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MOAIS group

e Funded by INRIA, CNRS, UJF, INPG

® Part of LIG (Laboratoire d’Informatique de Grenoble)
- http:/moais.imag.fr

® Jean-Louis Roch: project Leader

® 10 researchers

® 18 PhD students



Research actions

® Scheduling [Denis Trystram]

- multi-objectif criteria, malleable and moldable
model

e Parallel Algorithms [Jean-Louis Roch]
- adaptive algorithms

e Virtual Reality [Bruno Raffin]

- interactive simulation

® Runtime for HPC [Thierry Gautier]

- grid and cluster, multi-processor



Outline

e Athapascan / Kaapi a software stack
® Foundation of work stealing
® Controls of the overheads

® Experiments with STL algorithms



® Write once, run anywhere... with
guaranteed performance

® Problem: heterogeneity

- variations of the environment (#cores, speed,
failure...)

- irregular computation
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e Global address space

- Creation of objects in a global address space with ‘shared’ keyword
e Task = function call

- Creation with ‘Fork’ keyword (= unix fork) ~ Cilk spawn

- Tasks only communicate through shared objects

- Task declares access mode (read, write, concurrent write, exclusive) to
shared objects

e Automatic scheduling
- Work stealing or graph partitioning

e C++ library, not a language extension

- Clanguage extension + compiler was prototyped



struct Fibonacci {
void operator()( int n, al::Shared_w<int> result )
{
if (n < 2) result.write( n );
else {
al::Shared<int> subresultl;
al::Shared<int> subresult2;
al::Fork<Fibonacci>()(n-1, subresultl);
al::Fork<Fibonacci>()(n-2, subresult2);
al::Fork<Sum>() (result, subresultl, subresult2);

struct Sum {
void operator()( al::Shared_w<int> result,
al::Shared_r<int> srl,
al::Shared_r<int> sr2 )
{ result.write( srl.read() + sr2.read() ); }

}
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struct Fibonacci {

void operator()( int n, int& result )
{

if (n < 2) result = n ;

else {

int subresultl;
int subresult2;

Fibonacci ()(n-1, subresultl);
Fibonacci () (n-2, subresult2);
Sum () (result, subresultl, subresult2);
}
}
}i
struct Sum {
void operator() ( int& result,
int sril,
int sr2 )
{ result = srl + sr2 7}

}
S amy aF > = <Er E DA
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® One abstract representation for
- Scheduling

— data flow graph = precedences graph = dependences graph
e classical numerical kernel = partitioning the dependences graph
- Explicit data transfer
— data to be transfered is explicit in the data flow graph
® automatic overlapping communication by computation
- Original Fault Tolerant Protocols
— TIC[IETO5, Europar05, TDSC09]

e coupling scheduling by work stealing with abstract representation

— CCK[TSI0o7, MCOO08]

e coordinated checkpointing with partial restart after failure

- Sabotage Tolerance [PDP09]

— dynamically adapt the execution to sabotage

® Drawback: complexity to manage it
S amy aF > = <Er E DA



® Stack based allocation

- Tasks and accesses to shared data are pushed in a stack

— close to the management of the C function call stack
- 0(1) allocation time
- O(#parameters) initialization time

<int> subresultl;

<int> subresult2;
<Fibonacci>()(n-1, subresultl);
<Fibonacci>() (n-2, subresult2);
<Sum>() (result, subresultl, subresult2);

Stack growth



® A (dynamic) set of UNIX processes

- communication by active message

- Each process is multithreaded
- The root process forks the main task

® Threads inside processes are either

- Performing work
— excute tasks

- idle and participate to scheduling
— then it try to steal work (task) from other threads
(work-stealing algorithm)



Idle K-Processor

2 Level Scheduling

K-Thread

/]
|
I

KAAPI Scheduler other process

‘ Active Message | E
0S skhedu r over TCP/IP, Myrinet e

and SSH —

os CPU CPU CPU CPU CPU




® Athapascan / Kaapi a software stack
® Foundation of work stealing
e Controls of the overheads

® Experiments with STL algorithms



Working thread
. 9

Idle thread

Idle thread
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Work stealing queue

