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Overview
 
• Machine model and work-stealing
•Work and depth
• Fundamental theorem  : Work-stealing theorem 
• Parallel divide & conquer
• Examples

•Accumulate
•Monte Carlo simulations

• Part2:  Work-first principle - Amortizing the overhead of parallelism
•Prefix/partial sum

•Sorting and merging

• Part3:  Amortizing the overhead of synchronization and communications
•Numerical computations : FFT, marix computations; Domain decompositions
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Interactive 
Distributed 
Simulation
3D-reconstruction
+ simulation
+ rendering
[B Raffin &E Boyer]
- 1 monitor
- 5 cameras, 
- 6 PCs

Any application is “parallel”: 
•composition of several programs / library procedures (possibly concurrent) ;
•each procedure written independently and also possibly parallel itself.

Interactive parallel computation? 
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  Parallel chips & multi-core architectures: 
- MPSoCs (Multi-Processor Systems-on-Chips)
- GPU : graphics processors (and programmable: Shaders;  Cuda SDK)
- MultiCore processors (Opterons, Itanium, etc.)
- Heteregoneous multi-cores : CPUs + GPUs + DSPs+ FPGAs  (Cell)

 Commodity SMPs:
- 8 way PCs equipped with multi-core processors (AMD Hypertransport) + 2 GPUs

 Clusters: 
- 72% of top 500 machines
- Trends: more processing units, faster networks (PCI- Express)
- Heterogeneous (CPUs, GPUs, FPGAs)

 Grids:
-   Heterogeneous networks
- Heterogeneous administration policies
- Resource Volatility

 Dedicated platforms: eg Virtual Reality/Visualization Clusters:
- Scientific Visualization and Computational Steering
- PC clusters + graphics cards + multiple I/O devices 

(cameras, 3D trackers, multi-projector displays)
  

New parallel supports  from small too large

Grimage platform
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Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, …  but not only: SMP server in multi-users mode

The problem
To design a single algorithm that computes efficiently prefix( a ) on 

an arbitrary dynamic architecture

Sequential
algorithm

parallel
P=2

parallel
P=100

parallel
P=max

...

Multi-user SMP server GridHeterogeneous network

?Which algorithm 
to choose ?

… …
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Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, SMP server in multi-users mode,….

 => motivates the design of «processor-oblivious» parallel algorithm that:

    + is independent from the underlying architecture: 
no reference to p  nor  Πi(t) = speed of processor i at time t nor …

    + on a given architecture, has performance guarantees : 
behaves as well as an optimal (off-line, non-oblivious) one

Processor-oblivious algorithms
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2. Machine model and work stealing

 Heterogeneous machine model and work-depth framework
 Distributed work stealing

 
 Work-stealing implementation : work first principle

 Examples of implementation and programs: 
Cilk , Kaapi/Athapascan

 Application: Nqueens on an heterogeneous grid 



8Processor speeds are assumed to change arbitrarily and adversarially:
model [Bender,Rabin 02] Π i(t) = instantaneous speed of processor i at time t  

                      (in #unit operations per second )

           Assumption :  Maxi,t { Π i(t) } < constant . Mini,t { Π i(t) } 

Def: for a computation with duration T

• total  speed: Π tot = (  Σi=0,..,P Σt=0,..,T Π i(t) ) / T 

• average speed per processor: Πave = Π tot / P 

Heterogeneous processors, work and depth

                

“Work” W = #total number operations performed

“Depth” D =  #operations on a critical path

(~parallel “time” on  ∞ resources)

For any greedy maximum utilization schedule:
     [Graham69, Jaffe80, Bender-Rabin02] 

                 makespan
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The work stealing algorithm

 A distributed and randomized algorithm that 
computes a greedy schedule :
  Each processor manages a local task (depth-first execution)

P0 P2P1 P3
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P0 P2P1 P3

 When idle, a processor steals the topmost task on a remote -non idle- victim processor 
(randomly chosen)

 Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02] 

