted to study decentralized heuristics

I MSG not strictly limited to scheduling, but particularly convenient for it

Main MSG abstractions
I Agent: some code, some private data, running on a given host

set of functions + XML deployment file for arguments

I Task: amount of work to do and of data to exchange

I MSG task create(name, compute duration, message size, void *data)
I Communication: MSG task {put,get}, MSG task Iprobe
I Execution: MSG task execute

MSG process sleep, MSG process {suspend,resume}

I Host: location on which agents execute

I Mailbox: location independant communication channel

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 17/54

MSG: Heuristics for Concurrent Sequential Processes

(historical) Motivation

I Centralized scheduling does not scale

I SimDag (and its predecessor) not adapted to study decentralized heuristics

I MSG not strictly limited to scheduling, but particularly convenient for it

Main MSG abstractions
I Agent: some code, some private data, running on a given host

set of functions + XML deployment file for arguments

I Task: amount of work to do and of data to exchange
I MSG task create(name, compute duration, message size, void *data)
I Communication: MSG task {put,get}, MSG task Iprobe
I Execution: MSG task execute

MSG process sleep, MSG process {suspend,resume}
I Host: location on which agents execute

I Mailbox: location independant communication channel

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 17/54

SIMGRID Usage Workflow: the MSG example (1/2)

1. Write the Code of your Agents

int master(int argc, char **argv) {
for (i = 0; i < number_of_tasks; i++) {
t=MSG_task_create(name,comp_size,comm_size,data);
sprintf(mailbox,"worker-%d",i % workers_count);
MSG_task_send(t, mailbox);

}

int worker(int ,char**){
sprintf(my_mailbox,"worker-%d",my_id);
while(1) {

MSG_task_receive(&task, my_mailbox);
MSG_task_execute(task);
MSG_task_destroy(task);

}

2. Describe your Experiment

XML Platform File
<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">
<host name="host1" power="1E8"/>
<host name="host2" power="1E8"/>
...
<link name="link1" bandwidth="1E6"

latency="1E-2" />
...
<route src="host1" dst="host2">

<link:ctn id="link1"/>
</route>
</platform>

XML Deployment File

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "surfxml.dtd">
<platform version="2">
<!-- The master process -->
<process host="host1" function="master">
<argument value="10"/><!--argv[1]:#tasks-->
<argument value="1"/><!--argv[2]:#workers-->

</process>

<!-- The workers -->
<process host="host2" function="worker">

<argument value="0"/></process>
</platform>

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 18/54

SIMGRID Usage Workflow: the MSG example (2/2)

3. Glue things together

int main(int argc, char *argv[]) {
/* Bind agents’ name to their function */
MSG_function_register("master", &master);
MSG_function_register("worker", &worker);

MSG_create_environment("my_platform.xml"); /* Load a platform instance */
MSG_launch_application("my_deployment.xml"); /* Load a deployment file */

MSG_main(); /* Launch the simulation */

INFO1("Simulation took %g seconds",MSG_get_clock());
}

4. Compile your code (linked against -lsimgrid), run it and enjoy

Executive summary, but representative
I Similar in others interfaces, but:

I glue is generated by a script in SMPI and automatic in Java with introspection
I in SimDag, no deployment file since no CSP

I Platform can contain trace informations, Higher level tags and Arbitrary data
I In MSG, applicative workload can also be externalized to a trace file

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 19/54

The MSG master/workers example: colorized output

$./my_simulator | MSG_visualization/colorize.pl
[0.000][Tremblay:master] Got 3 workers and 6 tasks to process
[0.000][Tremblay:master] Sending ’Task_0’ to ’worker-0’
[0.148][Tremblay:master] Sending ’Task_1’ to ’worker-1’
[0.148][Jupiter:worker] Processing ’Task_0’
[0.347][Tremblay:master] Sending ’Task_2’ to ’worker-2’
[0.347][Fafard:worker] Processing ’Task_1’
[0.476][Tremblay:master] Sending ’Task_3’ to ’worker-0’
[0.476][Ginette:worker] Processing ’Task_2’
[0.803][Jupiter:worker] ’Task_0’ done
[0.951][Tremblay:master] Sending ’Task_4’ to ’worker-1’
[0.951][Jupiter:worker] Processing ’Task_3’
[1.003][Fafard:worker] ’Task_1’ done
[1.202][Tremblay:master] Sending ’Task_5’ to ’worker-2’
[1.202][Fafard:worker] Processing ’Task_4’
[1.507][Ginette:worker] ’Task_2’ done
[1.606][Jupiter:worker] ’Task_3’ done
[1.635][Tremblay:master] All tasks dispatched. Let’s stop workers.
[1.635][Ginette:worker] Processing ’Task_5’
[1.637][Jupiter:worker] I’m done. See you!
[1.857][Fafard:worker] ’Task_4’ done
[1.859][Fafard:worker] I’m done. See you!
[2.666][Ginette:worker] ’Task_5’ done
[2.668][Tremblay:master] Goodbye now!
[2.668][Ginette:worker] I’m done. See you!
[2.668][] Simulation time 2.66766

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 20/54

SimGrid in a Nutshell

logs

stats

visu

Availibility
Changes

Platform
Topology

Application
Deployment

Simulation Kernel

Application

Applicative
Workload

Parameters
Input

Scenario Outcomes

Simulator

SimGrid is no simulator, but a simulation toolkit

Such organization favors versatility and decouples application modeling from plat-
form modeling

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 21/54

Outline

Experiments for Large-Scale Distributed Systems Research
Main Methodological Approaches: In Vivo, In Silico, In Vitro
Bad Practices in Large-Scale Distributed Systems Research

The SimGrid Project
User Interface(s)
How accurate? The Validation Quest
How big and how fast ?

Conclusions
Keynote Recap
Going Further: Experiment planning and Open Science
Take-home Messages

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 22/54

Simulation Validation: the FLASH example

FLASH project at Stanford

I Building large-scale shared-memory multiprocessors
I Went from conception, to design, to actual hardware (32-node)
I Used simulation heavily over 6 years

Authors compared simulation(s) to the real world

I Error is unavoidable (30% error in their case was not rare)

Negating the impact of “we got 1.5% improvement”
I Complex simulators not ensuring better simulation results

I Simple simulators worked better than sophisticated ones (which were unstable)
I Simple simulators predicted trends as well as slower, sophisticated ones
⇒ Should focus on simulating the important things

I Calibrating simulators on real-world settings is mandatory
I For FLASH, the simple simulator was all that was needed: Realistic ≈ Credible

Gibson, Kunz, Ofelt, Heinrich, FLASH vs. (Simulated) FLASH: Closing the Simulation Loop,
Architectural Support for Programming Languages and Operating Systems, 2000

Along the same lines: Weaver and MsKee, Are Cycle Accurate Simulations a Waste of Time?,
Proc. of the Workshop on Duplicating, Deconstruction and Debunking, 2008

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 23/54

Network Communication Models

Packet-level simulation Networking community has standards, many popular
open-source projects (NS, GTneTS, OmNet++,. . .)

I full simulation of the whole protocol stack
I complex models ; hard to instantiate
I inherently slow
I beware of simplistic packet-level simulation

Delay-based models The simplest ones. . .

