
Self-optimizing Routing in MANETs with
Multi-class Flows

Pierre Coucheney, Bruno Gaujal and Corinne Touati
INRIA Rhône-Alpes and LIG, MESCAL project, Grenoble France,

{pierre.coucheney, bruno.gaujal, corinne.touati}@inria.fr

Abstract—In this paper we show how game theory and Gibbs
sampling techniques can be used to design a self-optimizing
algorithm for minimizing end-to-end delays for all flows in a
multi-class mobile ad hoc network (MANET).

This is an improvement over the famed Ad-Hoc On-demand
Distance Vector (AODV) protocol, that computes the routes
with minimal number of hops for each flow in a multi-flow
ad-hoc network. Here, the load of each flow is taken into
account to choose the best route (in terms of delays) among
a fixed number of routes. The algorithm can be implemented in
a fully distributed and asynchronous way and is guaranteed
to converge to the global optimal configuration. Numerous
numerical experiments show that the gain over AODV, computed
over a large number of networks, is quite substantial.

I. INTRODUCTION

Mobile ad hoc networks (MANET) are collection of geo-
graphically distributed nodes that can be self-configured to
form a network without predetermined topology (see [1]).
Significant research has been directed towards implementing
application dependent Quality of Service (QoS) requirements
and has addressed power control, coding, adaptive techniques
at the link layer, scheduling in the Medium Access Control
(MAC) layer, and energy and delay constrained routing in
the network layer. In MANETs, it is important to find and
maintain correct routes to the destination in a changing topol-
ogy resulting from node failure or mobility. Different routing
protocols use one or more metrics to determine optimal routes.
The most widely used routing protocols are the Ad-hoc On-
demand Distance Vector (AODV [2]), the Dynamic Source
Routing (DSR), the Destination Sequenced Distance Vec-
tor (DSDV) and the Temporally-Ordered Routing Algorithm
(TORA). All these routing protocols use the shortest-hop
metric to choose the best route. Consequently, they do not
take into account‘ the load on each link. Particularly there
may be competition between users to access to the best path
in term of delay. It is often noticed that, without coordination
between users, this may lead to inefficient use of the network
resources by increasing the congestion of the network.

Here, we consider a wireless ad hoc network in which
several users send data from sources to destinations of the
network. Users may belong to several classes of traffic1,
depending on their critically. The delay experienced by a user
on a path is the sum of the delay on each link of this path. The

The authors would like to thank Prof. Jie Li and Khoriba Ghada, University
of Tsukuba, Japan for insightful discussions.

This work was performed as part of the INRIA - Alcatel Lucent Bell Labs
common Laboratory.

1For example, there are four priority classes in UMTS: two real-time (voice
and streaming) and two non-real time (interactive and background) [3].

delay on a link is a function of the load on this link, i.e. the
arrival rate at this link. The delay also depends on the priority
of the stream. For example, users with delay constraints may
be consider as higher priority flows than users without delay
constraint (for example VoIP vs FTP streams). So, each user
may select one path to connect the source to the destination in
a set of available paths (at the initialization of AODV protocol,
a set of paths is stored in memory). As an extension of the
protocol AODV that selects the shortest path in term hop, we
aim at associate each user to one of her set of path in order
to minimize the overall delay in the network.

The main contribution of this paper is to provide a fully
distributed algorithm, based on the protocol AODV, for which
we can analytically prove that it reaches an optimal routing.
The algorithm, similarly to the original AODV is based on
the current state of the system and reacts to change in
the topology or the set of active connections. We provide
extensive simulations of the algorithm in several scenarios.
Also, we propose a simple heuristic of this algorithm that
achieve good performances, and that is more reactive to the
dynamism of the system than the optimal algorithm. The
theoretical validation of the algorithm is based on three fields:
game theory, Gibbs sampling and distributed algorithms.