  #steals = O(p.D)    and  execution time

 Interest: 
      if W independent of p  and  D is small, work stealing achieves near-optimal schedule  
 

 

steal

The work stealing algorithm

 A distributed and randomized algorithm that 
computes a greedy schedule :
  Each processor manages a local stack (depth-first execution)
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Proof  

 Any parallel execution can be 
represented by a binary tree:
 Node with 0 child = TERMINATE instruction

- End of the current thread

 Node with 1 son = sequential instruction
 Node with 2 sons: parallelism = instruction that

- Creates a new (ready) thread 
• eg fork, thread_create, spawn, …

- Unblocks a previously blocked thread  
• eg signal, unlock, send

11



Proof (cont)
 Assume the local ready task queue is stored in an 

array: each ready task is stored according to its depth 
in the binary tree

 On processor i at top t :
 Hi(t) = the index of the oldest ready task

 Prop 1: When non zero, Hi(t) is increasing

 Prop 2: H(t) =  Min(i active at t){ Hi(t) } is increasing

 Prop 3: Each steal request on i makes 
Hi strictly increase  (i.e. Hi(t+1)  H≥ i(t) + 1). 

 Prop 4: For all i and t: Hi(t)  Height(Tree)≤
 Corollary: if at each steal, the victim is a processor i 

with minimum Hi(t) then
#steals  (p-1).Height(tree)  (p-1).D≤ ≤

12



Proof (randomized, general case)
 Group the steal operations in blocks of  

consecutive steals: [Coupon collector problem]
 Consider p.log p consecutive steals requests after top t, 

Then with probability > ½, any active processor at t have 
been victim of a steal request. 

- Then Mini Hi has increased of at least 1

 In average, after (2.p.log p.M) consecutive 
steals requests,  Mini Hi  M ≥
 Thus, in average, after (2.p.log p.D) steal requests, 

the execution is completed ! 
 [Chernoff bounds] With high probability (w.h.p.),

 #steal requests = O(p.log p.D)

13



Proof (randomized, additional hyp.)

 With additional hypothesis:
- Initially, only one active processor
- When several steal requests are performed on a same 

victim processor at the same top, 
only the first one is considered  (others fail)

 [Balls&Bins] Then #steal requests = O(p.D) w.h.p.

 Remarks:
 This proof can be extended to

- asynchronous machines (synchronization = steal)
- Other steal policies then steal the “topmost=oldest” 

ready tasks, but with impact on the bounds on the 
steals 

14



Steal requests and execution time

 At each top, a processor j  is
 Either active: performs a “work” operation 

- Let wj be the number of unit work operations by j

 Either idle: performs a steal requests
- Let sj be the number of unit steal operations by j

 Summing on all p processors :  

Execution time

15
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Work stealing implementation 

Difficult in general (coarse grain)
But easy if D is small [Work-stealing]

        Execution time        

      (fine grain)

Expensive in general (fine grain)
But small overhead if a small 
number of tasks

                        (coarse grain) 

Scheduling
efficient policy 

(close to optimal)

control of the policy 
(realisation)

If D is small, a work stealing algorithm performs a small number of steals

=> Work-first principle: “scheduling overheads should be borne by the critical path 
of the computation”  [Frigo 98]    

Implementation: since all tasks but a few are executed in the local stack, overhead 
of task creation should be as close as possible as sequential function call

At any time on any non-idle processor, 
   efficient local degeneration of the parallel program in a sequential execution 
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Work-stealing implementations following 
the work-first principle : Cilk
 Cilk-5  http://supertech.csail.mit.edu/cilk/ : C extension

 Spawn  f (a) ;  sync (serie-parallel programs)
 Requires a shared-memory machine 
 Depth-first execution with synchronization (on sync) with the end of a task :

- Spawned tasks are pushed in double-ended queue 
 “Two-clone” compilation strategy [Frigo-Leiserson-Randall98] : 