I communication time = constant delay, statistical distribution, LogP
;(Θ(1) footprint and O(1) computation)

I coordinate based systems to account for geographic proximity
;(Θ(N) footprint and O(1) computation)

Although very scalable, these models ignore network congestion and typically
assume large bisection bandwidth

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 24/54

Network Communication Models

Packet-level simulation Networking community has standards, many popular
open-source projects (NS, GTneTS, OmNet++,. . .)

I full simulation of the whole protocol stack
I complex models ; hard to instantiate
I inherently slow
I beware of simplistic packet-level simulation

Delay-based models The simplest ones. . .

I communication time = constant delay, statistical distribution, LogP
;(Θ(1) footprint and O(1) computation)

I coordinate based systems to account for geographic proximity
;(Θ(N) footprint and O(1) computation)

Although very scalable, these models ignore network congestion and typically
assume large bisection bandwidth

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 24/54

Network Communication Models (cont’d)

Flow-level models
A communication is simulated as a single entity (like a flow in pipes):

Ti,j(S) = Li,j + S/Bi,j , where


S message size

Li,j latency between i and j

Bi,j bandwidth between i and j

Estimating Bi,j requires to account for interactions with other flows

Assume steady-state and share bandwidth every time a new flow appears or
disappears

Setting a set of flows F and a set of links L
Constraints For all link j :

∑
if flow i uses link j

%i 6 Cj

Objective function

I Max-Min max(min(%i))
I or other fancy objectives

e.g., Reno ∼ max(
∑

arctan(%i))
Vegas ∼ max(

∑
log(%i))

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 25/54

Network Communication Models (cont’d)

Flow-level models
A communication is simulated as a single entity (like a flow in pipes):

Ti,j(S) = Li,j + S/Bi,j , where


S message size

Li,j latency between i and j

Bi,j bandwidth between i and j

Estimating Bi,j requires to account for interactions with other flows

Assume steady-state and share bandwidth every time a new flow appears or
disappears

Setting a set of flows F and a set of links L
Constraints For all link j :

∑
if flow i uses link j

%i 6 Cj

Objective function

I Max-Min max(min(%i))
I or other fancy objectives

e.g., Reno ∼ max(
∑

arctan(%i))
Vegas ∼ max(

∑
log(%i))

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 25/54

Network Communication Models (cont’d)

Flow-level models
A communication is simulated as a single entity (like a flow in pipes):

Ti,j(S) = Li,j + S/Bi,j , where


S message size

Li,j latency between i and j

Bi,j bandwidth between i and j

Estimating Bi,j requires to account for interactions with other flows

Assume steady-state and share bandwidth every time a new flow appears or
disappears

Setting a set of flows F and a set of links L
Constraints For all link j :

∑
if flow i uses link j

%i 6 Cj

Objective function

I Max-Min max(min(%i))
I or other fancy objectives

e.g., Reno ∼ max(
∑

arctan(%i))
Vegas ∼ max(

∑
log(%i))

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 25/54

Invalidating Simulators from the Litterature
Naive flow models documented as wrong

Setting Expected Output Output
B = 100 B = 100

B = 20

Known issue in Narses (2002), OptorSim (2003), GroudSim (2011).

Validation by general agreement
“Since SimJava and GridSim have been extensively utilized in conducting
cutting edge research in Grid resource management by several researchers,
bugs that may compromise the validity of the simulation have been already
detected and fixed.” CloudSim, ICPP’09

Setting Expected Output Output
B B B

Buggy flow model (GridSim 5.2, Nov. 25, 2010). Similar issues with naive
packet-level models.

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 26/54

Invalidating Simulators from the Litterature
Naive flow models documented as wrong

Setting Expected Output Output
B = 100 B = 100

B = 20

B = 100 B = 100

B = 20

Known issue in Narses (2002), OptorSim (2003), GroudSim (2011).

Validation by general agreement
“Since SimJava and GridSim have been extensively utilized in conducting
cutting edge research in Grid resource management by several researchers,
bugs that may compromise the validity of the simulation have been already
detected and fixed.” CloudSim, ICPP’09

Setting Expected Output Output
B B B

Buggy flow model (GridSim 5.2, Nov. 25, 2010). Similar issues with naive
packet-level models.

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 26/54

Invalidating Simulators from the Litterature
Naive flow models documented as wrong

Setting Expected Output Output
B = 100 B = 100

B = 20

B = 100 B = 100

B = 20

B = 100 B = 100

B = 20

Known issue in Narses (2002), OptorSim (2003), GroudSim (2011).

Validation by general agreement
“Since SimJava and GridSim have been extensively utilized in conducting
cutting edge research in Grid resource management by several researchers,
bugs that may compromise the validity of the simulation have been already
detected and fixed.” CloudSim, ICPP’09

Setting Expected Output Output
B B B

Buggy flow model (GridSim 5.2, Nov. 25, 2010). Similar issues with naive
packet-level models.

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 26/54

Invalidating Simulators from the Litterature
Naive flow models documented as wrong

Setting Expected Output Output
B = 100 B = 100

B = 20

B = 100 B = 100

B = 20

B = 100 B = 100

B = 20

Known issue in Narses (2002), OptorSim (2003), GroudSim (2011).

Validation by general agreement
“Since SimJava and GridSim have been extensively utilized in conducting
cutting edge research in Grid resource management by several researchers,
bugs that may compromise the validity of the simulation have been already
detected and fixed.” CloudSim, ICPP’09

Setting Expected Output Output
B B B

Buggy flow model (GridSim 5.2, Nov. 25, 2010). Similar issues with naive
packet-level models.

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 26/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

Observations

Neglected observation

Sampled

Observations

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

Analysis

Observations

Neglected observation

Sampled

Analysis

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

ModelModel

Analysis

Observations

Neglected observation

Sampled

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

HypothesisHypothesisHypothesis

H1 H2 Hn

Analysis

Observations

Neglected observation

Sampled

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

HypothesisHypothesis

H1 H2 Hn

Analysis

Observations

Neglected observation

Sampled

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

HypothesisHypothesis

H1 H2 Hn

Experiments CampaignExperiments Campaign

Analysis

Observations

Neglected observation

Sampled

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

HypothesisHypothesis

H1 H2 Hn

Experiments CampaignExperiments Campaign

Analysis

Observations

Neglected observation

Sampled

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

HypothesisHypothesis

Experiments Campaign

H2

Analysis

Observations

Neglected observation

Sampled

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

HypothesisHypothesis

Experiments Campaign

H2

Analysis

Observations

Neglected observation

Sampled

Observations

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

HypothesisHypothesis

Experiments Campaign

H2

Analysis

Observations

Neglected observation

Sampled

Analysis

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

HypothesisHypothesisHypothesis

Experiments Campaign

H1' H2 Hn'

Analysis

Observations

Neglected observation

Sampled

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

HypothesisHypothesis

Experiments CampaignExperiments Campaign

H1' H2 Hn'

Analysis

Observations

Neglected observation

Sampled

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Validation vs. Invalidation
Validation

I Articles full of “convincing” graphs but shallow description, unavailable or bro-
ken code

I Optimistic validation, i.e., only for a few cases in which the model is expected
to work well
; merely verifies that the model implementation is correct and that its results
are not completely unreasonable

Invalidation and crucial experiments
Other sciences assess the quality of a model by trying to invalidate it.