® Task: basic unit of computation

® Fach thread has its own work queue

— push(task ) ->(): push atask g used b)’ the

— pop() -> task : pop a task
owner thread

- push /pop: LIFO order
® A idle thread can steal task from a

victim thread’s workqueue
— steal() ->task :steal atask from the queue g

used by the

- h / steal: FIFO ord
push/stea order thief thread

® Random selection of victim threads
S amy aF > = <Er E DA



® Fork/Join recursive parallel program
- (formally: strict multithreaded computation)
® Notation:

- Tseq: “sequential work”

- T: : execution time on 1 core of the parallel
program, called “ ”

- Tw : time of execution on « cores, called the
“ " or the depth

- Tp : time of execution on P cores
- P:the number of processors



defT] /T

- available parallelism (maximum speedup)

- e.g. Fibonacci(30) = 83040
— T1=5.285%10-2s, T, =3.08%10-7s
— P = 171591

oT,/ Tseq

- measure the work overhead
— the creation of tasks
— the work queue management (push/pop)



- Using work stealing scheduler with random
selection of victim, the expected time on P
processors is:

Tp = O(Tseq / P + Too)

- The expected number of steal requests per
thread X, is:

Xp = O(Tw)

- [Blumofe, Leiseron, Focs 94, PPoPP 95], [Arora, Blumofe, Plaxton, SPAA 98], ...



® Previous bounds: “fork/join” program
- all created tasks are ready

e Not true in data flow program
- complexity to compute data flow constraints

® Fortunately, the same bound holds
- [Galilée, Doreille, Cavalheiro, Roch, PACT 98]
- [Gautier, Roch, Wagner, ICCS2007]

— in general case, the sequential execution is a valid execution

® do not compute data flow constraints except on rare events



® Other interesting results

— Space efficient

— “Same” bounds for heterogenous machines (dynamic speeds) with
slightly modified work stealing
® [Bender, Rabin, SPAA00]

Tp=0O(Tseq/ (P [Tavrg) + BT/ [Tavrg)
®|f P<<P.
= quasi linear speed up : Tp ~ C;Tseq/ P
- Interest of fine grain parallel algorithm (T << Ty)

= P.>>1!!allows wide range of quasi linear
speedup



® Cilk 95

- ¢; ~from 1 to 25, depends on the application
- Co~1
- Tp=CiTseq /P + Cx [
® Athapascan/Kaapi
- 1998: T1/Tseq ~ 1 — 10000: bad representation !
- 2004: T1/Tseq~ 1 = 1000: optimization
- 2006: T1/Tseq~ 1 - 100: stack representation
- 2008: T1/Tseq~ 1 - 20: +



e Cilk [94, 95, 98]

- one of the first language: 3 keywords cilk_spawn, cilk_sync, cilk_for

- shared memory

e Tascell [09]

- using same idea as a Cilk extension [96] that has never been tested

e X10[04, 08]

- experimental language for HPC

- extend class of parallel program with work stealing strategy
e Satin[01], Capsule[06]



e Cilk [94, 95, 98]

e Athapascan/Kaapi[99, 03, 05, 07]
- macro data flow: 2 keywords Fork, Shared

e Tascell [09] - & memory

- fault tolerant protocols

e X10[04, 08]
e Satin[01], Capsulé [06



® Athapascan / Kaapi a software stack
® Foundation of work stealing
® Controls of the overheads

® Experiments with STL algorithms



e Why ? =~ WORK overhead

- extrainstructions from the sequential program
- especially for short computation (->STL algorithms)

® Three technics

1.adapt the grain size: stop parallelism after a
threshold

— but: increase T, reduce the average parallelism and increase the
number of steal requests

— difficulty to adjust it automatically
— ...ideally do not create task !

— difficulty due to concurrent operations
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® Cost = Creation +

® Example: prefix computation
input: {ai}, i=0..n, output: pi=[ [k={0.i} ak, Yi=0..n
sequential work:

Tseq=n

Parallel program => Ladner-Fisher (divide & conquer)
T+=2logzn, T1=2 n

Fish’s lower bound: any parallel algorithm with
critical path log, n requires at least 4n operations



e [Roch, Traoré 07],[Roch, Traoré, Gautier 08]
- Principe: create tasks when processors are idle !

