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Context of the study

I Scientific computing : large needs in computation or storage
resources.

I Need to use systems with “several processors”:

I Parallel computers with shared memory.
I Parallel computers with distributed memory.
I Clusters.

IIIII Problematic : to take into account the heterogeneity at the
algorithmic level.
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New platforms, new problems

Execution platforms: Distributed heterogeneous platforms
(network of workstations, clusters, clusters of clusters, grids, etc.)

New sources of problems

I Heterogeneity of processors (computational power, memory,
etc.)

I Heterogeneity of communications links.

I Irregularity of interconnection network.

I Non dedicated platforms.

We need to adapt our algorithmic approaches and our scheduling
strategies: new objectives, new models, etc.
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An example of application: seismic tomography of the
Earth

I Model of the inner structure
of the Earth

I The model is validated by comparing the propagation time of
a seismic wave in the model to the actual propagation time.

I Set of all seismic events of the year 1999: 817101
I Original program written for a parallel computer:

if (rank = ROOT)
raydata ← read n lines from data file;

MPI Scatter(raydata, n/P, ..., rbuff, ...,
ROOT, MPI COMM WORLD);

compute work(rbuff);
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Applications covered by the divisible loads model

Applications made of a very (very) large number of fine grain com-
putations.

Computation time proportional to the size of the data to be pro-
cessed.

Independent computations: neither synchronizations nor communi-
cations.
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Bus-like network
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I The links between the master and the slaves all have the same
characteristics.

I The slave have different computation power.
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work: ni ∈ N with∑
i ni = Wtotal.

Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: c.
One-port bus: P1 sends a single message at a time over the
bus, all processors communicate at the same speed with the
master.
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Behavior of the master and of the slaves (illustration)
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Behavior of the master and of the slaves (hypotheses)

I The master sends its chunk of ni data to processor Pi in a
single sending.

I The master sends their data to the processors, serving one pro-
cessor at a time, in the order P2, ..., Pp.

I During this time the master processes its n1 data.

I A slave does not start the processing of its data before it has
received all of them.
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Equations

I P1: T1 = n1.w1

I P2: T2 = n2.c + n2.w2

I P3: T3 = (n2.c + n3.c) + n3.w3

I Pi: Ti =
∑i

j=2 nj .c + ni.wi for i > 2

I Pi: Ti =
∑i

j=1 nj .cj + ni.wi for i > 1 with c1 = 0 and cj = c
otherwise.
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Execution time

T = max
16i6p

 i∑
j=1

nj .cj + ni.wi



We look for a data distribution n1, ..., np which minimizes T .

A. Legrand (CNRS-ID) INRIA-MESCAL Divisible Load Scheduling
Bus-like network: classical

resolution 14 / 71



Execution time: rewriting

T = max

n1.c1 + n1.w1, max
26i6p

 i∑
j=1

nj .cj + ni.wi



T = n1.c1 + max

n1.w1, max
26i6p

 i∑
j=2

nj .cj + ni.wi


An optimal solution for the distribution of Wtotal data over p pro-
cessors is obtained by distributing n1 data to processor P1 and then
optimally distributing Wtotal − n1 data over processors P2 to Pp.
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Algorithm

1: solution[0, p]← cons(0,NIL); cost[0, p]← 0
2: for d← 1 to Wtotal do
3: solution[d, p]← cons(d,NIL)
4: cost[d, p]← d · cp + d · wp

5: end for
6: for i← p− 1 downto 1 do
7: solution[0, i]← cons(0, solution[0, i + 1])
8: cost[0, i]← 0
9: for d← 1 to Wtotal do

10: (sol ,min)← (0, cost[d, i + 1])
11: for e← 1 to d do
12: m← e · ci + max(e · wi, cost[d− e, i + 1])
13: if m < min then
14: (sol ,min)← (e, m)
15: end if
16: end for
17: solution[d, i]← cons(sol , solution[d− sol , i + 1])
18: cost[d, i]← min
19: end for
20: end for
21: return (solution[Wtotal, 1], cost[Wtotal, 1])
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Complexity

I Theorical complexity

O(W 2
total · p)

I Complexity in practice
If Wtotal = 817101 and p = 16, on a Pentium III running at
933 MHz: more than two days...
(Optimized version ran in 6 minutes.)
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Disadvantages

I Cost

I Solution is not reusable

I Solution is only partial

We do not need the solution to be so precise
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: c.
One-port model: P1 sends a single message at a time, all pro-
cessors communicate at the same speed with the master.
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Equations

For processor Pi (with c1 = 0 and cj = c otherwise):

Ti =
i∑

j=1

αjWtotal.cj + αiWtotal.wi

T = max
16i6p

 i∑
j=1

αjWtotal.cj + αiWtotal.wi



We look for a data distribution α1, ..., αp which minimizes T .