HypothesisHypothesis

Experiments CampaignExperiments Campaign

H1' H2 Hn'

Analysis

Observations

Neglected observation

Sampled

1. A cyclic process

2. Experiments should be de-
signed to objectively prove or
disprove an hypothesis

3. Rejected hypothesis provide
generally much more insight
than accepted ones

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 27/54

Wanted Feature (1): Flow Control Limitation

Experimental settings

TCP
source

TCP

sink

Link

1 flow

I Flow throughput as function of L and B

I Fixed size (S=100MB) and window (W=20KB)

Results

0.000
0.100

0.200
0.300 56 kbit/s

10 Mbit/s

56 kbit/s

10 Mbit/s

Latency (L)

Bandwidth (B)

Throughput (T/S)

Legend
I Mesh: SimGrid results

S

S/min(B, W
2L

) + L

I •: GTNetS results

Conclusion
I SimGrid estimations close to packet-level simulators (when S=100MB)

I When B < W
2L

(B=100KB/s, L=500ms), |εmax | ≈ |ε| ≈ 1%

I When B > W
2L

(B=100KB/s, L= 10ms), |εmax | ≈ |ε| ≈ 2%

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 28/54

Wanted Feature (1): Flow Control Limitation

Experimental settings

TCP
source

TCP

sink

Link

1 flow

I Flow throughput as function of L and B

I Fixed size (S=100MB) and window (W=20KB)

Results

0.000
0.100

0.200
0.300 56 kbit/s

10 Mbit/s

56 kbit/s

10 Mbit/s

Latency (L)

Bandwidth (B)

Throughput (T/S)

Legend
I Mesh: SimGrid results

S

S/min(B, W
2L

) + L

I •: GTNetS results

Conclusion
I SimGrid estimations close to packet-level simulators (when S=100MB)

I When B < W
2L

(B=100KB/s, L=500ms), |εmax | ≈ |ε| ≈ 1%

I When B > W
2L

(B=100KB/s, L= 10ms), |εmax | ≈ |ε| ≈ 2%

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 28/54

Wanted Feature (1): Flow Control Limitation

Experimental settings

TCP
source

TCP

sink

Link

1 flow

I Flow throughput as function of L and B

I Fixed size (S=100MB) and window (W=20KB)

Results

0.000
0.100

0.200
0.300 56 kbit/s

10 Mbit/s

56 kbit/s

10 Mbit/s

Latency (L)

Bandwidth (B)

Throughput (T/S)

Legend
I Mesh: SimGrid results

S

S/min(B, W
2L

) + L

I •: GTNetS results

Conclusion
I SimGrid estimations close to packet-level simulators (when S=100MB)

I When B < W
2L

(B=100KB/s, L=500ms), |εmax | ≈ |ε| ≈ 1%

I When B > W
2L

(B=100KB/s, L= 10ms), |εmax | ≈ |ε| ≈ 2%

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 28/54

Wanted Feature (2): Slow Start
Experimental settings
TCP

source

TCP

sink

Link

1 flow

I Compute achieved bandwidth as function of S
I Fixed L=10ms and B=100MB/s

Evaluation of the SimGrid fluid model

Data size (Mb)

T
h

ro
u

g
h

p
u

t
(K

b
/s

)

SimGrid

NS2

SSFNet (0.2)

SSFNet (0.01)

GTNets

0.001 0.01 0.1 1 10 100 1000

0

300

200

100

900

400

500

600

700

800

 0

 0.5

 1

 1.5

 2

 0.001 0.01 0.1 1 10 100 1000

Data size (MB)

|ε
|

I Packet-level tools don’t completely agree

I Statistical analysis of GTNetS slow-start
I Better instantiation

I Bandwidth decreased (97%)
I Latency changed to 13.1× L
I Hence: Time = S

min(0.97×B,W
2L)

+ 13.1× L

I This dramatically improve validity range com-
pared to using raw L and B

S |ε| |εmax |
S < 100KB ≈ 12% ≈ 162%
S > 100KB ≈ 1% ≈ 6%

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 29/54

Wanted Feature (2): Slow Start
Experimental settings
TCP

source

TCP

sink

Link

1 flow

I Compute achieved bandwidth as function of S
I Fixed L=10ms and B=100MB/s

Evaluation of the SimGrid fluid model

SimGrid

NS2

SSFNet (0.2)

SSFNet (0.01)

GTNets

0.001 0.01 0.1 1 10 100 1000

0

300

200

100

900

400

500

600

700

800

Data size (MB)

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

 0

 0.5

 1

 1.5

 2

 0.001 0.01 0.1 1 10 100 1000

Data size (MB)

|ε
|

I Packet-level tools don’t completely agree
I Statistical analysis of GTNetS slow-start
I Better instantiation

I Bandwidth decreased (97%)
I Latency changed to 13.1× L
I Hence: Time = S

min(0.97×B,W
2L)

+ 13.1× L

I This dramatically improve validity range com-
pared to using raw L and B

S |ε| |εmax |
S < 100KB ≈ 12% ≈ 162%
S > 100KB ≈ 1% ≈ 6%

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 29/54

Wanted Feature (3): RTT-unfairness

Hypothesis: Bottleneck links are proportionally shared with respect
to flow RTT

RTTA.%A = RTTB .%B where RTTi ≈
∑

flow i uses link j

(Lj) (naive model)

I Longer flows (higher latency) will receive slightly less bandwidth
I However, bandwidth also matters

I Again, instantiation improvement: RTTi ≈
∑

flow i uses link j

(
M

Bj
+ Lj

)

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 30/54

Wanted Feature (3): RTT-unfairness

Hypothesis: Bottleneck links are proportionally shared with respect
to flow RTT

RTTA.%A = RTTB .%B where RTTi ≈
∑

flow i uses link j

(Lj) (naive model)

I Longer flows (higher latency) will receive slightly less bandwidth

I However, bandwidth also matters

I Again, instantiation improvement: RTTi ≈
∑

flow i uses link j

(
M

Bj
+ Lj

)

client 1 server 1

client 2 server 2

L
=

0.
01

 s

B =
 1

6
Gbit

/s

L
=

0.
01

 s

B =
 1

6
Gbit

/s

L = 0.01 s

B = 16 Gbit/s

L = VARIABLE

B = 16 Gbit/s

L = 0.02 s
B = VARIABLE

FLOW A

FLOW B

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 30/54

Wanted Feature (3): RTT-unfairness

Hypothesis: Bottleneck links are proportionally shared with respect
to flow RTT

RTTA.%A = RTTB .%B where RTTi ≈
∑

flow i uses link j

(Lj) (naive model)

I Longer flows (higher latency) will receive slightly less bandwidth

I However, bandwidth also matters

I Again, instantiation improvement: RTTi ≈
∑

flow i uses link j

(
M

Bj
+ Lj

)

0.05
0.00

0.10
0.15

0.20
0.05

0.00
0.10

0.15
0.20

10 kB/s

GTNetS Model
0.05

0.00
0.10

0.15
0.20

0.05
0.00

0.10
0.15

0.20

100 kB/s

GTNetS Model

0.05
0.00

0.10
0.15

0.20
0.05

0.00
0.10

0.15
0.20

500 kB/s

GTNetS Model
0.05

0.00
0.10

0.15
0.20

0.05
0.00

0.10
0.15

0.20

1 MB/s

GTNetS Model

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 30/54

Wanted Feature (3): RTT-unfairness

Hypothesis: Bottleneck links are proportionally shared with respect
to flow RTT

RTTA.%A = RTTB .%B where RTTi ≈
∑

flow i uses link j

(Lj) (naive model)