• on a successfull steal, a thief executes the continuation on the topmost ready task ; 
• When the continuation hasn’t been stolen, “sync” = nop ; else synchronization with its  thief

 won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2, 
SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

01 cilk int fib (int n)
02 {
03     if (n < 2) return n;
04     else
05     {
06        int x, y;
07  
08        x = spawn fib (n-1);
09        y = spawn fib (n-2);
10  
11        sync;
12  
13        return (x+y);
14     }
15 }

http://supertech.csail.mit.edu/cilk/
http://bradley.csail.mit.edu/~bradley/hpcc06/
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Work-stealing implementations following 
the work-first principle :   KAAPI
 Kaapi / Athapascan  http://kaapi.gforge.inria.fr : C++ library

 Fork<f>()(a, …)  with access mode  to parameters (value;read;write;r/w;cw) specified 
in f prototype (macro dataflow programs)

 Supports distributed and shared memory machines; heterogeneous processors 
 Depth-first (reference order) execution with synchronization on data access :

• Double-end queue (mutual exclusion with compare-and-swap)
• on a successful steal, one-way data communication (write&signal) 

•

 Kaapi won the 2006 award “Prix special du Jury”  for the best performance at NQueens contest, Plugtests- 
Grid&Work’06, Nice,  Dec.1, 2006 [Gautier-Guelton] on Grid’5000  1458 processors with different speeds.

  1  struct sum {
  2     void operator()(Shared_r < int > a, 
  3                     Shared_r < int > b, 
  4                     Shared_w < int > r )  
  5     { r.write(a.read() + b.read()); }
  6   } ;
  7
  8   struct fib {
  9    void operator()(int n, Shared_w<int> r) 
 10    { if (n <2) r.write( n );
 11      else 
 12      { int r1, r2;
 13        Fork< fib >() ( n-1, r1 ) ;
 14        Fork< fib >() ( n-2, r2 ) ;
 15        Fork< sum >() ( r1, r2, r ) ;
 16      } 
 17    } 
 18  } ;

  

                      

http://kaapi.gforge.inria/
http://www-id.imag.fr/Laboratoire/Membres/Gautier_Thierry/TG/KAAPI%20winner%20of%20plugtest%202006.html


19Experimental results on SOFA 
[Allard 06]

[CIMIT-ETZH-INRIA]

Kaapi (C++, ~500 lines) Cilk (C, ~240 lines)

Preliminary results on GPU NVIDIA 8800 GTX
• speed-up ~9 on Bar 10x10x46 to Athlon64 2.4GHz

•128 “cores” in 16 groups
•CUDA SDK : “BSP”-like, 16 X [16 .. 512] threads
•Supports most operations available on CPU
•~2000 lines CPU-side + 1000 GPU-side



Algorithm design
               Execution time 

 From work-stealing theorem, optimizing 
the execution time by building a parallel 
algorithm with both

-  W = Tseq

and 
- small depth D

  Double criteria
- Minimum work  W  (ideally Tseq )

- Small depth D: ideally polylog in the work:  = logO(1) W
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Examples

 Accumulate

 => Monte Carlo computations

21



22

Example: Recursive and Monte Carlo 
computations

 X Besseron, T. Gautier, E Gobet, &G Huard  won the nov. 2008 Plugtest- 
Grid&Work’08 contest – Financial mathematics application (Options pricing)

 In 2007, the team won the Nqueens contest; Some facts [on on Grid’5000, a grid 
of processors of heterogeneous speeds]

- NQueens( 21) in 78 s on about 1000 processors
- Nqueens ( 22 ) in 502.9s  on 1458 processors
- Nqueens(23) in 4435s on 1422 processors [~24.1033 solutions] 
-  0.625% idle time per processor
- < 20s to deploy up to 1000 processes on 1000 machines [Taktuk, Huard]
- 15% of improvement of the sequential due to C++ (template) 
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Algorithm design
 Cascading divide & Conquer

 W(n)  a.W(n/K) + f(n)    with  a>1≤
- If f(n) << n^{logK a}  => W(n) = O( n^{logK a} )

- If f(n) >> n^{logK a}  => W(n) = O( f(n) )

- If f(n) = ( n^{logΘ K a} => W(n) = O( f(n) log n )

 D(n) = D(n/K) + f(n)
- If f(n) = O( logi n)   => D(n) = O( logi+1 n) 

 D(n) = D( sqrt(n) ) + f(n)
- If f(n) = O(1)   => D(n) = O( loglog n )
-  If f(n) = O( log n)   => D(n) = O( log n)     !! 