A. Legrand (CNRS-ID) INRIA-MESCAL Divisible Load Scheduling
Bus-like network: resolution under the

divisible load model 21 / 71



Properties of load-balancing

Lemma 1.

In an optimal solution, all processors end their processing at the
same time.
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Demonstration of lemma 1

Two slaves i and i + 1 with Ti < Ti+1.

0

P2

P3

P4

P1

temps

fin

We decrease αi+1 by ε.
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Demonstration of lemma 1

Two slaves i and i + 1 with Ti < Ti+1.

0

P2

P3

P4

P1

temps

fin

The communication time for the following processors is unchanged.
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Demonstration of lemma 1

Two slaves i and i + 1 with Ti < Ti+1.

0

P2

P3

P4

P1

temps

fin

We end up with a better solution !
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Demonstration of lemma 1 (continuation and conclusion)

I Ideal: T ′
i = T ′

i+1.
We choose ε such that:

(αi + ε)Wtotal(c + wi) =
(αi + ε)Wtotalc + (αi+1 − ε)Wtotal(c + wi+1)

I The master stops before the slaves: absurde.

I The master stops after the slaves: we decrease P1 by ε.
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Property for the selection of ressources

Lemma 2.

In an optimal solution all processors work.

Demonstration: this is just a corollary of lemma 1...
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Resolution

T = α1Wtotalw1.

T = α2(c + w2)Wtotal. Therefore α2 = w1
c+w2

α1.

T = (α2c + α3(c + w3))Wtotal. Therefore α3 = w2
c+w3

α2.

αi = wi−1

c+wi
αi−1 for i > 2.∑n

i=1 αi = 1.

α1

(
1 +

w1

c + w2
+ ... +

j∏
k=2

wk−1

c + wk
+ ...

)
= 1
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Impact of the order of communications

How important is the influence of the ordering of the processor on
the solution ?

?
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No impact of the order of the communications

Volume processed by processors Pi and Pi+1 during a time T .

Processor Pi: αi(c + wi)Wtotal = T . Therefore αi = 1
c+wi

T
Wtotal

.

Processor Pi+1: αicWtotal + αi+1(c + wi+1)Wtotal = T .
Thus αi+1 = 1

c+wi+1
( T

Wtotal
− αic) = wi

(c+wi)(c+wi+1)
T

Wtotal
.

Processors Pi and Pi+1:

αi + αi+1 =
c + wi + wi+1

(c + wi)(c + wi+1)
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Choice of the master processor

We compare processors P1 and P2.

Processor P1: α1w1Wtotal = T . Then, α1 = 1
w1

T
Wtotal

.

Processor P2: α2(c + w2)Wtotal = T . Thus, α2 = 1
c+w2

T
Wtotal

.

Total volume processed:

α1 + α2 =
c + w1 + w2

w1(c + w2)
=

c + w1 + w2

cw1 + w1w2

Minimal when w1 < w2.
Master = the most powerfull processor (for computations).
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Conclusion

I Closed-form expressions for the execution time and the distri-
bution of data.

I Choice of the master.

I The ordering of the processors has no impact.

I All processors take part in the work.
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Outline

1 The context

2 Bus-like network: classical resolution

3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 With return messages

6 Multi-round algorithms

7 Conclusion
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Star-like network
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I The links between the master and the slaves have different
characteristics.

I The slaves have different computational power.
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni = Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: ci.
One-port model: P1 sends a single message at a time.
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Star network and linear cost model

Goal : maximize the number of processed tasks within a time-bound
Tf :

∑
αi.

Lemma 3.

In any optimal solution of the StarLinear problem, all workers
participate in the computation, and they all finish computing simul-
taneously.

Lemma 4.

