Theoretical
Parallel
Computing

Theoretical Parallel Computing

Arnaud Legrand, CNRS, University of Grenoble

LIG laboratory, arnaud.legrand@imag.fr

November 1, 2009

arnaud.legrand@imag.fr

QOutline

Theoretical
Parallel
Computing

© Parallel RAM
@ Introduction
@ Pointer Jumping
@ Reducing the Number of Processors
© PRAM Model Hierarchy
@ Conclusion

© Combinatorial Networks
@ Merge Sort
@ 0-1 Principle
@ Odd-Even Transposition Sort
e FFT

© Conclusion

QOutline

Theoretical
Parallel
Computing

© Parallel RAM
@ Introduction
@ Pointer Jumping
@ Reducing the Number of Processors
© PRAM Model Hierarchy
@ Conclusion

Parallel RAM

Theoretical
Parallel

* Models for Parallel Computation

= We have seen how to implement parallel algorithms
in practice
= We have come up with performance analyses
= |n traditional algorithm complexity work, the Turing
machine makes it possible to precisely compare
algorithms, establish precise notions of complexity,
etc..

= Can we do something like this for parallel computing?

= Parallel machines are complex with many hardware
characteristics that are difficult to take into account
for algorithm work (e.g., the network), is it hopeless?

= The most famous theoretical model of parallel
computing is the PRAM model
= We will see that many principles in the model are really at
the heart of the more applied things we’ve seen so far

Courtesy of Henri Casanova
4/63

Introduction

Theoretical

[]
Introduction

ot * The PRAM Model

Parallel Random Access Machine (PRAM)

An imperfect model that will only tangentially relate to
the performance on a real parallel machine

= Just like a Turing Machine tangentially relate to the

performance of a real computer

Goal: Make it possible to reason about and classify
parallel algorithms, and to obtain complexity results
(optimality, minimal complexity results, etc.)

One way to look at it: makes it possible to determine
the “maximum parallelism” in an algorithm or a
problem, and makes it possible to devise new
algorithms

Courtesy of Henri Casanova
5/63

Theoretical

ol * The PRAM Model

Memory size is infinite, number of
processors in unbounded
= But nothing prevents you to “fold” this back to
something more realistic
= No direct communication between
processors
= they communicate via the memory
= they can operate in an asynchronous fashion
= Every processor accesses any memory
location in 1 cycle .
= Typically all processors execute the same
algorithm in a synchronous fashion
= READ phase
= COMPUTE phase
* WRITE phase
= Some subset of the processors can stay idle
(e.g., even numbered processors may not
work, while odd processors do, and

conversely) Courtesy of Henri Casanova
6/63

Introduction

Theoretical
Parallel

* Memory Access in PRAM

eooerion = Exclusive Read (ER): p processors can
simultaneously read the content of p distinct
memory locations.

= Concurrent Read (CR): p processors can
simultaneously read the content of p”’ memory
locations, where p’ < p.

= Exclusive Write (EW): p processors can
simultaneously write the content of p distinct
memory locations.

= Concurrent Write (CW): p processors can
simultaneously write the content of p’ memory
locations, where p’ < p.

Courtesy of Henri Casanova
7/63

Theoretical
Parallel
Computing

PRAM CW?

Introduction = What ends up being stored when multiple writes occur?

priority CW: processors are assigned priorities and the top priority
processor is the one that counts for each group write

Fail common CW: if values are not equal, no change

Collision common CW: if values not equal, write a “failure value”
Fail-safe common CW: if values not equal, then algorithm aborts
Random CW: non-deterministic choice of the value written
Combining CW: write the sum, average, max, min, etc. of the values
etc.

= The above means that when you write an algorithm for a CW PRAM
you can do any of the above at any different points in time

= |t doesn’t corresponds to any hardware in existence and is just a
logical/algorithmic notion that could be implemented in software

= In fact, most algorithms end up not needing CW

Courtesy of Henri Casanova
8/63

Theoretical

Coming * Classic PRAM Models

= CREW (concurrent read, exclusive write)
= most commonly used
= CRCW (concurrent read, concurrent write)
= most powerful
= EREW (exclusive read, exclusive write)
= most restrictive
= unfortunately, probably most realistic

Introduction

® Theorems exist that prove the relative power
of the above models (more on this later)