I Longer flows (higher latency) will receive slightly less bandwidth
I However, bandwidth also matters

I Again, instantiation improvement: RTTi ≈
∑

flow i uses link j

(
M

Bj
+ Lj

)

0.05
0.00

0.10
0.15

0.20
0.05

0.00
0.10

0.15
0.20

10 kB/s

GTNetS Model
0.05

0.00
0.10

0.15
0.20

0.05
0.00

0.10
0.15

0.20

100 kB/s

GTNetS Model

0.05
0.00

0.10
0.15

0.20
0.05

0.00
0.10

0.15
0.20

500 kB/s

GTNetS Model
0.05

0.00
0.10

0.15
0.20

0.05
0.00

0.10
0.15

0.20

1 MB/s

GTNetS Model

0.01

0.05

0.10

0.15

0.20

56kbit/s

8 Gbit/s

16 Gbit/s

1

2

3

4

5

6

w
wA

B

Bandwidth
LatencyArnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 30/54

Wanted Feature (3): RTT-unfairness

Hypothesis: Bottleneck links are proportionally shared with respect
to flow RTT

RTTA.%A = RTTB .%B where RTTi ≈
∑

flow i uses link j

(Lj) (naive model)

I Longer flows (higher latency) will receive slightly less bandwidth
I However, bandwidth also matters

I Again, instantiation improvement: RTTi ≈
∑

flow i uses link j

(
M

Bj
+ Lj

)

0.05
0.00

0.10
0.15

0.20
0.05

0.00
0.10

0.15
0.20

10 kB/s

GTNetS Model
0.05

0.00
0.10

0.15
0.20

0.05
0.00

0.10
0.15

0.20

100 kB/s

GTNetS Model

0.05
0.00

0.10
0.15

0.20
0.05

0.00
0.10

0.15
0.20

500 kB/s

GTNetS Model
0.05

0.00
0.10

0.15
0.20

0.05
0.00

0.10
0.15

0.20

1 MB/s

GTNetS Model

0.01

0.05

0.10

0.15

0.20

56kbit/s

8 Gbit/s

16 Gbit/s

1

2

3

4

5

6

w
wA

B

Bandwidth
LatencyArnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 30/54

Wanted Feature (4): Cross-Traffic Interference

Take two machines connected by a full-duplex ethernet link.

B/2,B/2

{B , (2, 0)}

{B , (0, 2)}

{B , (1, 1)}
B/2,B/2 B

{B , (2, 2)}
B/2,B/2

B/2,B/2

This is a well-known phenomenon when you are using ADSL

Burstiness at micro-scale severely impact macro-scale properties

Modeling such burstiness is ongoing research and resorts to complex differential
algebraic equations
Tang et al., Window Flow Control: Macroscopic Properties from Microscopic Factors, in INFOCOM
2008

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 31/54

Wanted Feature (4): Cross-Traffic Interference

Take two machines connected by a full-duplex ethernet link.

{B , (2, 1)}
B/2

B/2,B/2

B/2,B/2

{B , (2, 0)}

{B , (0, 2)}

{B , (1, 1)}
B/2,B/2 B

{B , (2, 2)}
B/2,B/2

B/2,B/2

This is a well-known phenomenon when you are using ADSL

Burstiness at micro-scale severely impact macro-scale properties

Modeling such burstiness is ongoing research and resorts to complex differential
algebraic equations
Tang et al., Window Flow Control: Macroscopic Properties from Microscopic Factors, in INFOCOM
2008

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 31/54

Wanted Feature (4): Cross-Traffic Interference

Take two machines connected by a full-duplex ethernet link.

{B , (2, 1)}
B/2

B/2,B/2

B/2,B/2

{B , (2, 0)}

{B , (0, 2)}

{B , (1, 1)}
B/2,B/2 B

{B , (2, 2)}
B/2,B/2

B/2,B/2

This is a well-known phenomenon when you are using ADSL

Burstiness at micro-scale severely impact macro-scale properties

Modeling such burstiness is ongoing research and resorts to complex differential
algebraic equations
Tang et al., Window Flow Control: Macroscopic Properties from Microscopic Factors, in INFOCOM
2008

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 31/54

Wanted Features!

Key characteristics of TCP
I Flow-control limitation

I Slow start

I RTT-unfairness

I Cross Traffic Interference

That’s messy. Have fluid models a chance ?

I Most previous models (delay,
∑

log,
∑

arctan, ...) are available in SimGrid

I When well-instantiated, max-min based model can account for all these well-
known phenomenon

I The default SimGrid model is LV08: a pragmatic max-min based that is far
from perfect but seems reasonnable according to our invalidation studies

Invalidation studies: an endless quest?

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 32/54

Wanted Features!

Key characteristics of TCP
I Flow-control limitation

I Slow start

I RTT-unfairness

I Cross Traffic Interference

That’s messy. Have fluid models a chance ?

I Most previous models (delay,
∑

log,
∑

arctan, ...) are available in SimGrid

I When well-instantiated, max-min based model can account for all these well-
known phenomenon

I The default SimGrid model is LV08: a pragmatic max-min based that is far
from perfect but seems reasonnable according to our invalidation studies

Invalidation studies: an endless quest?

Max-Min

GTNetS

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 32/54

Wanted Features!

Key characteristics of TCP
I Flow-control limitation

I Slow start

I RTT-unfairness

I Cross Traffic Interference

That’s messy. Have fluid models a chance ?

I Most previous models (delay,
∑

log,
∑

arctan, ...) are available in SimGrid

I When well-instantiated, max-min based model can account for all these well-
known phenomenon

I The default SimGrid model is LV08: a pragmatic max-min based that is far
from perfect but seems reasonnable according to our invalidation studies

Invalidation studies: an endless quest?

GTNetS

Improved Max-Min with cross-traffic

Improved Max-Min

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 32/54

Wanted Features!

Key characteristics of TCP
I Flow-control limitation

I Slow start

I RTT-unfairness

I Cross Traffic Interference

That’s messy. Have fluid models a chance ?

I Most previous models (delay,
∑

log,
∑

arctan, ...) are available in SimGrid

I When well-instantiated, max-min based model can account for all these well-
known phenomenon

I The default SimGrid model is LV08: a pragmatic max-min based that is far
from perfect but seems reasonnable according to our invalidation studies

Invalidation studies: an endless quest?