a) Game theory: Our system can be seen as a multi-
commodity (several source destination) weighted (each user
has a specific rate) congestion game. Therefore, there is no
guarantee of existence of a pure Nash equilibrium, i.e. an
association such that no user has incentive to change her route.
As a consequence, selfish dynamics such that best response
dynamics may not converge, hence resulting in perpetual
change of route. The first contribution of this paper is to
provide a pricing mechanism, based on measurements on each
link, that transforms this game into a potential game [4], such
that the potential function is the global delay, i.e. the function
to maximize. The benefit is that the local behavior of users is
aggregated in this real valued function, called the potential.

b) Gibbs sampler: There exists classical dynamics used
in game theory (e.g. best response, replicator dynamics) that
may converge to equilibria of potential games (i.e. local
optimizers). But in our general setting, there is no guarantee
of convergence speed of these dynamics [5], and more impor-
tantly, of global optimality. On the other hand, there exists an
algorithm based on Gibbs samplers and on a specific cooling
schedule, that is proved, under some conditions, to reach a
globally optimal point [6], [7].

c) Distributed computation: We show that both this
algorithm and the pricing mechanism can be implemented in

a fully distributed and asynchronous way, where communi-
cation is only possible between neighbors. Furthermore, the
algorithm takes advantage of the message passing protocol at
the MAC layer so that its impact over the normal behavior of
the ad-hoc network is almost negligible.

II. MODEL

A. Optimization Problem

We consider an ad-hoc network represented by an oriented
graph, whose nodes are the machines that transmit or receive
packet flows. We denote by N the set of nodes. There is an
arc between two nodes if the corresponding machines can
communicate. Since we consider wireless ad-hoc network,
the communication is not necessarily symmetric (reception
capacity depends on antenna quality while emission range
depends essentially on power and battery capacity), hence
the graph may not have arcs in both directions for any two
nodes. On this network, a set of users (also called flows in
the following) U seek to transmit some flow of packets from
a source node to a destination node, and we assume that the
flow of packets has a stationary rate. Each user belongs to
a priority class (from 1 to C) and the network associated a
weight to each class. The weight can be seen as a relative
measure of the importance of users of a given class. Of course,
the higher the priority, the larger the weight. Each user u is
therefore equipped with a weight wu depending on its class.

For each user u ∈ U , we fix Πu, a set of simple paths
that correspond to the routes that user u can select. A path
is a sequence of machines that connect the source to the
destination. Then, we denote by su ∈ Πu the current choice
of user u. s = (su)u∈U is called an association of each user
to a path, and S is the set of all possible associations.

Let `n be the state of node n: it is a binary vector (`un)u∈U
such that `un = 1 if user u uses the node n, i.e. n ∈ su.
Finally, the expected delay in node n for packets from user
u is denoted dun(`n) and the delay of the whole path p ∈ Πu

for user u is Du
p (s). Here we have the following features:

• The delay of a flow over a given route only comes from
delays on nodes (the transmission delays from one node
to the next are neglected).

• The delays are additive on paths, i.e.
Du
p (s) =

∑
n∈p

dun(`n).

• The delays over one node are not the same for all users:
one may have dun(`n) 6= dvn(`n), for any two users u
and v using node n as long as users u and v belong to
different priority classes. If user u has priority over user
v, her delay on node n may be shorter. Fixed preemptive
priorities of flows are used in the numerical experiments
given in Section V.

The problem is, at each connection arrival or departure, to
find an association of each user to one of its available paths
in order to minimize the global delay. More formally, we seek
to solve the following problem:

min
s∈S

F (s), (1)

where F (s) def=
∑
u∈U

wuD
u
su

(s) =
∑
u∈U

∑
n∈su

wud
u
n(`n).

B. Potential Games

Solving Problem (1) can be done by exploring all the
the possible associations, but this centralized brute force
approach has a high combinatorial complexity that make it
unpractical for large systems. Another alternative is to exploit
the properties of the problem, if any, like convexity [8].
However, these solutions also need a centralized controller.
Furthermore, convexity does not hold here because of inter-
ferences. Therefore, it is not suitable in ad-hoc networks.

The approach taken here, is based on a self-optimizing
principle. Each user finds the solution for an individual cost,
instead of the global cost. Here, minimizing the individual
delays will not lead to a global optimization algorithm because
of dependencies between individual delays.