Courtesy of Henri Casanova
9/63

Theoretical

e * PRAM Example 1

® Problem:
S = We have a linked list of length n

= For each element i, compute its distance to the
end of the list:

dlil] =0 if next[i] = NIL
d[i] = d[next[i]] + 1 otherwise
= Sequential algorithm in O(n)
= We can define a PRAM algorithm in O(log n)
= Ie_lstsociate one processor to each element of the
is
= at each iteration split the list in two with odd-
placed and even-placed elements in different lists

Courtesy of Henri Casanova
10/63

Theoretical

i, * PRAM Example 1

Principle:
Look at the next element
Add its d[i] value to yours
Point to the next element’s next element

A1l 1] 1] 1[0l

The size of each list
is reduced by 2 at
each step, hence the
O(log n) complexity

2] I\ 2] | \{%2] | \[#21 | \ﬁll \[%OM

\41H\4lﬂ\3l\\2l\ﬁ11\ﬁ0&4

(511 [al] BL1 [2[] [] [0}/

Courtesy of Henri Casanova
11/63

* PRAM Example 1
= Algorithm

forall i
if next[i] == NIL then d[i] - 0 else d[i] ~ 1
while there is an i such that next[i] = NIL
forall i
if next[i] = NIL then
d[i] < d[i] + d[next[i]]
next[i] — next[next[il]

What about the correctness of this algorithm?

Courtesy of Henri Casanova
12 /63

* forall loop

= At each step, the updates must be

synchronized so that pointers point to the
right things:

nextfi] — next[next[i]]
= Ensured by the semantic of forall

forall i

tmpli] = B[i]
forall i
AJi] = tmp[i]

® Nobody really writes it out, but one mustn’t

forget that it’s really what happens

underneath

Courtesy of Henri Casanova

Theoretical
Parallel
Computing

while condition

= while there is an i such that next[i] #NULL

®= How can one do such a global test on a
PRAM?
= Cannot be done in constant time unless the PRAM
is CRCW

= At the end of each step, each processor could write to a
same memory location TRUE or FALSE depending on
next[i] being equal to NULL or not, and one can then take
the AND of all values (to resolve concurrent writes)

* On a PRAM CREW, one needs O(log n) steps for doing
a global test like the above

® |n this case, one can just rewrite the while
loop into a for loop, because we have
analyzed the way in which the iterations go:
for step = 1 to og nO0

Pointer Jumping

Courtesy of Henri Casanova
14 /63

Theoretical
Parallel

* What type of PRAM?

® The previous algorithm does not require a
e R CW machine, but:
tmpli] < d[i] + d[next[i]]

which requires concurrent reads on proc i and j
such that j = next[i].

= Solution:
= gplit it into two instructions:
tmp2[i] dli]
tmpli] « tmp2[i] + dnext[i]]
(note that the above are technically in two different forall loops)
= Now we have an execution that works on a
EREW PRAM, which is the most restrictive

type

Courtesy of Henri Casanova
15/63

forall i ~N
if next[i] == NILL then d[i] - O else d[i] -1 O(1)
for step = 1 to Oog nO

* Final Algorithm on a EREW PRAM

> O(log n)

forall i
if next[i] # NIL then
tmpli] < d[i] O(Iog n)
d[i] « tmpli] + d[next[i]] 0(1)
next[i] « next[next[i]]
/

of a list of size n in time O(log n) on any
PRAM

Conclusion: One can compute the length

Courtesy of Henri Casanova
16 /63

Cost, Work

Theoretical

Parallel > Let P be a problem of size n that we want to solve (e.g., a computation
I over an n-element list).

> Let Teq(n) be the execution time of the best (known) sequential algo-
rithm for solving P.

> Let us now consider a PRAM algorithm that solves P in time Tp..(p, n)
R with p PUs.

Processors

Definition: Cost and Work.
The cost of a PRAM algorithm is defined as

Co(n) = p.Tpar(p, n) -

The work W,,(n) of a PRAM algorithm is the sum over all PUs of the number
of performed operations. The difference between cost and work is that the
work does not account for PU idle time.

y

Intuitively, cost is a rectangle of area T,ar(p, n).

Therefore, the cost is minimal if, at each step, all PUs are used to per-
form useful computations, i.e. computations that are part of the sequential
algorithm. 17763

Speedup and Efficiency

Theoretical The speedup of a PRAM algorithm is the factor by which the program’s

Parallel

Computing execution time is lower than that of the sequential program.