An optimal ordering for the StarLinear problem is obtained by
serving the workers in the ordering of non decreasing link capacities
ci.
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Sketch of the proof of Lemma 3

Two steps :

I All workers participate in
the computation. . .

otherwise
it would not be optimal.

I All processors finish their
work at the same time.

Maximize
∑

βi,
subject to{

LB(i) ∀i, βi > 0
UB(i) ∀i,

∑i
k=1 βkck + βiwi 6 Tf
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Sketch of the proof of Lemma 4

The proof is based on the comparison of the amount of work that is
performed by the first two workers, and then proceeds by induction.

T

P1

P2

t(A)

α
(A)
1 w1α

(A)
1 c1

α
(A)
2 w2α

(A)
2 c2

T

P1

P2

t(B)

α
(B)
2 c2 α

(B)
2 w2

α
(B)
1 c1 α

(B)
1 w1

(A) P1 starts before P2 (B) P2 starts before P1

t(A) = t(B), (1)

and

(α(A)
1 + α

(A)
2 )− (α(B)

1 + α
(B)
2 ) =

T (c2 − c1)
(c1 + w1)(c2 + w2)

. (2)

A. Legrand (CNRS-ID) INRIA-MESCAL Divisible Load Scheduling Star-like network 36 / 71



Sketch of the proof of Lemma 4

The proof is based on the comparison of the amount of work that is
performed by the first two workers, and then proceeds by induction.

T

P1

P2

t(A)

α
(A)
1 w1α

(A)
1 c1

α
(A)
2 w2α

(A)
2 c2

T

P1

P2

t(B)

α
(B)
2 c2 α

(B)
2 w2

α
(B)
1 c1 α

(B)
1 w1

(A) P1 starts before P2 (B) P2 starts before P1

t(A) = t(B), (1)

and

(α(A)
1 + α

(A)
2 )− (α(B)

1 + α
(B)
2 ) =

T (c2 − c1)
(c1 + w1)(c2 + w2)

. (2)

A. Legrand (CNRS-ID) INRIA-MESCAL Divisible Load Scheduling Star-like network 36 / 71



Sketch of the proof of Lemma 4

The proof is based on the comparison of the amount of work that is
performed by the first two workers, and then proceeds by induction.

T

P1

P2

t(A)

α
(A)
1 w1α

(A)
1 c1

α
(A)
2 w2α

(A)
2 c2

T

P1

P2

t(B)

α
(B)
2 c2 α

(B)
2 w2

α
(B)
1 c1 α

(B)
1 w1

(A) P1 starts before P2 (B) P2 starts before P1

t(A) = t(B), (1)

and

(α(A)
1 + α

(A)
2 )− (α(B)

1 + α
(B)
2 ) =

T (c2 − c1)
(c1 + w1)(c2 + w2)

. (2)

A. Legrand (CNRS-ID) INRIA-MESCAL Divisible Load Scheduling Star-like network 36 / 71



Sketch of the proof of Lemma 4

The proof is based on the comparison of the amount of work that is
performed by the first two workers, and then proceeds by induction.

T

P1

P2

t(A)

α
(A)
1 w1α

(A)
1 c1

α
(A)
2 w2α

(A)
2 c2

T

P1

P2

t(B)

α
(B)
2 c2 α

(B)
2 w2

α
(B)
1 c1 α

(B)
1 w1

(A) P1 starts before P2 (B) P2 starts before P1

t(A) = t(B), (1)

and

(α(A)
1 + α

(A)
2 )− (α(B)

1 + α
(B)
2 ) =

T (c2 − c1)
(c1 + w1)(c2 + w2)

. (2)

A. Legrand (CNRS-ID) INRIA-MESCAL Divisible Load Scheduling Star-like network 36 / 71



Conclusion

I The processors must be ordered by decreasing bandwidths

I All processors are working

I All processors end their work at the same time

I Formulas for the execution time and the distribution of data
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Outline

1 The context

2 Bus-like network: classical resolution

3 Bus-like network: resolution under the divisible load model

4 Star-like network

5 With return messages

6 Multi-round algorithms

7 Conclusion
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With return messages

I Once it has finished processing its share of the total load, a
slave sends back a result to the master.