23



Examples

 Accumulate

 Monte Carlo computations

 Maximum on CRCW
 Matrix-vector product – Matrix multiplication -- 

Triangular matrix inversion

 Exercise: parallel merge and sort
 Next lecture: Find, Partial sum, adaptive parallelism, 

communications

24



Algorithm design
               Execution time 

 From work-stealing theorem, optimizing 
the execution time by building a parallel 
algorithm with both

-  W = Tseq

and 
- small depth D

  Double criteria
- Minimum work  W  (ideally Tseq )

- Small depth D: ideally polylog in the work:  = logO(1) W
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Lecture 2
 Remind: Work W and depth D :

 With work-stealing schedule: 
- #steals = O(pD)
- Execution time on p procs = W/p + O(D) w.h.p.
- Similar bound achieved with processors with changing 

speed or multiprogrammed systems.

 How to parallelize ?
 1/ There exists a fine-grain parallel algorithm that 

is optimal in sequential 
- Work-stealing and Communications

 2/ Extra work induced by parallel can be amortized
 3/ Work and Depth are related

- Adaptive parallel algorithms



First examples

 Put overhead on the steals :
 Example Accumulate

 Follow an optimal sequential algorithm:
 Example: Find_if

28
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Adaptive coupling: Amortizing synchronizations 
(parallel work extraction) 

Example : STL transform STL  : loop with n independent computations

αlog(n1)

ni=l-fi

αlog(n2)

f1
  lf2

size

T
im

e 
[s

]Machine :
AMD Opteron Opteron 875

2,2 Ghz,
Compiler gcc, option –O2



Amortizing Parallel Arithmetic overhead:
example: find_if

 For some algorithms: 
  Wseq unknown prior to execution 
  Worst case work W is not precise enough: we may have W >> Wseq

 Example:  find_if  : returns the index of the first element that verifies a predicate.

P0 P1  P2 P3

Index of the matching element

 Parallel time= time of the last processor to complete: here, on 4 processors: T4 = 6   

 Sequential time is Tseq = 2  

24/52



 To adapt with provable performances (Wpar ~Wseq) : compute in parallel no more 
work thant the work performed by the sequential algorithm 

(Macro-loop [Danjean, Gillard, Guelton, Roch, Roche, PASCO’07]),
Amortized scheme similar to Floyd’s algorithm

n_cur elts                           n_cur / log(n_cur)  

25/52

 Example : find_if

B1 B2 B3

P0, P1, P2 P0, P1, P2 P0, P1, P2

Amortizing Parallel Arithmetic overhead:
example: find_if



 Example : find_if STL
 Comparison with find_if parallel MPTL [Baertschiger 06]

26/52

Machine :
AMD Opteron (16 cœurs);

Data: doubles;
Array size: 106;

Position element: 105; 

TimeSTL : 3,60 s;
Predicate time   36≈ μ

Speed-down ( speed-up < 1 )

Amortizing Parallel Arithmetic overhead:
example: find_if  [Daouda Traore 2009]



 Example : find_if STL
 Speed-up w.r.t. STL sequential tim and the position of the matching element. 