Definition: Speedup and Efficiency.

The speedup of a PRAM algorithm is defined as
Reducing the Tee (n)
Pemmeart Sp(n) = =/ =~ .

; (") Toar(p,)

The efficiency of the PRAM algorithm is defined as

Sp(n) _ Tseq(n)
p P-Tpar(psn) -

ep(n) =

4

Some authors use the following definition: S,(n)= % where Tpar(1, n)
is the execution time of the algorithm with a single PU.

This definition quantifies how the algorithm scales: If the speedup is close
to p (i.e. is Q(p)), one says that the algorithm scales well.

However, this definition does not reflect the quality of the parallelization
(i.e. how much we can really gain by parallelization), and it is thus better

to use Tseq(n) than Tpar(1, n).

18 /63

Brent Theorem

Theoretical
Parallel
Computing

Theorem 1: Brent.

Let A be an algorithm that executes a total number of m operations
S and that runs in time t on a PRAM (with some unspecified number

Pracesiors of PUs). A can be simulated in time O (% + t) PRAM of the same
type that contains p PUs.

Proof.

Say that at step /i A performs m(i) operations (implying that
Siym(i) = m). Step i can be simulated with p PUs in time

[%} < @ + 1. One can simply sum these upper bounds to prove
the theorem. O

4

19/63

Theoretical
Parallel

* Brent Theorem

= Theorem: Let A be an algorithm with m operations that
Reducing the runs in time t on some PRAM (with some number of

NS processors). It is possible to simulate A in time O(t +
m/p) on a PRAM of same type with p processors

= Example: maximum of n elements on an EREW PRAM
= Clearly can be done in O(log n) with O(n) processors
= Compute series of pair-wise maxima
= The first step requires O(n/2) processors
= What happens if we have fewer processors?
= By the theorem, with p processors, one can simulate the same
algorithm in time O(log n + n/ p)
= If p=n/log n, then we can simulate the same algorithm in
O(log n + log n) = O(log n) time, which has the same complexity!
® This theorem is useful to obtain lower-bounds on number of
required processors that can still achieve a given complexity.

Courtesy of Henri Casanova
20/63

Theoretical
Parallel
Computing

A. Legrand

Reducing the
Number of
Processors

Another Useful Theorem

Theorem 2.

Let A be an algorithm whose execution time is t on a PRAM with p
PUs. A can be simulated on a RAM of the same type with p’ < p

PUs in time O (;—f’). The cost of the algorithm on the smaller PRAM
is at most twice the cost on the larger PRAM.

Proof.

Each step of A can be simulated in at most [5—‘ time units with

p’ < p PUs by simply reducing concurrency and having the p’ PUs
perform sequences of operations. Since there are at most t steps,

the execution time t’ of the simulated algorithm is at most [5—‘ t.

Therefore, t' = O (ﬁ.t) =0 (tl;—f’).
We also have Cy = t'.p/ [ﬁ,l plt < (ﬂ + 1) p't =

< 5
p.t (1 + i) = C,.(1+1/p') < 2C,.

P’

Theoretical
Parallel

* An other useful theorem

= Theorem: Let A be an algorithm that

s executes in time t on a PRAM with p

Procesor processors. One can simulate A on a PRAM
with p’ processors in time O(t.p/p’)

® This makes it possible to think of the “folding”
we talked about earlier by which one goes
from an unbounded number of processors to
a bounded number
= Anlogn+B onnprocessors
= A.n2+ Bn/(log n) on log n processors
= A(n2log n)/10 + Bn/10 on 10 processors

Courtesy of Henri Casanova
22 /63

Theoretical
Parallel
Computing

PRAM Model
Hierarchy

* Are all PRAMs equivalent?

Consider the following problem
= given an array of n elements, e,
element e is in the array
On a CREW PRAM, there is an algorithm that works in time O(1)
0N N Processors:
= initialize a boolean to FALSE
= Each processor i reads e, and e and compare them
= if equal, then write TRUE into the boolean (only one proc will write, so
we’re ok for CREW)
One a EREW PRAM, one cannot do better than log n
= Each processor must read e separately
= at worst a complexity of O(n), with sequential reads
= at best a complexity of O(log n), with series of “doubling” of the value
at each step so that eventually everybody has a copy (just like a
broadcast in a binary tree, or in fact a k-ary tree for some constant k)
= Generally, “diffusion of information” to n processors on an EREW
PRAM takes O(log n)
Conclusion: CREW PRAMs are more powerful than EREW PRAMs

Courtesy of Henri Casanova
23/63

all distinct, find whether some

i=1,n?