I Problems to be solved:
I Resource selection.
I Defining an order for sending the data to the slaves.
I Defining an order for receiving the data from the slaves.
I Defining the amount of work each processor has to process.
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni = Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a unit-message from P1 to Pi: ci.

I Time needed to send a unit-message from Pi to P1: di.
One-port model: P1 sends and receives a single message at a
time.
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Solutions with idle time ?

I How about waiting between the end of the reception of the
data and the start of the computation ?

Not interesting !

I How about waiting between the end of the computation and
the time the results start to be sent bask to the master ?

Mandatory if the communication link is not available.

We need to anticipate, when building a solution, the possibility of
idle times.
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Review of known results in January 2005

(the first paper on divisible loads dates back to 1988)

I Barlas

I Fixed communication times or bus-like network ci = c.
I Optimal ordering and closed-form formulas (trivial).

I Drozdowski and Wolniewicz: experimental study of LIFO and
FIFO distributions.

I Rosenberg et al.:

I Complex communication model (affine).
I Possibility to slow down a processor (to avoid idle times).
I In practice : communication capabilities are not heterogeneous.
I All FIFO distributions are equivalent and are better than any

other solution (proof made by exchange).
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Linear program for a given scenario (1)

A scenario is described by:

I which processor is given work to;

I in which order the communications take place (sending of the
data and gathering of the results).

With a given scenario, one can suppose that:

I the master sends the data as soon as possible;

I the slaves start working as soon as possible;

I the slaves send their as late as possible.
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Linear program for a given scenario (2)

Pi

αi × dixiαi × wiαi × ci

Consider slave Pi:

I it starts receiving data at time trecvi =
i−1∑
j=1

αj × cj

I it starts working at time trecvi + αi × ci

I it ends processing its load at time ttermi = trecvi +αi×ci+αi×wi

I it starts sending back its results at time

tback
i = T −

∑
j successor of i

αj × dj

I its idle time is: xi = tback
i − ttermi > 0
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Linear program for a given scenario (3)

For a given value of T , we obtain the linear program:

Maximize
∑

i αi,under the constraints{
αi > 0
tback
i − ttermi > 0

(3)

I Optimal throughput, an ordering and the resource selection be-
ing given.

For a given amount of work
∑

i αi = W :

Minimize T ,under the constraints
αi > 0∑

i αi = W

tback
i − ttermi > 0

(4)

I Minimal time, an ordering and the resource selection being
given.
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Linear program for a given scenario (4)

One cannot test all possible configurations

I Even if we decide that the order of return messages should be
the same than the order of data distribution messages (FIFO),
there still is an exponential number of scenarios to be tested.
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All processors do not always participate

P0

P1 P2 P3

d3 = 5d1 = 1

w1 = 1 w2 = 1 w3 = 5

c1 = 1
c2 = 1

c3 = 5

d2 = 1

P2

P1

P3

P2

P1

P3

LIFO, throughput ρ = 61/135 FIFO with 2 processors,
(best schedule optimal throughputρ = 1/2

with 3 processors)

A. Legrand (CNRS-ID) INRIA-MESCAL Divisible Load Scheduling With return messages 47 / 71



The optimal schedule may be neither LIFO nor FIFO

P0

P1 P2 P3

c2 = 8c1 = 7 c3 = 12

d1 = 7 d3 = 12

w1 = 6 w2 = 5 w3 = 5

d2 = 8

P2

P1

P3

Optimal schedule
(ρ = 38/499 ≈ 0.076)

P2

P1

P3

P2

P1

P3

Best FIFO schedule Best LIFO schedule
(ρ = 47/632 ≈ 0.074) (ρ = 43/580 ≈ 0.074)
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LIFO strategies (1)

I LIFO = Last In First Out

I The processor which receives its data first is the last to send
its results back.

I The order of the return messages is the inverse of the order in
which data are sent.

P2

P1

Pp

Pi

αici αiwi
xi

αidi
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LIFO strategies (2)

Theorem 1.

In the best LIFO solution:

I All processors work

I The data are sent by increasing values of ci + di

I There is no idle time, i.e. xi = 0 for each i.

Demonstration: We change the platform: ci ← ci + di and di ← 0

P2

P1

αici αiwi
xi

αidi

Pi

Pp

→

P1

αiwiαi(di + ci) xi

P2

Pi

Pp

⇒ reduction to a classical problem without return messages.
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FIFO strategies (1)

I FIFO = First In First Out

I The order the data are sent is the same than the order the
return messages are sent.