#processors

Sp
ee

d-
up

27/52

Machine :
AMD Opteron (16 cœurs);

Data: doubles;
Size Array: 106;

Predicate time≈ 36μ

Amortizing Parallel Arithmetic overhead:
example: find_if  [Daouda Traore 2009]
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Overview
 
• Introduction : interactive computation, parallelism and processor oblivious

• Overhead of parallelism : parallel prefix

• Machine model and work-stealing

• Scheme 1: Extended work-stealing : concurently sequential and parallel
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3. Work-first principle and adaptability 

• Work-first principle: -implicit- dynamic choice between two executions :
• a sequential “depth-first” execution of the parallel algorithm  (local, default) ;
• a parallel “breadth-first” one.

•  Choice is performed at runtime, depending on resource idleness: 
rare event if Depth is small to Work

• WS adapts parallelism to processors with practical provable performances
• Processors with changing speeds / load (data, user processes, system, users, 
• Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, …])

• The choice is justified only when the sequential execution of the parallel 
algorithm is an efficient sequential algorithm:

• Parallel Divide&Conquer computations 

• …

-> But, this may not be general in practice   
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• General approach: to mix both 
• a sequential algorithm with optimal work W1 

• and a fine grain parallel algorithm with minimal depth D = critical time W∞

• Folk technique : parallel, than sequential 
• Parallel algorithm until a certain « grain »; then use the sequential one
• Drawback : W∞ increases ;o) …and, also, the number of steals

• Work-preserving speed-up technique [Bini-Pan94] sequential, then parallel Cascading [Jaja92] : 
Careful interplay of both algorithms to build one with both 

    W∞ small   and   W1 = O( Wseq ) 

• Use the work-optimal sequential algorithm to reduce the size 
• Then use the time-optimal parallel algorithm to decrease the time 
• Drawback : sequential at coarse grain and parallel at fine grain ;o(

How to get both optimal work W1 and D=W∞ small?
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Extended work-stealing: concurrently sequential and parallel

SeqCompute

Extract_par
LastPartComputation

SeqCompute

Based on the work-stealing and the Work-first principle :   
Instead of optimizing the sequential execution of the best parallel algorithm, 

let optimize the parallel execution of the best sequential algorithm 

Execute always a sequential algorithm to reduce parallelism overhead
⇒ parallel algorithm is used only if a processor becomes idle (ie workstealing)   [Roch&al2005,…] 

to extract parallelism from the remaining work a sequential computation 

Assumption : two concurrent algorithms that are complementary: 
• - one sequential : SeqCompute   (always performed, the priority)

- the other parallel, fine grain : LastPartComputation  (often not performed)
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Based on the work-stealing and the Work-first principle :   
Instead of optimizing the sequential execution of the best parallel algorithm, 

let optimize the parallel execution of the best sequential algorithm 

Execute always a sequential algorithm to reduce parallelism overhead
⇒ parallel algorithm is used only if a processor becomes idle (ie workstealing)   [Roch&al2005,…] 

to extract parallelism from the remaining work a sequential computation 

Assumption : two concurrent algorithms that are complementary: 
• - one sequential : SeqCompute   (always performed, the priority)

- the other parallel, fine grain : LastPartComputation  (often not performed)

SeqCompute

SeqCompute

preempt
SeqCompute_main

SeqCompute

merge/jump

complete

Seq

Note:

•  merge and jump operations to ensure non-idleness of the victim

•  Once SeqCompute_main completes, it becomes a work-stealer 

Extended work-stealing : concurrently sequential and parallel



39

Overview
 
• Introduction : interactive computation, parallelism and processor oblivious

• Overhead of parallelism : parallel prefix

• Machine model and work-stealing

• Scheme 1: Extended work-stealing : concurently sequential and parallel

• Scheme 2: Amortizing the overhead of synchronization (Nano-loop)
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Extended work-stealing and granularity

 Scheme of the sequential process : nanoloop
While (not completed(Wrem) ) and (next_operation hasn’t been stolen) 

{

    atomic { extract_next k operations ; Wrem -= k  ; }

    process the k operations extracted ;

}

 Processor-oblivious algorithm 
 Whatever p is, it performs O( p.D ) preemption operations    (« continuation faults »)