CRCW>CREW

Theoretical
Parallel

Computing 1 CompUTE_MAxIMUM(A, n)
2 forall i € {1,...,n} in parallel do
3 | mli] —True
4 | foralli,j € {1,...,n}2 i# j in parallel do
5 | if A[i] < A[j] then m[i] — False
6 forall i € {1,...,n} in parallel do
RRAMIMESS 7 | if m[i] = True then maz « A[i]
8 return mar

ALGORITHM 1.3: CRCW algorithm to compute
the largest value of an array.

» O(1) on a CRCW
> Q(logn) on a CREW
Therefore, we have CRCW > CREW > EREW (with at least a loga-

rithmic factor each time).
24 /63

Theoretical

compuin * Simulation Theorem

= Simulation theorem: Any algorithm running on a
CRCW PRAM with p processors cannot be more than
O(log p) times faster than the best algorithm on a

PRAM Model EREW PRAM with p processors for the same
Hierarchy problem

= Proof:
= “Simulate” concurrent writes

Each step of the algorithm on the CRCW PRAM is simulated as
log(p) steps on a EREW PRAM

When Pi writes value x;to address |,, one replaces the write by
an (exclusive) write of (I, x;) to A[i], where A[i] is some auxiliary
array with one slot per processor
Then one sorts array A by the first component of its content
Processor i of the EREW PRAM looks at A[i] and A[i-1]

if the first two components are different or if i = 0, write value xto

address |,
Since A is sorted according to the first component, writing is
exclusive Courtesy of Henri Casanova

25/63

Theoretical
Parallel

* Proof (continued)

Picking one processor for each competing write

P0
PRAM Model
S P PO - (29,43) = A[0]
1
P1-(812) =All]
b 8] 29
P2 - (29,43) =A[2]
Ps P3 - (29.43) =A[3]
p P4 - (92,26) = Al4]
4
= Al5]

~Bglgy PS5 -(812)
P5

A[0]=(8,12)
A[1]1=(8,12)
A[2]1=(29,43)
A[3]1=(29,43)
A[4]1=(29,43)
A[5]1=(92,26)

PO writes
P1 nothing
P2 writes
P3 nothing

P4 nothing

P5 writes

Courtesy of Henri Casanova
26 /63

Theoretical

campuine * Proof (continued)

Note that we said that we just sort array A

If we have an algorithm that sorts p elements
Processr with O(p) processors in O(log p) time, we're
Hi archyOdEI set

Turns out, there is such an algorithm: Cole’s
Algorithm.
= basically a merge-sort in which lists are merged in
constant time!
= |t's beautiful, but we don’t really have time for it,
and it's rather complicated

Therefore, the proof is complete.

Courtesy of Henri Casanova
27 /63

Theoretical
Parallel
Computing

And many, many more things

= J. Reiff (editor), Synthesis of Parallel Algorithms,
Morgan Kauffman, 1993
= Everything you've ever wanted to know about PRAMs

= Every now and then, there are references to PRAMs
in the literature
= “pby the way, this can be done in O(x) on a XRXW PRAM”

= This network can simulate a EREW PRAM, and thus we
know a bunch of useful algorithms (and their complexities)
that we can instantly implement

= etc.
= You probably will never care if all you do is hack MPI
and OpenMP code

Conclusion

Courtesy of Henri Casanova
28 /63

Relevance of the PRAM model

Theoretical
Parallel

Computing » Central question in complexity theory for sequential algorithms:
P=NP?

» Central question in complexity theory for parallel algorithms: P =
NC 7

» NC is the class of all problems that, with a polynomial number of
PUs, can be solved in polylogarithmic time. An algorithm of size
n is polylogarithmic if it can be solved in O(log(n)¢) time with
O(n*) PUs, where c and k are constants.

Conclusion

Nice theoretical complexity considerations, uh ?
Skeptical readers may question the relevance of the PRAM model for
practical implementation purposes:

You can't have n = 100,000,000 PUs.
One never has an immediately addressable, unbounded shared
parallel memory.