P2

P1

Pp

xi

αidiαici αiwi

Pi

We only consider the case di = z × ci (z < 1)
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FIFO strategies (2)

Theorem 2.

In the best FIFO solution:

I The data are sent by increasing values of: ci + di

I The set of all working processors are made of the first q pro-
cessors under this order; q can be computed in linear time.

I There is no idle time, i.e. xi = 0 for each i.
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FIFO strategies (3)

We consider i in the schedule:

αici αiwi
xi

αidi

messages de retour suivantsprécédents envois de données

∑n
j=i+1 αj × dj

∑i−1
j=1 αj × cj

i∑
j=1

αi × ci + αi × wi +
n∑

j=i

αi × di + xi = T

We thus have: Aα + x = T1, where:

A =


c1 + w1 + d1 d2 d3 . . . dk

c1 c2 + w2 + d2 d3 . . . dk
... c2 c3 + w3 + d3

. . .
...

...
...

. . . dk

c1 c2 c3 . . . ck + wk + dk
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FIFO strategies (4)

We can write A = L + 1dT , with:

L =


c1 + w1 0 0 . . . 0
c1 − d1 c2 + w2 0 . . . 0

... c2 − d2 c3 + w3
. . .

...
...

...
. . . 0

c1 − d1 c2 − d2 c3 − d3 . . . ck + wk

 and d=


d1

d2
...
...

dk



The matrix 1dt is a matrix of rank one, we can thus use Sherman-
Morrison’s formula to compute the inverse of A:

A−1 = (L + 1dt)−1 = L−1 − L−1
1dtL−1

1 + dtL−11

A. Legrand (CNRS-ID) INRIA-MESCAL Divisible Load Scheduling With return messages 54 / 71



FIFO strategies (5)

With the formula which gives A−1, one can:

I show that for each processor Pi, either αi = 0 (the processor
does not work) or xi = 0 (no idle time);

I define analytically the throughput ρ(T ) =
∑

i αi;

I show that the throughput is best when c1 6 c2 6 c3 . . . 6 cn;

I show that the throughput is best when the only working pro-

cessors are the one satisfying di 6
1

ρopt
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FIFO strategies — special cases

I So far, we have supposed that di = z × ci, with z < 1.

I If z > 1, symmetrical solution (the data are sent by decreasing
values of di + ci, the first q processors are selected under this
order).

I z = 1 ⇒ the order has no impact (but all processors do not
always work).
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One round vs. multi-round

TfT2 Tp

...

T1

αpwp

α2w2

α1w1

α1g α2g αpg

Pp

P2

P1

Network

One round

; long idle-times

R0 R1 Rk

Pp

P2

P1

Network

Multi-round

Efficient when Wtotal large

Intuition: start with small rounds, then increase chunks.
Problems :

I linear communication model leads to absurd solution

I resource selection

I number of rounds

I size of each round
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Notations

I A set P1, ..., Pp of processors

I P1 is the master processor: initially, it holds all the data.

I The overall amount of work: Wtotal.

I Processor Pi receives an amount of work αiWtotal

with
∑

i ni = Wtotal with αiWtotal ∈ Q and
∑

i αi = 1.
Length of a unit-size work on processor Pi: wi.
Computation time on Pi: niwi.

I Time needed to send a message of size αi P1 to Pi: Li +
ci × αi.
One-port model: P1 sends and receives a single message at a
time.
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Complexity

Definition: One round, ∀i, ci = 0.

Given Wtotal, p workers, (Pi)16i6p, (Li)16i6p, and a rational number
T > 0, and assuming that bandwidths are infinite, is it possible to
compute all Wtotal load units within T time units?

Theorem 3.

The problem with one-round and infinite bandwidths is NP-
complete.

What is the complexity of the general problem with finite bandwidths
and several rounds ?