->    D should be as small as possible to maximize both speed-up and locality

 If no steal occurs during a (sequential) computation, then its arithmetic  work is optimal 
to the one Wopt of the sequential algorithm   (no spawn/fork/copy ) 

->    W should be as close as possible to Wopt 

 Choosing k = Depth(Wrem ) does not increase the depth of the parallel algorithm 
while ensuring O(W / D ) atomic operations :
 since D > log2 Wrem ,   then if p = 1:   W ~ Wopt   

 Implementation : atomicity in nano-loop based without lock
 Efficient mutual exclusion between sequential process and parallel work-stealer

  Self-adaptive granularity
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Anytime Algorithm:
• Can be stopped at any time (with a result)
• Result quality improves as more time is allocated
 

In  Computer graphics, anytime algorithms are common: 
Level of Detail  algorithms (time budget, triangle budget, etc…)
Example: Progressive texture loading, triangle decimation (Google Earth)

Anytime processor-oblivious algorithm: 
On p processors with average speed Πave, it outputs in a fixed time T 
 a result with the same quality than   
a sequential processor with speed Πave in time p.Πave. 

Example: Parallel Octree computation for 3D Modeling

Interactive application with time constraint
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3D Modeling : 
build a 3D model of a scene from a set of calibrated images

On-line 3D modeling for interactions: 3D modeling from 
multiple video streams (30 fps)  

Parallel 3D Modeling 

…

…



A classical recursive anytime 3D modeling algorithm.

Standard algorithms with time control:

At termination: quick test to decide all grey cubes time control

Octree Carving    [L. Soares 06]  

 

State of a cube:
- Grey: mixed => split
- Black: full      : stop
- White: empty : stop

Depth first 
+ iterative deepening

Width first 
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Well suited to work-stealing  
-Small critical path, while huge amount of work  (eg. D = 8, W = 164 000)
- non-predictable work, non predictable grain : 

For cache locality, each level is processed by a self-adaptive grain :
“sequential iterative” / ”parallel recursive split-half”

Octree needs to be “balanced” when stopping:
• Serially computes each level (with small overlap)
• Time deadline (30 ms) managed by signal protocol

Theorem: W.r.t the adaptive in time T on p procs., the sequential algorithm: 
- goes at most one level deeper :  | ds - dp | ≤ 1 ;
- computes at most :   ns ≤ np + O(log ns ) .

Width first parallel octree carving

Unbalanced Balanced 
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- 16 core Opteron machine, 64 images 
- Sequential: 269 ms, 16 Cores:  24 ms
- 8 cores: about 100 steals (167 000 grey cells)

 

Results  

8 cameras, levels 2 to 10 64 cameras, levels 2 to 7
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Overview
 
• Introduction : interactive computation, parallelism and processor oblivious

• Overhead of parallelism : parallel prefix

• Machine model and work-stealing

• Scheme 1: Extended work-stealing : concurently sequential and parallel

• Scheme 2: Amortizing the overhead of synchronization (Nano-loop)

• Scheme 3: Amortizing the overhead of parallelism (Macro-loop)
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Adaptive scheme :    extract_seq/nanoloop   //  extract_par
• ensures an optimal number of operation on 1 processor
• but no guarantee on the work performed on p processors

Eg (C++ STL):  find_if (first, last, predicate) 
locates the first element in [First, Last) verifying the predicate

This may be a drawback  (unneeded processor usage) :
• undesirable for a library code that may be used in a complex application,
   with many components 
• (or not fair with other users)
• increases the time of the application :

•any parallelism that may increase the execution time should be avoided   

Motivates the building of work-optimal parallel adaptive algorithm 
(processor oblivious)

4. Amortizing the arithmetic overhead 
of parallelism
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Similar to nano-loop for the sequential process :
• that balances the -atomic- local work by the depth of the remaindering one

Here, by amortizing the work induced by the extract_par operation,
ensuring this work to be small enough :
• Either w.r.t the -useful- work already performed
• Or with respect to the - useful - work yet to performed (if known)
•  or both.