29/63

Relevance of the PRAM model

Theoretical This criticism, similar to the criticism of O(n'") “"polynomial” time algo-

Parallel

Computing rithms, often comes from a misunderstanding of the role of theory:

A- Legrand » Theory is not everything: Theoretical results are not to be taken as is

and implemented by engineers.

> Theory is also not nothing: The fact that an algorithm cannot in general
be implemented as is, does not mean it is meaningless.

Deep understanding

When a O(n*") algorithm is designed for a problem, it does not lead to a
practical way to solve that problem.

However, it proves something inherent about the problem (namely, that it
is in P).

Hopefully, in the process of proving this result, key insights may be developed
that can later be used in practical algorithms for this or other problems, or
for other theoretical results.

Similarly, the design of PRAM algorithms for a problem proves something
inherent to the problem (namely, that it is parallelizable) and can in turn
lead to new ideas.

Conclusion

30/63

Relevance of the PRAM model

Theoretical This criticism, similar to the criticism of O(n'") “"polynomial” time algo-

Parallel

Computing rithms, often comes from a misunderstanding of the role of theory:

A- Legrand » Theory is not everything: Theoretical results are not to be taken as is
and implemented by engineers.

> Theory is also not nothing: The fact that an algorithm cannot in general
be implemented as is, does not mean it is meaningless.

Candidate for Practical Implementation

Even if communications are not taken into account in the performance eval-
uation of PRAM algorithms (a potentially considerable discrepancy between
theoretical complexity and practical execution time), trying to design fast
PRAM algorithms is not a useless pursuit.

Indeed, PRAM algorithms can be simulated on other models and do not
necessarily incur prohibitive communication overheads.

It is commonly admitted that only cost-optimal PRAM algorithms have po-
tential practical relevance and that the most promising are those cost-optimal
algorithms with minimal execution time.

Conclusion

30/63

QOutline

Theoretical
Parallel
Computing

Combinatorial

Networks © Combinatorial Networks
@ Merge Sort

@ 0-1 Principle

@ Odd-Even Transposition Sort
e FFT

31/63

* Combinational circuits/networks

® More realistic than PRAMs

= More restricted

= Algorithms for combinational circuits were
among the first parallel algorithms developed

= Understanding how they work makes it easier
to learn more complex parallel algorithms

= Many combinational circuit algorithms provide
the basis for algorithms for other models (they
are good building blocks)

= We're going to look at:
= sorting networks
= FFT circuit

Courtesy of Henri Casanova
32/63

Theoretical

et * Sorting Networks

® Goal: sort lists of numbers
= Main principle

= computing elements take two numbers as input
and sort them

a:-:min(a,b)
b max(a,b)

Combinatorial
Networks

= we arrange them in a network

= we look for an architecture that depends only on
the size of lists to be sorted, not on the values of
the elements

Courtesy of Henri Casanova
33/63

Theoretical
Parallel
Computing

Merge Sort

* Merge-sort on a sorting network

First, build a network to merge two lists
= Some notations
= (c,,Cy-..,C,) @ list of numbers
= sort(c,,C,,...,C,) the same list, sorted
= sorted(X;,X,,...,X,) is true if the list is sorted
= if sorted(a,,...,a,) and sorted(b;,...,b,) then merge((ay,...,a,),
(b;,...,b,)) = sort(a,,...,a,,b;,...,0,)
= We’'re going to build a network, merge,,, that merges two sorted lists
with 2™ elements

= m=0 m=1
y z; min(al,b1)
a
1,b1 a2,
o1 . infmex(ak k) min(az2)
b2 max(a2,b2)

Courtesy of Henri Casanova
34/63

Theoretical

camin * What about for m=37?

al
bl

T

Al
e
s

a3
b3

T

T

a2
b2

T

T

a4
b4

Merge Sort

= Why does this work?
= To build merge,,one uses
= 2 copies of the merge,, , network
= 1 row of 2"-1 comparators
= The first copy of merge,,, merges the odd-indexed elements, the
second copy merges the even-indexed elements

® The row of comparators completes the global merge, which is quite
a miracle really

Courtesy of Henri Casanova
35/63

* Theorem to build merge,

= Given sorted(a,,...,a,,) and
sorted(b,,...,b,,)
= Let

= (d,,...,d,,) = merge((a,,as,--,a4),
(by,bs,....04,.1)