The general problem is NP-hard, but does not appear to be in NP
(no polynomial bound on the number of activations).
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Fixed activation sequence

Hypotheses

1 Number of activations : Nact;

2 Whether Pi is the processor used during activation j : χ
(j)
i

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k 6 Nact,∀l :

 k∑
j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

+
Nact∑
j=k

χ
(j)
l α

(j)
l wl 6 T

∀i, j : α
(j)
i > 0

(5)

Can be solved in polynomial time.
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Fixed number of activations

Minimize T,under the constraints

Nact∑
j=1

p∑
i=1

χ
(j)
i α

(j)
i = Wtotal

∀k 6 Nact,∀l :

 k∑
j=1

p∑
i=1

χ
(j)
i (Li + α

(j)
i ci)

+
Nact∑
j=k

χ
(j)
l α

(j)
l wl 6 T

∀k 6 Nact :
p∑

i=1

χ
(k)
i 6 1

∀i, j : χ
(j)
i ∈ {0, 1}

∀i, j : α
(j)
i > 0

(6)

Exact but exponential

Can lead to branch-and-bound algorithms
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Uniform multi-round

In a round: all workers have same
computation time

Geometrical increase of rounds
size

No idle time in communications:

.

.

.

.

.

.

Transfer

Compute

Transfer

Compute

Transfer

Compute

Worker 1

Worker 2

round j

TA

time

Transfer
Worker i

round j + 2round j + 1

TB T
C

Li

Worker p

α
(j+1)
1 ciα

(j)
1 ci

α
(j)
1 w1

α
(j)
i ci

Compute

α
(j)
p cp

α
(j)
i wi = α

(j)
1 w1

α
(j+1)
i ci

α
(j+1)
p cp

α
(j)
p wp = α

(j)
1 w1

α
(j)
i wi =

p∑
k=1

(Lk + α
(j+1)
k ck).

Heuristic processor selection: by decreasing bandwidths

No guarantee...
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Periodic schedule

Tp

Ln αncn Ln αncn Ln αncn

..
.

α1w1

α2w2

α3w3

αnwn

α1c1
α1w1

α2w2

α3w3

αnwn

α1w1

α2w2

α3w3

αnwn

α1c1 α1c1

L2 L2 L2α2c2 α2c2 α2c2

L3 L3 L3α3c3 α3c3 α3c3

L1 L1 L1

Compute

Transfer

Compute

Transfer

Compute

Transfer

Compute

Transfer

How to choose Tp? Which resources to select?
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With no overlap (1/4)

Equations

I Divide total execution time T into k periods of duration Tp.

I I ⊂ {1, . . . , p} participating processors.

I Bandwidth limitation:∑
i∈I

(Li + αici) 6 Tp.

I No overlap:

∀i ∈ I, Li + αi(ci + wi) 6 Tp.
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With no overlap (2/4)

Normalization

I βi average number of tasks processed by Pi during one time
unit.

I Linear program:

Maximize
∑p

i=1 βi{
∀i ∈ I, βi(ci + wi) 6 1− Li

Tp∑
i∈I βici 6 1−

P
i∈I Li

Tp

.

Relaxed version

Maximize
∑p

i=1 xi ∀1 6 i 6 p, xi(ci + wi) 6 1−∑p
i=1 xici 6 1−

Pp
i=1 Li

Tp

.
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With no overlap (3/4)

Bandwidth-centric solution

I Sort: c1 6 c2 6 . . . 6 cp.

I Let q be the largest index so that
∑q

i=1
ci

ci+wi
6 1.

I If q < p, ε = 1−
∑q

i=1
ci

ci+wi
.

I Optimal solution to relaxed program:

∀1 6 i 6 q, xi =
1−

Pp
i=1 Li

Tp

ci + wi

and (if q < p):

xq+1 =
(

1−
∑p

i=1 Li

Tp

)(
ε

cq+1

)
,

and xq+2 = xq+3 = . . . = xp = 0.
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With no overlap (4/4)

Asymptotic optimality

I Let Tp =
√

T ∗
max and αi = xiTp for all i.

I Then T 6 T ∗
max + O(

√
T ∗

max).
I Closed-form expressions for resource selection and task assign-

ment provided by the algorithm.
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With overlap

Key points

I Still sort resources according to the ci.

I Greedily select resources until the sum of the ratios ci
wi(

instead of ci
ci+wi

)
exceeds 1.
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Que retenir de tout ça ?

I Idée de base simple: une solution approchée est amplement
suffisante.

I Les temps de communication jouent un plus grand rôle que les
vitesses de calcul.
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