Flow 66

0 200 400 600 800 1000 1200

d
a
ta

 r
a
te

(M
b

it
/s

)

Time (seconds)

data rate of flow 66

7e+06

5e+06

3e+06

1e+06

GTNetS timeline

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 32/54

Accuracy of MPI simulations

SkaMPI
Default Affine Model
Best-Fit Affine Model
Piece-Wise Linear Model

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

C
om

m
u

n
ic

at
io

n
T

im
e

(i
n
µ

s)

Message Size (in Bytes)

Timings of each communication
I λ+ size × τ not sufficient (TCP congestion)

I No affine fonction can match for all message sizes

I Piecewise affine model gives satisfying resultsœ

I Need to model communication/computation overlap

Still a work in progress for complete MPI applications

I Sweep3D, OpenMPI, TCP, Gigabit Eth-
ernet, 16 nodes

I Quite encouraging

I Take resource sharing into account

I Not only makespan comparison but also
internal state distribution

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 33/54

Accuracy of MPI simulations

SkaMPI
Default Affine Model
Best-Fit Affine Model
Piece-Wise Linear Model

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

C
om

m
u

n
ic

at
io

n
T

im
e

(i
n
µ

s)

Message Size (in Bytes)

Timings of each communication
I λ+ size × τ not sufficient (TCP congestion)

I No affine fonction can match for all message sizes

I Piecewise affine model gives satisfying resultsœ

I Need to model communication/computation overlap

Still a work in progress for complete MPI applications

I Sweep3D, OpenMPI, TCP, Gigabit Eth-
ernet, 16 nodes

I Quite encouraging

I Take resource sharing into account

I Not only makespan comparison but also
internal state distribution

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 33/54

Wrap up on network models

SotA: Models in most simulators are either simplistic, wrong or not assessed

I PeerSim: discrete time, application as automaton; GridSim: naive packet level

I OptorSim, GroudSim: documented as wrong on heterogeneous platforms

I Validity evaluation: tricky, requires meticulous attention & sound methodology

SIMGRID and the validation quest
Fluid models can account for TCP key characteristics

I slow-start

I flow-control limitation

I RTT-unfairness

I cross traffic interference

They are a very reasonable approximation for most LSDC systems

Yet, many people think they are too complex to scale.

Well, if you do things right, it’s ok! ¨̂

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 34/54

SIMGRID Internals in a Nutshell for Users

SimGrid Layers

I MSG: User interface

I Simix: processes, synchro

I SURF: Resources

I (LMM: MaxMin systems)

Changing the Model

I “--cfg=network model”

I Several fluid models

I Several constant time

I GTNetS and NS3 wrapper

I Build your own (!)

LMM

SIMIX

SURF

MSG

Actions{372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... 6 CP

6 CL1

6 CL4

6 CL2

6 CL3

  

Constraints

                                  

Variables

Conditions{

... Process




us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

...

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 35/54

Outline

Experiments for Large-Scale Distributed Systems Research
Main Methodological Approaches: In Vivo, In Silico, In Vitro
Bad Practices in Large-Scale Distributed Systems Research

The SimGrid Project
User Interface(s)
How accurate? The Validation Quest
How big and how fast ?

Conclusions
Keynote Recap
Going Further: Experiment planning and Open Science
Take-home Messages

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 36/54

A BOINC simulation using SimGrid

Volunteer are very unstable, which slows down simulation.
I Lazy Update + Efficient Future Event Set
I Traces Integration and Dichotomic Search

As a proof of structure, we coded a simplified BOINC architecture in about 800 lines
and compared it to previous approaches.

BOINC client simulator the project sharings and deadline misses are very close to
the ones observed with the BOINC client simulator.

I Surprisingly, our simulation is about 60 times faster. Who cares? It was
already fast.

I More interesting: we can feed clients with SETI traces (e.g., from http:

//fta.inria.fr) and use the same code to simulate the whole system!

SimBA The authors reported the following performances on a P4 3GHz.
I P@H: 15 simulation days, 7810 workers = 107 minutes.

We fed SimGrid with complex SETI traces: it takes less than 4 minutes!
I CHARMM: 8 simulation days, 5093 workers = 44 minutes.

Simgrid result for a similar experiment: about 80 seconds.

But more importantly, BOINC can be studied as a whole (multiple clients, multiple
projects, complex traces, realistic network models if needed).

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 37/54

http://fta.inria.fr
http://fta.inria.fr

Scalable Platform Description

Main issues with topology
I description size, expressiveness
I memory footprint
I computation time

N nodes and E links

Classical network representation

1. Flat representation
5000 hosts doesn’t fit in 4Gb!

2. Graph representation assuming
shortest path routing

3. Special class of structures (star,
cloud, . . .)

Representation Input Footprint Parsing Lookup

Dijsktra N + E E + N log N N + E E + N log N

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 38/54

Scalable Platform Description

Main issues with topology
I description size, expressiveness
I memory footprint
I computation time

N nodes and E links

N

N

{L12, L52, . . . , L4}

Classical network representation

1. Flat representation
5000 hosts doesn’t fit in 4Gb!

2. Graph representation assuming
shortest path routing

3. Special class of structures (star,
cloud, . . .)

Representation Input Footprint Parsing Lookup
Flat N2 N2 N2 1

Dijsktra N + E E + N log N N + E E + N log N

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 38/54

Scalable Platform Description

Main issues with topology
I description size, expressiveness
I memory footprint
I computation time

N nodes and E links

Classical network representation

1. Flat representation
5000 hosts doesn’t fit in 4Gb!

2. Graph representation assuming
shortest path routing

3. Special class of structures (star,
cloud, . . .)

Representation Input Footprint Parsing Lookup
Dijsktra N + E E + N log N N + E E + N log N

Floyd N + E N2 N3 1

Dijsktra N + E E + N log N N + E E + N log N

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 38/54

Scalable Platform Description

Main issues with topology
I description size, expressiveness
I memory footprint
I computation time

N nodes and E links

Classical network representation

1. Flat representation
5000 hosts doesn’t fit in 4Gb!

2. Graph representation assuming
shortest path routing

3. Special class of structures (star,
cloud, . . .)

Representation Input Footprint Parsing Lookup
Star 1 N N 1

Cloud N N N 1

Dijsktra N + E E + N log N N + E E + N log N

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 38/54

SIMGRID Platform Representation

Every such representation has drawbacks and advantages
Let’s build on the fact that most networks are mostly hierarchical

1. Hierarchical organization in AS
; cuts down complexity
; recursive routing

2. Efficient representation of classical
structures

3. Allow bypass at any level

Empty
+coords

Full

Full

Dijkstra

Floyd

Rule−
based

Rule−
based

Rule−
based

based
Rule−

AS1

AS2

AS4

AS5

AS7

AS6

AS5−3

AS5−1 AS5−2

AS5−4

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 39/54

How big and how fast (1/3)? Grid

Size of platform description file
Community Scenario Size

P2P 2,500 peers with Vivaldi coordinates 294KB
VC 5120 volunteers 435KB + 90MB

Grid Grid5000: 10 sites, 40 clusters, 1500 nodes 22KB
HPC 1 cluster of 262144 nodes 5KB
HPC Hierarchy of 4096 clusters of 64 nodes 27MB
Cloud 3 small data centers + Vivaldi 10KB

Grid Scenario a master distributes 500, 000 fixed size jobs to 2, 000 workers in a
round-robin way

GRIDSIM SIMGRID

Network model delay-based model flow model
Topology none Grid5000
Time 1h 14s
Memory 4.4GB 165MB?

? 5.2Mb are used to represent the Grid 5000. Stack size not optimized (80KB/worker)

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 40/54

How big and how fast (1/3)? Grid

Size of platform description file
Community Scenario Size

P2P 2,500 peers with Vivaldi coordinates 294KB
VC 5120 volunteers 435KB + 90MB

Grid Grid5000: 10 sites, 40 clusters, 1500 nodes 22KB
HPC 1 cluster of 262144 nodes 5KB
HPC Hierarchy of 4096 clusters of 64 nodes 27MB
Cloud 3 small data centers + Vivaldi 10KB

Grid Scenario a master distributes 500, 000 fixed size jobs to 2, 000 workers in a
round-robin way

GRIDSIM SIMGRID

Network model delay-based model flow model
Topology none Grid5000
Time 1h 14s
Memory 4.4GB 165MB?