= (,.--,85,) = Merge((a,,ay,--,as,)
(b,,by,.-,by,)

® Then
= sorted(d,,min(d,,e,),max(d,,e,),...,
min(d2n’e2n-1)!max(dZn’eZn-1)7e2n)

Courtesy of Henri Casanova
36/63

Theoretical
Parallel
Computing

Merge Sort

Proof

Assume all elements are distinct
d, is indeed the first element, and e,, is the last element of the
global sorted list
For i>1 and i <=2n, d, and e, must appear in the final list in
position 2i-2 or 2i-1.
Let’s prove that they are at the right place

= if each is larger than 2i-3 elements

= if each is smaller than 4n-2i+1 elements

= therefore each is either in 2i-2 or 2i-1

= and the comparison between the two makes them each go in the
correct place

So we must show that
= d,is larger than 2i-3 elements
= e, is larger than 2i-3 elements
= d is smaller than 4n-2i+1 elements
= e, is smaller than 4n-2i+1 elements

Courtesy of Henri Casanova
37/63

S, * Proof (cont’ed)

= d, is larger than 2i-3 elements
= Assume that d, belongs to the (a;),_; ,, list
= Let k be the number of elements in {d,,d,,...,d} that belong to the
()21 2 list
= Thend, = a,, and d, is larger than 2k-2 elements of A
= There are i-k elements from the (b)),_, ,,list in {d,,d,,...,d. }, and
Merge Sort thus the largest one is by, ;. Therefore d; is larger than 2(i-k)-1
elements in list (), 5,
= Therefore, d; is larger than 2k-2 + 2(i-k)-1 = 2i-3 elements
= Similar proof if d, belongs to the (b)),_; ,, list

= Similar proofs for the other 3 properties

Courtesy of Henri Casanova
38/63

Theoretical

Parallel

Computing

Merge Sort

B

Construction of merge,,

Recursive construction that implement

the result from the theore@;;urtesy of Henri Casanova
39/63

Theoretical

2 * Performance of merge

Execution time is defined as the maximum number of comparators
that one input must go through to produce output
= t :time to go through merge,,
= p,: number of comparators in merge,,
= Two inductions
= ot=1,t=2,t =t + 1 (t,=m+1)
" Pe=1,Ps=3, P =2Pps + 27 -1 (P, =2"M+1)
= Easily deduced from the theorem
= In terms of n=2", O(log n) and O(n log n)
= Fast execution in O(log n)
= But poor efficiency
= Sequential time with one comparator: n
= Efficiency = n/(n*logn *logn) =1/ (log n)?
= Comparators are not used efficiently as they are used only once

= The network could be used in pipelined mode, processing series of lists,
with all comparators used at each step, with one result available at each
step.

Merge Sort

Courtesy of Henri Casanova
40/63

Theoretical
Parallel

* Sorting network using merge .

= Sort, network Sort, network

Merge Sort

L\
sort,

Sort 1st half of the list
Sort 2nd half of the list
Merge the results
Recursively

Courtesy of Henri Casanova
41/63

Theoretical
Parallel
Computing

Merge Sort

Performance

Execution time t', and p’,, number of comparators
= =1t =t +t, (F,=0(m}))
" Pl P =200+ Pry (Pl = 0(2"m?))
Interms of n = 2m
= Sort time: O((log n)?)
= Number of comparators: O(n(log n)?)
Poor performance given the number of comparators (unless
used in pipeline mode)
= Efficiency: Teq/ (P ™ Tpa)
= Efficiency = O(n log n/ (n (log n)*)) = O((log n)?)
There was a PRAM algorithm in O(log n)
Is there a sorting network that achieves this?
= yes, recent work in 1983
= O(log n) time, O(n log n) comparators
= But constants are SO large, that it is impractical

Courtesy of Henri Casanova
42/63

* 0-1 Principle

®= Theorem: A network of comparators
implements sorting correctly if and only
if it implements it correctly for lists that
consist solely of 0’'s and 1’s

® This theorem makes proofs of things
like the “merge theorem” much simpler
and in general one only works with lists
of 0’s and 1’ when dealing with sorting
networks

Courtesy of Henri Casanova
43 /63

* Another (simpler) sorting network

= Sort by even-odd transposition
® The network is built to sort a list of n=2p
elements
= p copies of a 2-row network