Eg :  find_if (first, last, predicate) :
• only the work already performed is known (on-line)
• then prevent to assign more than α(Wdone) operations to work-stealers
• Choices for α( n ) :

• n/2   :   similar to Floyd’s iteration   (  approximation ratio = 2)
• n/log* n : to ensure   optimal usage of the work-stealers

4. Amortizing the arithmetic overhead 
of parallelism (cont’d)
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Results on find_if [S. Guelton]

N doubles : time predicate ~ 0.31 ms

With no amortization macroloop

With amortization macroloop
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Parallel algorithm based on :

- compute-seq /  extract-par scheme

- nano-loop for compute-seq

- macro-loop for extract-par

5. Putting things together
processor-oblivious prefix computation
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•  Prefix problem : 
• input : a0, a1, …, an 
• output :  π1, …, πn   with 

  

  Parallelism induces overhead :
    e.g. Parallel prefix on fixed architecture

 

•  Tight lower bound on p identical processors:
Optimal time Tp = 2n / (p+1)  
but performs  2.n.p/(p+1) ops

[Nicolau&al. 1996]

Parallel 
requires 
twice more 
operations
 than
sequential !!

 performs only n operations
• Sequential algorithm : 

• for (π[0] = a[0],  i = 1 ; i <= n;  i++ )  π[ i ] = π[ i – 1 ] * a [ i ] ;

Critical time = 2. log n 
but performs  2.n ops

[Ladner-
Fisher-81]

• Fine grain optimal parallel algorithm : 
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Lower bound(s) for the prefix

Prefix circuit of depth d 
                   ⇓ [Fitch80] 
   #operations > 2n - d
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Parallel

Sequential

P0

P1

P3

10

  
     π0  a1  a2  a3  a4  a5  a6 a7 a8 a9 a10 a11 a12

Work-
stealer 1

Main
Seq.

  

  Work-
stealer 2

S
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al
 r

eq
ue

st
 

π1

time

P-Oblivious Prefix on 3 proc.
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Parallel

Sequential
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P1
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P-Oblivious Prefix on 3 proc.
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Parallel
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Parallel

Sequential

P0

P1

P3

10

  
     π0 a1  a2   a3  a4 

Work-
stealer 1

Main
Seq.

  

  Work-
stealer 2

π1

a5 a6  a7    

2

 π2

α6

3

 π3

  βi=a9*…*ai
a9   a10  

αi=a5*…*ai

 π4

4

π5

5

 π8

π6

π9

 π11

6

π10

π7

 π12

7

Implicit critical path on the sequential process Tp = 7 Tp
*
 = 6

time

P-Oblivious Prefix on 3 proc.
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Analysis of the algorithm 

  

 Sketch of the proof :
Dynamic coupling of two algorithms that complete simultaneously:

 Sequential: (optimal) number of operations S on one processor

 Extract_par : work stealer perform X operations on other processors
- dynamic splitting always possible till finest grain BUT local sequential

• Critical path small ( eg : log X   with a   W= n / log* n  macroloop ) 
• Each non constant time task can potentially be splitted (variable speeds)

 Algorithmic scheme ensures Ts = Tp + O(log X)

=> enables to bound the whole number X of operations performed
and the overhead of parallelism = (s+X) - #ops_optimal

Lower bound

Execution time
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 Results 1/2 [D Traore]

Single-usercontext : processor-oblivious prefix  achieves near-optimal performance :
 - close to the lower bound both on 1 proc       and   on p processors 

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p processors :
 

Optimal off-line on p procs

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)
T

im
e 

(s
)

#processors

Pure sequential

Single user context
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Results 2/2

External charge
  (9-p external processes)

Off-line parallel algorithm for p processors

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)

T
im

e 
(s

)

#processors

Multi-user context  : 

Multi-user context  : 
Additional external charge: (9-p) additional external dummy processes are concurrently executed
 
Processor-oblivious prefix computation is always the fastest
         15%  benefit over a parallel algorithm for p processors with off-line schedule, 