? 5.2Mb are used to represent the Grid 5000. Stack size not optimized (80KB/worker)

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 40/54

How big and how fast (2/3)? P2P

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol

I Arbitrary Time Limit: 12 hours (kill simulation afterward)

0

10 000

20 000

30 000

40 000

0 500 000 1e+06 1.5e+06 2e+06

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Number of nodes

Oversim (OMNeT++ underlay)
Oversim (simple underlay)

PeerSim
SimGrid (flow-based)

SimGrid (delay-based)

Largest simulated scenario

Simulator size time
OverSim (OMNeT++) 10k 1h40

OverSim (simple) 300k 10h
PeerSim 100k 4h36

10k 130s
SG (flow-based) 300k 32mn

2M∗ 6h23
SG (delay-based) 2M 5h30

∗ 36GB = 18kB/ process (16kB for the stack)

I SIMGRID is orders of magnitude more scalable than state-of-the-art P2P simu-
lators

I Using the flow-based model incurs a limited (≈ 20%) slowdown, while simula-
tion accuracy is improved

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 41/54

How big and how fast (3/3)? HPC

0.01

0.1

1

10

100

1000

10000

10 12 14 16 18 20 22 24

S
im
ul
at
io
n
Ti
m
e
(s
)

Log2 of the Number of Processes

SimGrid
LogGoPSim

Simulating a binomial broadcast:

I SIMGRID is roughly 75% slower than
LOGGOPSIM

I SIMGRID is at least 20% more fat than
LOGGOPSIM (15GB required for 223

processors)

The genericity of SIMGRID data structures comes at the cost of a slight overhead

This demonstrates that scalability does not necessarily comes at the price of realism
(e.g., ignoring contention on the interconnect)

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 42/54

Parallel P2P simulators: the dPeerSim attempt

dPeerSim
I Parallel implementation of PeerSim/DES (not by PeerSim main authors)

I Classical parallelization: spreads the load over several Logical Processes (LP)

LP #1 LP #2

LP #3 LP #4

Experimental Results

I Uses Chord as a standard workload: e.g. 320,000 nodes ; 320,000 requests

I The result are impressive at first glance
I 4h10 using two Logical Processes: only 1h06 using 16 LPs
I Speedup of 4 using 8 times more resources, that’s really not bad at all

I But this is to be compared to sequential results
I The same simulation takes 47 seconds in the original sequential PeerSim
I (and 5 seconds using the precise network models of SimGrid in sequential)

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 43/54

Parallel Simulation vs. Dist. Apps Simulators

Simulation
Workload

Simulation
Engine

Execution
Environment

I Granularity, Communication Pattern

I Events population, probability & delay

I #simulation objects, #processors

I Parallel protocol, if any:
– Conservative (lookahead, . . .)
– Optimistic (state save & restore, . . .)

I Event list mgnt, Timing model. . .

I OS, Programming Language (C, Java. . .),
Networking Interface (MPI, . . .)

I Hardware aspects (CPU, mem., net)

S
im

u
la

ti
o

n
W

o
rk

lo
a

d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution
Environment

Classical Parallel Simulation Schema
[Balakrishnan et al]

Layered View of
Dist. App. Simulators

I The classical approach is to distribute the Simulation Engine entirely

I Hard issues: conservatives ; too few parallelism; optimistic ; roll back

I From our experience, most of the time is in so called “simulation workload”
I User code executed as threads, that are scheduled according to simulation
I The user code itself can reveal resource hungry: numerous / large processes

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 44/54

Main Idea of this Work

Split at Virtualization, not Simulation Engine
I Virtualization contains threads (user’s stack)

I Engine & Models remains sequential

Models + EnginesVirtualization + SynchroUser

tnM
U1

U2

U3

tn+1 tn+2

S
im

u
la

ti
o

n
W

o
rk

lo
a

d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution
Environment

Understanding the trade-off

I Sequential time:
∑
SR

(engine + model + virtu + user)

I Classical schema:
∑
SR

(
max
i∈LP

(enginei + modeli + virtui + useri) + proto

)
I Proposed schema:

∑
SR

(
engine + model + max

i∈WT
(virtui + useri) + sync

)
I Synchronization protocol expensive wrt the engine’s load to be distributed

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 45/54

Enabling Parallel Simulation of Dist.Apps

Challenge: Allow User-Code to run Concurrently

I DES simulator full of shared data structures: how to avoid race conditions?

I Fine-locking would be difficult and inefficient; wouldn’t avoid app-level races
I A: recv, B: send, C : send ; Which send matches the recv from A in simulation?
I Depends on execution order in host system ; simulation not reproducible. . .

Solution: OS-inspired Separation Simulated Processes

I Mediate any interaction of processes with their environment, as in real OSes
e.g. don’t create a new process directly, but issue a simcall to request creation

Models+Engines
Virtualization + Synchro
User (isolated)

M

simcall U2

U1
request answer

U3

actual interaction

1: t ← 0
2: Pt ← P
3: while Pt 6= ∅ do
4: parallel schedule(Pt)
5: handle simcalls()
6: (t, events)← models solve()
7: Pt ← proc to wake(events)
8: end while

I Processes isolated from each others
I Simcalls data locally stored

I Simcalls handled centrally once users blocked
I Arbitrary fixed order for reproducibility

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 46/54

Enabling Parallel Simulation of Dist.Apps

Challenge: Allow User-Code to run Concurrently

I DES simulator full of shared data structures: how to avoid race conditions?

I Fine-locking would be difficult and inefficient; wouldn’t avoid app-level races
I A: recv, B: send, C : send ; Which send matches the recv from A in simulation?
I Depends on execution order in host system ; simulation not reproducible. . .

Solution: OS-inspired Separation Simulated Processes

I Mediate any interaction of processes with their environment, as in real OSes
e.g. don’t create a new process directly, but issue a simcall to request creation

Models+Engines
Virtualization + Synchro
User (isolated)

M

simcall U2

U1
request answer

U3

actual interaction

1: t ← 0
2: Pt ← P
3: while Pt 6= ∅ do
4: parallel schedule(Pt)
5: handle simcalls()
6: (t, events)← models solve()
7: Pt ← proc to wake(events)
8: end while

I Processes isolated from each others
I Simcalls data locally stored

I Simcalls handled centrally once users blocked
I Arbitrary fixed order for reproducibility

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 46/54

Enabling Parallel Simulation of Dist.Apps

Challenge: Allow User-Code to run Concurrently

I DES simulator full of shared data structures: how to avoid race conditions?

I Fine-locking would be difficult and inefficient; wouldn’t avoid app-level races
I A: recv, B: send, C : send ; Which send matches the recv from A in simulation?
I Depends on execution order in host system ; simulation not reproducible. . .