= the first row contains p comparators that
take elements 2i-1 and 2i, for i=1,...,p

= the second row contains p-1 comparators
that take elements 2i and 2i+1, for
i=1,..,p-1

= for a total of n(n-1)/2 comparators

= similar construction for when n is odd

Courtesy of Henri Casanova
44 /63

* Odd-even transposition network

n=28 n=7

Courtesy of Henri Casanova
45 /63

Theoretical
Parallel
Computing

Odd-Even
Transposition
Sort

Proof of correctness

= To prove that the previous network sort correctly
= rather complex induction
= use of the 0-1 principle
= Let(a)_, ,alistof 0’sand 1’s to sort
= Letk be the number of 1’s in that list; j, the position of the last 1

11 01 00 O
k=3
-
Note that a 1 never “moves” to the left (this is why using the 0-1 principle
makes this proof easy)
Let's follow the last 1: If j, is even, no move, but move to the right at the
next step. If j, is odd, then move to the right in the first step. In all cases, it
will move to the right at the 2nd step, and for each step, until it reaches the

n" position. Since the last 1 is at least in position 2, it will reach position n in

at least n-1 steps. Courtesy of Henri Casanova
46 /63

Theoretical
Parallel
Computing

Proof (continued)

= Let’s follow the next-to last 1, starting in position j: since the last
1 moves to the right starting in step 2 at the latest, the next-to-
last 1 will never be “blocked”. At step 3, and at all following
steps, the next-to-last 1 will move to the right, to arrive in
position n-1.

= Generally, the it 1, counting from the right, will move right during
step i+1 and keep moving until it reaches position n-i+1

= This goes on up to the k" 1, which goes to position n-k+1

Odd-Even = At the end we have the n-k 0’s followed by the k 1’s

Transposition

o ®* Therefore we have sorted the list

Courtesy of Henri Casanova
47 /63

Redundant steps

Courtesy of Henri Casanova
48 /63

Compi * Performance

= Compute time:t,=n
= # of comparators: p, = n(n-1)/2

= Efficiency: O(nlogn/n* (n-1)/2* n) = O(log n/ n?)
= Really, really, really poor
= But at least it's a simple network

Odd-Even

Temerasiion = |s there a sorting network with good and practical
performance and efficiency?
= Not really

= But one can use the principle of a sorting network for coming
up with a good algorithm on a linear network of processors

Courtesy of Henri Casanova
49/63

* Sorting on a linear array

= Consider a linear array of p general-
purpose processors

- - B
= Consider a list of n elements to sort
(such that n is divisible by p for
simplicity)
® |dea: use the odd-even transposition
network and sort of “fold” it onto the
linear array.

Courtesy of Henri Casanova
50/63

Theoretical
Parallel
Computing

Odd-Even
Transposition
Sort

Principle

= Each processor receives a sub-part, i.e. n/p elements, of the list
to sort
= Each processor sorts this list locally, in parallel.
= There are then p steps of alternating exchanges as in the odd-
even transposition sorting network
= exchanges are for full sub-lists, not just single elements
= when two processors communicate, their two lists are merged
= the left processor keeps the left half of the merged list
= the right processor keeps the right half of the merged list

Courtesy of Henri Casanova
51/63

* Example

init

[(83.12}] f0165) [12189)] 17154 [11613) [117,14

local sort|{3,8,12}] [5.1016)] [{29.18)] [41517) [(1613} [7.1114

odd
even
odd
even
odd

even

[{35.8)5P10,12,16) | {2,4,9)p15,17,18) | {1,6,7155P1,13,14
({3581] |{2491d=h10,12,16) | {167)P5,17,18) {11,13,14
[{23.4)d=h {589} | | {16.71d=#10,12,16} {11,13,14=415,17,18
({2341 [{156)6P(7,89}] {1011,195P13,14,16} {15,17,18
[(123114561 | [17.89)P0,11,12) {13,14,155P16,17,18
({123} [{456)5P(7,89}] {1011,195P13,14,15} {16,17,18}

Same pattern as the sorting network

Courtesy of Henri Casanova

Compi * Performance

= Local sort: O(n/p * log n/p) = O(n/p * log n)

= Each step costs one merge of two lists of n/p
elements: O(n/p)

= There are p such steps, hence: O(n)

= Total: O(n/p * log n + n)

= |fp=1logn: O(n)

Odd-Even = The algorithm is optimal for p < log n

Transposition

Sort

= More information on sorting networks: D. Knuth, The
Art of Computer Programming, volume 3: Sorting and
Searching, Addison-Wesley (1973)

Courtesy of Henri Casanova
53/63

Theoretical
Parallel

* FFT circuit - what's an FFT?