® Task = apply F(aj) for all elements a; of an array

Thread 1
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e [Roch, Traoré 07],[Roch, Traoré, Gautier 08]
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Adaptive algorithm

e [Roch, Traoré 07], [Roch, Traoré, Gautier 08]
- Principe: create tasks when processors are idle !

® Task = apply F(aj) for all elements a; of an array

Update Task / Thread 1 New Task / Thread 2

Thread 1 Thread 2
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Adaptive algorithm

® Case of heterogeneous speed
- Thread 2 is slower or as more work to do

Update Task / Thread 1

l i A




Adaptive algorithm

® Case of heterogeneous speed
- Thread 2 is slower or as more work to do

- We always use preemption: main thread
(sequential algorithm) preempts thieves

Update Task / Thread 1

l i A

—_—

Preemption —)




® 2 Algorithms
- Sequential:
- Parallel: to split work & merge partial results

® Scheduler

- interleaved execution of the two algorithms
depending on the idle CPUs

- robust to heterogeneous processors



® 3 operations
— push/pop/steal

® Algorithms
- Cilk: T.H.E. protocol

— serialization of thieves to a same victim
— thief/victim atomic read/write + lock in rare case

~ ABP [SPAAOOT:

— lock free (Compare&Swap), but prone to overflow

- Chase & Lev [SPAAO5]:

— without limitation (other than hardware)

m) COSTLY ‘cas’ operation [PPoPP09]
S amy aF > = <Er E DA



® Consensus between N-thieves and
the victim

- In theory, not possible (if wait free) with less
powerful synchronization primitive

- e.g.: atomic register read/write, test&set

® How to avoid ‘CAS’ ?



® “Idempotent work stealing” [PPoPP09]

— Maged M. Michael, Martin T. Vechey,
— Vijay A. Saraswat (work also on X10 language)

- avoid CAS in pop operation
m» More Performance

® Drawback
- ataskis returned (and executed) at least once
- ...instead of exactly once



® [X. Besseron, C. Laferriere]

® Keep same semantics as usual
- atask is extracted exactly once

® so...avoid concurrency between victim
& thieves

- the victim interrupts its work to process steal
requests

- some similarity with TasCell [09], Capsule [06]

® Drawback

- the victim should poll requests

- thieves are waiting
S amy aF > = <Er E DA






test ?

0
I N




test ?

0
I N




test ?

0
I I




test ?

0
I I




test ?




test ?

/IH!




test ?




test ?

|







test




Cooperative WS

test ?




Cooperative WS

test ?

[ [ |




Cooperative WS

test ?




Cooperative WS

test ?




Cooperative WS

test ?

® Gain
- work overhead: 1 read on memory

- reply to K thieves in place of only 1
— better workload balance
e T e  E e e R



® Athapascan / Kaapi a software stack
® Foundation of work stealing
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® [PhD Daouda Traoré, 2008]

® Technics applied to 95% of STL
algorithms
- STL: Standard C++ Template Library

® Comparison with other library

- Cilk++, Intel Thread Building Block (TBB)
- MCSTL (GNU STL parallelized with OpenMP)

® Multiprocessor : 8 AMD CPUs with 2
cores



® Two set of experiments

- 1/ with adaptive algorithms
— PhD of [Daouda Traoré]

- 2/ with cooperative work stealing

— [Daouda Traoré, Xavier Besseron, Christophe Laferriére]

e Methodology
- average over 30 runs

- 1run = average of 100 basic experiments, do not
take into account the first experiment
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- (p-1) processors have the same speed S
- 1 processor has speed S/2

Optimal
BKASTL

SWARM

Optimal
prefix with
static partition
of the array

Number of processors




sort — medium size (~1s) — speedup
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Partial conclusion

® Interest to adapt the task to activity
(or idleness) of processors

® But coarse computation
- sequential time > 0.1s

=) + Cooperative work stealing
- named X-KaSTL or CKaapi in diagrams



® 1 processor
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® 8 processors NUMA machine
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® 8 processors