Solution: OS-inspired Separation Simulated Processes

I Mediate any interaction of processes with their environment, as in real OSes
e.g. don’t create a new process directly, but issue a simcall to request creation

Models+Engines
Virtualization + Synchro
User (isolated)

M

simcall U2

U1
request answer

U3

actual interaction

1: t ← 0
2: Pt ← P
3: while Pt 6= ∅ do
4: parallel schedule(Pt)
5: handle simcalls()
6: (t, events)← models solve()
7: Pt ← proc to wake(events)
8: end while

I Processes isolated from each others
I Simcalls data locally stored

I Simcalls handled centrally once users blocked
I Arbitrary fixed order for reproducibility

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 46/54

Efficient Parallel Simulation

Leveraging Multicores

I P2P involve millions of user processes, but dozens of cores at best

I Having millions of System threads is difficult (when possible)

I Co-routines (Unix ucontexts, Windows fibers): highly efficient but not parallel

I N:M model used: millions of coroutines executed on few threads

T1
tn

T2

tn+1M

Logical View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm

Reducing Synchronization Costs

I Inter-thread synchronization achieved through system calls (of real OS)

I Costs of syscalls are critical to performance ; save all possible syscalls

I Assembly reimplementation of ucontext: no syscall on context switch

I Synchronize only at scheduling round boundaries using futexes

I Dynamic load distribution: hardware fetch-and-add next process’ index

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 47/54

Microbenchmarking Synchronization Costs

Rq: P2P and Chord are ultra fine grain: this is thus a worst case scenario

Comparing our user context containers

I pthreads hit a scalability limit by 32,000 processes (amount of semaphores)

I System contexts and ASM contexts have no hard limit (beside available RAM)

I pthreads are about 10 times slower than our own ASM contexts

I ASM contexts are about 20% faster than system ones
(only difference: avoid any syscalls on user context switches)

Measuring intrinsic synchronization costs

I Disabling parallelism at runtime: no noticeable performance change

I Enabling parallelism over 1 thread: 15% performance drop off

I Demonstrate the difficulty although the careful optimization

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 48/54

Benefits of the Parallel Execution

0.8
0.9

1
1.1
1.2
1.3
1.4

S
pe

ed
up

(p
re

ci
se

 m
od

el
) 1 thread

2 threads
4 threads
8 threads

16 threads
24 threads

0.8
0.9

1
1.1
1.2
1.3
1.4

0 500000 1e+06 1.5e+06 2e+06

(c
on

st
an

t m
od

el
)

Number of nodes

S
pe

ed
up

I Speedup (
tseq
tpar

): up to 45%

I More efficient with simple model:
I Less work in engine + Amhdal law

I Speedup depends on thread amount
I 8 threads (of 24 cores) often better
I Synch costs remain hard to amortize
I They depend on thread amount

Parallel Efficiency (speedup
#cores

) for 2M nodes

Model 4 threads 8 th. 16 th. 24 th.
Precise 0.28 0.15 0.07 0.05

Constant 0.33 0.16 0.08 0.06

I Baaaaad efficiency results

I Remember, P2P and Chord:
Worst case scenarios

Yet, first time that Chord’s parallel simulation is faster than best known sequential

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications The SimGrid Project 49/54

Outline

Experiments for Large-Scale Distributed Systems Research
Main Methodological Approaches: In Vivo, In Silico, In Vitro
Bad Practices in Large-Scale Distributed Systems Research

The SimGrid Project
User Interface(s)
How accurate? The Validation Quest
How big and how fast ?

Conclusions
Keynote Recap
Going Further: Experiment planning and Open Science
Take-home Messages

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 50/54

Conclusions on Distributed Systems Research

Research on Large-Scale Distributed Systems

I Reflexion about common methodologies needed (reproductible results needed)
I Purely theoritical works limited (simplistic settings ; NP-complete problems)
I Real-world experiments time and labor consuming; limited representativity
I Simulation appealing, if results remain validated

Simulating Large-Scale Distributed Systems or Applications

I Packet-level simulators too slow for large scale studies
I Large amount of ad-hoc simulators, but discutable validity
I Coarse-grain modeling of TCP flows possible (cf. networking community)
I Model instantiation (platform mapping or generation) remains challenging

SimGrid provides interesting models

I Implements non-trivial coarse-grain models for resources and sharing
I Validity results encouraging with regard to packet-level simulators
I Several orders of magnitude faster than packet-level simulators
I Several models availables, ability to plug new ones or use packet-level sim.

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 51/54

Grid Simulation and Open Science

Requirement on Experimental Methodology (what do we want)
I Standard methodologies and tools: Grad students learn them to be operational

I Incremental knowledge: Read a paper, Reproduce its results, Improve.

I Reproducible results: Compare easily experimental scenarios
Reviewers can reproduce result, Peers can work incrementally (even after long time)

Current practices in the field (what do we have)
I Very little common methodologies and tools; many home-brewed tools

I Experimental settings rarely detailed enough in literature

These issues are tackled by the SimGrid community

I Released, open-source, stable simulation framework

I Extensive optimization and validation work

I Separation of simulated application and experimental conditions

I Are we there yet? Not quite

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 52/54

SimGrid and Open Science

Simulations are reproducible ... provided that authors ensure that

I Need to publish source code, platform file, statistic extraction scripts . . .

I Almost no one does it. I try to but ... (shame, shame). Why?

Technical issues to tackle
I Archiving facilities, Versionning, Branch support, Dependencies management

I Workflows automating execution of test campaigns (myexperiment.org) and
help sharing results (manyeyes.alphaworks.ibm.com)

I We already have most of them (Makefiles, Maven, debs, forges, repositories, . . .)

I But still, we don’t use it. Is the issue really technical?

Sociological issues to tackle

I A while ago, simulators were simple, only filling gant charts automatically

I We don’t have the culture of reproducibility:
I “My scientific contribution is the algorithm, not the crappy demo code”
I But your contribution cannot be assessed if it cannot be reproduced!

I I don’t have any definitive answer about how to solve it

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 53/54

myexperiment.org
manyeyes.alphaworks.ibm.com

SimGrid and Open Science

Simulations are reproducible ... provided that authors ensure that

I Need to publish source code, platform file, statistic extraction scripts . . .

I Almost no one does it. I try to but ... (shame, shame). Why?

Technical issues to tackle
I Archiving facilities, Versionning, Branch support, Dependencies management

I Workflows automating execution of test campaigns (myexperiment.org) and
help sharing results (manyeyes.alphaworks.ibm.com)

I We already have most of them (Makefiles, Maven, debs, forges, repositories, . . .)

I But still, we don’t use it. Is the issue really technical?

Sociological issues to tackle

I A while ago, simulators were simple, only filling gant charts automatically

I We don’t have the culture of reproducibility:
I “My scientific contribution is the algorithm, not the crappy demo code”
I But your contribution cannot be assessed if it cannot be reproduced!

I I don’t have any definitive answer about how to solve it

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 53/54

myexperiment.org
manyeyes.alphaworks.ibm.com

SimGrid and Open Science

Simulations are reproducible ... provided that authors ensure that

I Need to publish source code, platform file, statistic extraction scripts . . .

I Almost no one does it. I try to but ... (shame, shame). Why?

Technical issues to tackle
I Archiving facilities, Versionning, Branch support, Dependencies management

I Workflows automating execution of test campaigns (myexperiment.org) and
help sharing results (manyeyes.alphaworks.ibm.com)

I We already have most of them (Makefiles, Maven, debs, forges, repositories, . . .)

I But still, we don’t use it. Is the issue really technical?

Sociological issues to tackle

I A while ago, simulators were simple, only filling gant charts automatically

I We don’t have the culture of reproducibility:
I “My scientific contribution is the algorithm, not the crappy demo code”
I But your contribution cannot be assessed if it cannot be reproduced!