However, in some cases, individual optimizations provide
a global optimal configuration. This is typically the case with
potential games, which are games such that the individual
difference of delays by unilaterally changing one path is
exactly the difference of the global cost. More formally, we
say that the game (U , (Πu)u, D) is an exact potential game
(called potential game in the sequel) if there exists a potential
function G (not necessarily unique) such that:

∀u ∈ U ,∀p ∈ Πu, D
u
su

(s)−Du
su

(p, s−u) = G(s)−G(p, s−u),
(2)

where s−u is the classical notation that refers to the choice
of all users except u in the association s.

Potential games were first defined in the famous paper [4],
whereas the potential argument had been previously used in
[9] to show the existence of a pure Nash equilibrium in con-
gestion games. A classical result says that, in potential games,
the local minimizers of the potential are Nash equilibriums
of the game. Hence the existence of a potential ensures the
existence of a Nash equilibrium, which is not true in general
(if we only consider pure strategies for the game). Here the
natural game (using the delays as costs) is not a potental game
and a Nash equilibrium may not exist.

In the following, we will show how the function to optimize
in Problem (1) can be transformed into a potential function
of a new game. This is done by introducing shadow prices
(called repercussion delays here, because they are based on
the impact of user u over the delays of others). Consequently,
if each user minimizes her repercussion delay, then the global
cost function F (sum of the actual delays) will be minimized.

Definition 1: The repercussion delay on each node is:

δun(`n) def= wud
u
n(`n)−

∑
v 6=u:
sv3n

(wvdvn(`n−eun)−wvdvn(`n)). (3)

As before, the repercussion delay for u on path p is
∆u
p(s) =

∑
n∈p

δun(`n).

Proposition 1: The game with repercussion delays (3), is
a potential game, whose potential is F (.) defined in Prob-
lem (1).

Proof: According to the definition given by Equa-
tion (2), we just have to show that ∀u ∈ U ,∀s−u,∀p, q ∈
Πu,∆u

p(p, s−u)−∆u
q (q, s−u) = F (p, s−u)− F (q, s−u). For

this, let us rewrite F (s) =
∑
n∈A

∑
u: su3n

wud
u
n(`n). Then,

F (p, s−u)− F (q, s−u)

=
∑
n∈p\q

wud
u
n(`n)+

∑
n∈p\q

∑
v 6=u:
sv3n

(wvdvn(`n)−wvdvn(`n−eun))

−
∑
n∈q\p

wudun(`n)−
∑
n∈q\p

∑
v 6=u:
sv3n

(wvdvn(`n− eun)−wvdvn(`n))

=
∑
n∈p\q

δun(`n)−
∑
n∈q\p

δun(`n)

= ∆u
p(p, s−u)−∆u

q (q, s−u).

As a consequence of the proposition, the best response
algorithm as defined in Algorithm 1 will converge to a locally
optimal association that is a Nash equilibrium of the game,
i.e. an association such that no user has incentive to change.
Conversely, every Nash equilibrium is a local minimum for
the potential and can be obtained using the best response
algorithm. The reason is that, according to this dynamic, the
potential is strictly increasing while a user has incentive to
change her path. As the number of associations is finite, the
best response algorithm will reach such an association in finite
time.

Algorithm 1 Best response algorithm.
while a user has incentive to change do

Choose randomly a user u ∈ U
forall path p ∈ Πu do

compute the value of the repercussion delay ∆u
p(s)

Choose p that minimizes ∆u
p(s)

The main advantage of best response algorithm is that it can
be implemented in a fully distributed way and that it usually
converges extremely fast. But its main drawback is that it may
not converge to a globally optimal association. In many cases,
however, one can bound the ratio between the worst Nash
equilibrium (a possible association found by best response)
and the global optimal. This ratio is known as the price of
anarchy [10] when the function to optimize is the social cost.
Here, we are looking at the ratio between the optimal social
cost for the delays (the function we seek to optimize) and
the cost of the worst Nash equilibrium for the game with
repercussion delays 2. Since, it does not exactly correspond
to the concept of the price of anarchy, the methods to bound
the value of the price of anarchy may be adapted in our case.
Some bounds on the price of anarchy are known in the case of
non-atomic games (where each user has a negligible impact
on the system), and for polynomial cost function [11]. For