Tstl/ Tlibrary

KaSTL ——
TBB

Cilk ——
X-KaSTL

STL
I
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® Effective speedup at finer computation
- sequential time ~ 10-3s = 1ms

=) impact of the better balance of work
load

- comparison split in K versus splitin 2
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Time for algo transform and 4 threads
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Time for algo transform and 8 threads
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Time for algo merge and 8 threads
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Time for algo merge and 8 threads
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® Athapascan/Kaapi
- a data flow model with lazy task generation
— reduce the work overhead
- sequential semantics
- original approach

- effective parallelization of fine computation
— with cooperative workstealing

® http:/kaapi.gforge.inria.fr/

® Drawback

- nhon standard research software

— difficulty to port already parallelized applications



e Software being to be more robust
- INRIA action to support development (2 years)

- Ported on top of most Unix (Linux, MacOSX, [SunOS],
iPhoneOS]

- [2010] will be ported on IBM/BlueGene
- [2010] will be ported on MPSoC with ST Microelectronics

® Viability of the cooperative approach
- not yet theoretical fundation
- coupling technics with concurrent work stealing



® Mixing CPUs & GPUs

- preliminary work

- deeper integration of the GPU as a processing resource
— next Fermi GPU + driver ?

® Better coupling between OS &
Middleware

- importance to know (in advance) the available number
of resources

® Taking into account NUMA architecture
- ongoing work at MOAIS [JN Quintin, PhD]



e [Parallelization of Bayesian computation]
e Parallel Computer Algebra
- Linbox: http://www.linalg.org

e Combinatorial Opt. [PRiSM (Paris), B. Lecun]

e Academic applications
- [HI, IV, V Grid@Work contest]

— NQueens
— Option Pricing application based on Monte Carlo Simulation

- Numerical kernel for CEM, CFD Grid application

— Finite difference/ Finite element
- Reaction / diffusion with Chemical species

— Finite difference

o SO FA (http://www—sofa—framework.orq)
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® Grid5000 (French academic national grid)
- 2006: N=23 in 74min on 1422 cores
-2007: N=23 in 35mn 7s on 3654 cores
e Taktuk: fast deployment tool




Grid5000 Grid Load last hour
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® 3609 cores: ~2700 Grid5000 ~900 Intrigger
® SSH connection between Japan-France
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8 Physics Simulation

® SOFA: real-time physics engine

e Strongly supported INRIA initiative

® Open Source:
http://www.sofa-framework.org

® Target application:
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® Target application: e
Surgery simulation v @




28 Physics Simulation

e SO

® Str 1 processor 8 processors e
Freq=14Hz Freq =60 Hz

e Op

hti
e Tai
Sui




® Scheduling by graph partitioning
® Metis / Scotch

T Téfe de puits

Appliatio |



Network

dual processor dual processor
dual core dual core NUMA

Jn tniforn




Network

dual processor dual processor
dual core dual core NUMA

ton uniforn
Heory Aécess




® Finite Difference Kernel

o Kaapi/ C++ code versus Fortran MPI code
® Constant size sub domain D per processor
® Cluster : N processors on a cluster

® Grid: N/4 processors per cluster, 4 clusters

D=256"3| # processors |Cluster (s)| Grid (s) |Overhead
I 0.49 0.49 -
KAAPI 64 0.55 0.84 0,53
128 0.65 0.91 0,4
I 0.44 0.44 -
MPI 64 0.66 2.02 2,06
128 0.68 .57 1,31




Optimizing MPI code

® Overlapping communication by computation
® At the cost of important code restructuring

256"3/proc between Rennes and Bordeaux




® Overlapping communication by computation
® At the cost of important code restructuring

256"3/proc between Rennes and Bordeaux

= kaapi-opt
£—= sendrecv-ompi
. recvisend-ompi
=1 async-ompi

KAAPI automatically
reschedules computation
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Communication

® Active message like communication
protocol

® Multi-network (TCP, Myrinet, ssh
tunnel with TakTuk)

e High capacity to overlap
communication by computations

e Original message aggregation
protocol