[D Traore]
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Conclusion
 Fine grain parallelism enables efficient execution on a small number of 

processors
 Interest : portability ;  mutualization of code ; 
 Drawback : needs work-first principle  => algorithm design

 Efficiency of classical work stealing relies on work-first principle : 
 Implicitly defenerates a parallel algorithm into a sequential efficient ones ; 
 Assumes that parallel and sequential algorithms perform about the same amount of 

operations

  Processor Oblivious algorithms based on work-first principle
 Based on anytime extraction of parallelism from any sequential algorithm (may 

execute different amount of operations) ;
 Oblivious: near-optimal whatever the execution context is. 

 Generic scheme for stream computations :
  parallelism introduce a copy overhead from local buffers to the output

gzip / compression, MPEG-4 / H264 
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FlowVR (flowvr.sf.net)
• Dedicated to interactive applications
• Static Macro-dataflow 
• Parallel Code coupling 

Kaapi

   Thank you !

Kaapi (kaapi.gforge.inria.fr)
• Work stealing / work-first principle
• Dynamics Macro-dataflow :

partitioning (Metis, …)
• Fault Tolerance (add/del resources)

[E Boyer, B Raffin 2006]
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Back slides
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The Prefix race: 
sequential/parallel fixed/ adaptive

Race between 9 algorithms (44 processes) on 
an octo-SMPSMP

0 5 10 15 20 25

1

2

3

4

5

6

7

8

9

Execution time (seconds)

Série1

Adaptative 8 proc.

Parallel 8 proc.

Parallel 7 proc.

Parallel 6 proc.
Parallel 5 proc.

Parallel 4 proc.

Parallel 3 proc.

Parallel 2 proc.

Sequential

On each of the 10 executions, adaptive completes first
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                  Single user context
Adaptive  is equivalent to:

 - sequential on 1 proc 
 - optimal parallel-2 proc. on 2 processors
 - …
 - optimal parallel-8 proc. on 8 processors

External charge

Parallel

Adaptive

Parallel

Adaptive

Prefix of 10000 elements on a SMP 8 procs (IA64 / linux)

#processors
T

im
e 

(s
)

T
im

e 
(s

)

#processors

Multi-user context
Adaptive is the fastest

15%  benefit over a static grain algorithm
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With *  = double sum ( r[i]=r[i-1] + x[i] )

Single user Processors with variable speeds

Remark  for n=4.096.000 doubles  :
- “pure” sequential : 0,20 s
- minimal ”grain” = 100 doubles : 0.26s on 1 proc

and 0.175 on 2 procs (close to lower bound) 

Finest “grain” limited to 1 page = 16384 octets = 2048 double 
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The Moais Group

Interactivity

Coupling

Scheduling

Adaptive 
Algorithms

Execution 
Control
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Moais Platforms
 Icluster 2 :

- 110 dual Itanium bi-processors with Myrinet network

 GrImage (“Grappe” and Image): 
- Camera Network 
- 54 processors (dual processor cluster)
- Dual gigabits network
- 16 projectors display wall

 Grids: 
- Regional: Ciment
- National: Grid5000 

• Dedicated to CS experiments

 SMPs: 
- 8-way Itanium (Bull novascale)
- 8-way dual-core Opteron + 2 GPUs

 MPSoCs
- Collaborations with ST Microelectronics on STB7100 
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Parallel Interactive App.
 Human in the loop
 Parallel machines (cluster) to enable large interactive applications
 Two main performance criteria:

- Frequency (refresh rate)
• Visualization: 30-60 Hz
• Haptic : 1000 Hz

- Latency (makespan for one iteration)
• Object handling: 75 ms

 A classical programming approach: data-flow model
- Application = static graph 

• Edges: FIFO connections for data transfert
• Vertices: tasks consuming and producing data
• Source vertices: sample input signal (cameras)
• Sink vertices: output signal (projector)

 One challenge:
Good mapping and scheduling of tasks on processors
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