2Note that the best Nash equilibrium is the optimal association, due to the
potential property.

the case of atomic games (as it is the case here), or even
a mix between atomic and non-atomic games, some recent
works [12] provide bounds on the price of anarchy. However
these results do not apply here since the derivative of the delay
function is not bounded (due to the limited capacity of each
link). Here, a Nash equilibrium can be arbitrarily far from the
optimal cost. Therefore the best response approach may reach
a local minimum arbitrarily far from the optimal association.
This is illustrated in the following example.

Consider the ad-hoc network given in Figure 1. Assume
that there are 2 users in the same priority class sending some
flow from source A to destination B, and from source C to
destination D respectively, at the same rate 1 kb/s. Denote
by u and v the users. We define a path as the sequence
of nodes used by the path. Here, Πu = {(U, V), (X,Y)}
and Πv = {(U, Y), (X,V)}. As in the Section V, we as-
sume the delay on each node to be given by the mean
delay of a M/M/1 queue. The service rates are given by
2 + 2ε, 2 + ε, 3, 2 + ε kb/s for, respectively, nodes X,Y, U, V .
The matrix of repercussion delays is given in Table I. The user
1 (resp. 2) chooses the row (resp. column), and her delay is
given by the first (resp. second) component of the pair. So, one
can check that there may be 2 pure Nash equilibria in the game
with repercussion utilities namely NE1 = ((U, V), (U, Y))
and NE2 = ((XY), (XV)). Then, the global delay (1) for
these equilibrium is F (NE1) = 4 + 2

1+ε s and F (NE2) =
2
ε + 2

1+ε s. Hence F (NE2)
F (NE1) →∞ as ε→ 0. Consequently, if

the initial association is chosen uniformly between the four
possibilities, and if the first user to change its path is also
chosen uniformly, then the probability that the best response
algorithm selects an equilibrium that is arbitrarily worse than
the optimal one, is 0.5.

C

V

U

A

X

Y

B

D

Figure 1: Ad-hoc network with unbounded performance ratio
between the worst equilibrium (in the game with repercus-
sions) and the best equilibrium for the global cost.

However, in the following section, we present an algorithm
that is proved to asymptotically converges to a globally
optimal association.

III. OPTIMAL ASSOCIATION USING GIBBS SAMPLING

In this section, we describe an optimal algorithm in discrete
time that associate each user to a path, in order to minimize

Table I: Matrix of repercussion delays
(U , Y) (X , V)

(U, V)
(

3.5 +
1

1 + ε
, 3.5 +

1
1 + ε

) (
0.5− 1

1 + ε
+

4
ε

,
1

1 + 2ε
− 1

1 + ε
+

4
ε

)
(X,Y)

(1
1 + 2ε

− 1
1 + ε

+
4
ε

, 0.5− 1
1 + ε

+
4
ε

) (1
1 + ε

− 1
1 + 2ε

+
2
ε

,
1

1 + ε
− 1

1 + 2ε
+

2
ε

)

the global delay. This algorithm is based on a Gibbs sampling
technique.

Algorithm 2 Optimal association algorithm using Gibbs
sampling
forall time epoch t do

Choose randomly a user u ∈ U ;
forall path p ∈ Πu do

Compute the repercussion delay ∆u
p(s);

Set the temperature to T := − ln(t);
rup := exp(∆u

p(s)T);

Pick path p ∈ Πu with probability
rup∑

q∈Πu
ruq

;

Theorem 1: The association computed by Algorithm 2
asymptotically converges to a global optimal association.