= Fourier Transform (FT): A “tool” to decompose a
function into sinusoids of different frequencies, which
sum to the original function

= Useful is signal processing, linear system analysis, quantum
physics, image processing, etc.

= Discrete Fourier Transform (DFT): Works on a
discrete sample of function values

® In many domains, nothing is truly continuous or continuously
measured

= Fast Fourier Transform (FFT): an algorithm to
compute a DFT, proposed initially by Tukey and Cole
in 1965, which reduces the number of computation
from O(n?) to O(n log n)

Courtesy of Henri Casanova
54 /63

* How to compute a DFT

= Given a sequence of numbers {a,, ...,
a, .}, its DFT is defined as the sequence
{bys -.., b1}, where

n—1
b = " :
7 gak *“n(polynomia eval)
with w ,a primitive root of 1, i.e.,

w, = e

2y

Courtesy of Henri Casanova
55/63

Theoretical

S, * The FFT Algorithm

= A naive algorithm would require n2
complex additions and multiplications,
which is not practical as typically n is

very large
" Letn=2s
2571 25711
b, = Z aomw™ 4+ Wi Z Aom 1w
m=0 m=0

H_JH_/

even: u odd: v;

Courtesy of Henri Casanova
56 /63

Theoretical
Parallel

* The FFT Algorithm

= Therefore, evaluating the polynomial

2 —1
ag + a1x + asx” + ...+ a,_1x"
0 1 -1
at 0l wn

can be reduced to:
1. Evaluate the two polynomials

2 Z_1
ag + @ + 4" + ... + Ap_2I 2

aj; +asxr + a5172 + ...+ an,lngl
at (wp)? (wn)?, s (W ™)
2. Compute

. Jay.
by = uj + wiv;

BUT: (w)?, (wh)?, -, (@)% contains really n/2 distinct
elements!!! (@n—1)2 = B (B2 ()2

wp n
Courtesy of Henri Casanova
57/63

Theoretical

S, * The FFT Algorithm

= As a result, the original problem of size n (that
is, n polynomial evaluations), has been
reduced to 2 problems of size n/2 (that is, n/2
polynomial evaluations)

FFT(in A, out B)
ifn=1
b, - a,
else
FFT(a,, @, ..., @5 Uy Uy ..., u(n/2)—1)
FFT(a,, @5 ---7 8,y Vo Viyeons Vi)

for j = 0 to n-1

by« Uy pamz F D7V a2
end for
end if

Courtesy of Henri Casanova
58/63

* Performance of the FFT

® t(n): running time of the algorithms

" tn)=d*n+2*t(n/2), where d is some
constant

® t(n) = O(n log n)

® How to do this in parallel?

= Both recursive FFT computations can be
done independently

= Then all iterations of the for loop are also
independent

Courtesy of Henri Casanova
59 /63

Theoretical

Parallel
Computing

an/2-1

a,
/2
bn/2

an/2+1

b,
an/2+2 n/2+1

poo}tesy of Henri Casanova
60 /63

* Performance

= Number of elements
= width of O(n)
= depth of O(log n)
= therefore O(n log n)
® Running time
= t(n) = t(n/2) + 1
= therefore O(log n)
= Efficiency
= 1/log n
= You can decide which part of this circuit
should be mapped to a real parallel platform,
for instance

Courtesy of Henri Casanova
61/63

QOutline

Theoretical
Parallel
Computing

Conclusion

© Conclusion

62 /63

ey * Conclusion

= We could teach an entire semester of
theoretical parallel computing

® Most people just happily ignore it

= But
= it's the source of most fundamental ideas
= it's a source of inspiration for algorithms

®= it's a source of inspiration for
implementations: DSP

Courtesy of Henri Casanova
63 /63

	Parallel RAM
	Introduction
	Pointer Jumping
	Reducing the Number of Processors
	PRAM Model Hierarchy
	Conclusion

	Combinatorial Networks
	Merge Sort
	0-1 Principle
	Odd-Even Transposition Sort
	FFT

	Conclusion