I I don’t have any definitive answer about how to solve it

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 53/54

myexperiment.org
manyeyes.alphaworks.ibm.com

Building Open Science Around the Simulator

Going further toward Open Science

I Issues we face in simulation are common to every experimental methodologies
Test planning, Test Campaign Management, Statistic Extraction

I Tool we need to help Open Science arise in simulation would help others

I Why not step back and try to unit efforts?

What would a perfect world look like?

A single simulation using SimGrid

logs

stats

visu

Availibility
Changes

Platform
Topology

Application
Deployment

Simulation Kernel

Application

Applicative
Workload

Parameters
Input

Scenario Outcomes

Simulator

An Experiment Campaign on Grid’5000

F
ig

u
re

fr
o

m
O

li
vi

er
R

ic
h

ar
d

Factorizing is really appealing, even if huge amount of work remains to be done

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 54/54

Building Open Science Around the Simulator

Going further toward Open Science

I Issues we face in simulation are common to every experimental methodologies
Test planning, Test Campaign Management, Statistic Extraction

I Tool we need to help Open Science arise in simulation would help others

I Why not step back and try to unit efforts?

What would a perfect world look like?

A single simulation using SimGrid

logs

stats

visu

Availibility
Changes

Platform
Topology

Application
Deployment

Simulation Kernel

Application

Applicative
Workload

Parameters
Input

Scenario Outcomes

Simulator

An Experiment Campaign on Grid’5000

F
ig

u
re

fr
o

m
O

li
vi

er
R

ic
h

ar
d

Factorizing is really appealing, even if huge amount of work remains to be done
Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 54/54

Take-home Messages

HPC and Grid applications tuning and assessment

I Challenging to do; Methodological issues often neglected

I Several methodological ways: in vivo, in vitro, in silico; none perfect

The SimGrid Simulation Framework
I Mature Framework: validated models, software quality assurance

I You should use it!

We only scratched the corner of the problem
I A single simulation is just a brick of the scientific workflow

I We need more associated tools for campaign management, etc.

I Open Science is a must! (please don’t say the truth to physicians or biologists)

I Technical issues faced, but even more sociological ones
I Solve it not only for simulation, but for all methodologies at the same time

We still have a large amount in front of us ,
Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 55/54

SimGrid provides several user interfaces

SimDag: Comparing Scheduling Heuristics for DAGs of (parallel) tasks
I Declare tasks, their precedences, schedule them on resource, get the makespan

MSG: Comparing Heuristics for Concurrent Sequential Processes
I Declare independent agents running a given function on an host
I Let them exchange and execute tasks
I Easy interface, rapid prototyping; Java, Lua, Ruby bindings
I Also trace-driven simulations (user-defined events and callbacks)

GRAS: Developing and Debugging Real Applications
I Develop once, run in simulation or in situ (debug; test on non-existing platforms)
I Resulting application twice slower than MPICH, faster than omniorb
I Highly portable and easy to deploy

SMPI: Running MPI applications on top of SimGrid (beta quality)
I Runs unmodified MPI code after recompilation (still partial implementation)

Other interfaces possible: OpenMP, BSP-like (any volunteer?)

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 56/54

SimGrid is an active and exciting project

Future Plans
I Better usability: build around simulator

(statistics tools, campain management)

I Extreme Scalability for P2P

I Model-checking and semantic debugging

I Emulation solution à la MicroGrid

G
R
E
:

G
R

A
S

 in
 s

itu

SMURF
SimIX network proxy

SimIX

SURF
virtual platform simulator

XBT

SimDag
SMPI

MSG
GRAS

”POSIX-like” API on a virtual platform

Large community
http://gforge.inria.fr/projects/simgrid/

I 100 subscribers to the user mailling list (40 to -devel)

I +100 scientific publications using the tool for their experiments

I LGPL, 120,000 lines of code (half for examples and regression tests)

I Examples, documentation and tutorials on the web page

Use it in your works!

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 57/54

http://gforge.inria.fr/projects/simgrid/

Finding SimGrid’s documentation

User manuals are for wimps

I Real Men read some slides ’cause they are more concise

I They read the examples, pick one modify it to fit their needs

I They may read 2 or 5% of the reference guide to check the syntax

I In doubt, they just check the source code

lusers don’t read the manual either
I Proof: that’s why the RTFM expression were coined out

I Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?
I The SimGrid tutorial is a 200 slides presentation

(motivation, models, example of use, internals)

I Almost all features of UAPI are demoed in an example (coverage testing)

I The reference guide contains a lot in introduction sections (about XBT)

I The FAQ contains a lot too (installing, visu, XML, exotic features)

I The code is LGPL anyway

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 58/54

Finding SimGrid’s documentation

User manuals are for wimps

I Real Men read some slides ’cause they are more concise

I They read the examples, pick one modify it to fit their needs

I They may read 2 or 5% of the reference guide to check the syntax

I In doubt, they just check the source code

lusers don’t read the manual either
I Proof: that’s why the RTFM expression were coined out

I Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?
I The SimGrid tutorial is a 200 slides presentation

(motivation, models, example of use, internals)

I Almost all features of UAPI are demoed in an example (coverage testing)

I The reference guide contains a lot in introduction sections (about XBT)

I The FAQ contains a lot too (installing, visu, XML, exotic features)

I The code is LGPL anyway

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 58/54

Finding SimGrid’s documentation

User manuals are for wimps

I Real Men read some slides ’cause they are more concise

I They read the examples, pick one modify it to fit their needs

I They may read 2 or 5% of the reference guide to check the syntax

I In doubt, they just check the source code

lusers don’t read the manual either
I Proof: that’s why the RTFM expression were coined out

I Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?
I The SimGrid tutorial is a 200 slides presentation

(motivation, models, example of use, internals)

I Almost all features of UAPI are demoed in an example (coverage testing)

I The reference guide contains a lot in introduction sections (about XBT)

I The FAQ contains a lot too (installing, visu, XML, exotic features)

I The code is LGPL anyway

Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 58/54

Finding SimGrid’s documentation

User manuals are for wimps

I Real Men read some slides ’cause they are more concise

I They read the examples, pick one modify it to fit their needs

I They may read 2 or 5% of the reference guide to check the syntax

I In doubt, they just check the source code

lusers don’t read the manual either
I Proof: that’s why the RTFM expression were coined out

I Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?
I The SimGrid tutorial is a 200 slides presentation

(motivation, models, example of use, internals)

I Almost all features of UAPI are demoed in an example (coverage testing)

I The reference guide contains a lot in introduction sections (about XBT)

I The FAQ contains a lot too (installing, visu, XML, exotic features)

I The code is LGPL anyway
Arnaud Legrand Versatile yet Scalable and Accurate Simulation of Distributed Applications Conclusions 58/54

	Experiments for Large-Scale Distributed Systems Research
	Main Methodological Approaches: In Vivo, In Silico, In Vitro
	In vivo approach (direct experimentation)
	In vitro approach (emulation)
	In silico approach (simulation)

	Bad Practices in Large-Scale Distributed Systems Research

	The SimGrid Project
	User Interface(s)
	MSG: Comparing Heuristics for Concurrent Sequential Processes

	How accurate? The Validation Quest
	How big and how fast ?

	Conclusions
	Keynote Recap
	Going Further: Experiment planning and Open Science
	Take-home Messages