Proof: Let S(t) be the association of users to path at
the tth iteration of the algorithm. When the temperature T
is fixed, one can see that S(t) is a homogeneous Markovian
process whose transition probability (that does not depend
on n) is P[S(n + 1) = (p, s−u)|S(n) = (su, s−u)] =
1
|U|

exp(∆u
p(s)T)∑

q∈Πu
exp(∆u

q (s)T)
=

1
|U|

exp(F (p, s−u))∑
q∈Πu

exp(F (q, s−u))
, by

the potential property. It follows from a direct computation

that the distribution that has weight
exp(F (s))∑
s′ exp(F (s′))

at as-

sociation s is a stationary distribution of the Markov chain.
Since the chain is irreducible and aperiodic, the probability to
be in association s is asymptotically given by the stationary
distribution. It follows that lim

T→0
lim
t→∞

S(t) ∈ argminF (s).
Inverting the limits in the previous equation is valid when

the temperature T decreases as the inverse of the logarithm
of time t. In this case, the chain is non homogeneous, but
using Theorem 8.1 in [13] one can show that the chain
is strongly ergodic. Therefore, it converges for every initial
distribution to the stationary distribution. The only possible
limiting distribution is uniform on the associations of minimal
global delay, and 0 elsewhere.

When applying the Gibbs sampling algorithm to the exam-
ple given in Figure 1, with ε = 0.1, one gets the behavior
given in Figure 2. The Gibbs sampling algorithms visits the
bad local minimum a few times when the temperature is still
high (and leaves it quite fast). When the temperature cools, the
bad equilibrium is never visited again, so that the probability
that the association computed by the Gibbs sampler is the bad
Nash equilibrium goes to 0 very fast (compared with 1/2 for
best response).

A question that naturally arises is whether this algorithm
reaches optimal associations in more general settings. In [14],
the authors show that the algorithm does not extend to more

Global Delay

Time
 0

 50

 100

 150

 200

 250

 300

 400

 450

 0 1000 2000 3000 4000 5000 6000 7000 8000

 350

Figure 2: Convergence of the Gibbs sampling algorithm to
the optimal association in the example.

general potential games (that are not exact potential games).
Also, and more interestingly in our case, it does not extend
to other route update processes, such as synchronous schemes
(see example 4 of their paper).

IV. NETWORK IMPLEMENTATION

The goal of this section is to show how this algorithm can
be implemented in a fully distributed and asynchronous way.

First note that the algorithm assumes that repercussions can
be computed by each node. Since the repercussions for flow
u are sums of delays without flow u, they can be difficult
to obtain. An option is to cut flow u as soon as it is chosen
by the algorithm, measure the delays on each flow and then
restart flow u on its new route. The main assumption here is
that the time scale of the algorithm is slower than the one
needed to to get a good estimate of the average delays of
flows. Another needed assumption is that time is universal
and clocks in all nodes are synchronized.This is essential to
compute the delays from the time stamp on the packets.

Under these assumptions, Algorithm 2 can be transformed
into a program implemented in real networks in a distributed
way, where one part is executed by the nodes composing the
network (computing the repercussion delays) and one part by
every user, or more precisely by the source of each flow (run
the Gibbs sampler).

Each packet from a given flow is stamped by the following
list: its source, its route (sequence of nodes) and its release
time. Packets from a given user follow their current route
through the hops composing it. Messages are sent back to
the source by each hop (using an arbitrary way back to the
source). These very small backward messages are assumed to
have a negligible impact on the network performance.

A. Network program

The role of the nodes composing the network is to compute
the repercussion delays (3) and to transmit them to the users.
This can be done in a distributed way. Since the algorithm is
fully asynchronous, each link can compute the repercussion
of the user u by the following infinitely repeated sequence of
actions.

1) Measure the delays of all packets from all users.
2) Once user u stops using the node, measure the delays

of the packets from all users without user u to get the
repercussion prices.

3) Compute the repercussion delay given in Eq. (4)-(5).
4) Send the repercussion delay to the source of user u (this

is often done by attaching this message to the next packet
traveling to the source).

B. Users program

The users execute their part of the algorithm in a completely
distributed and asynchronous way.

Here also, the algorithm is run as an infinite loop by each
user in an asynchronous way. A method to do this is to
introduce a random step size for each user with an exponential
distribution with mean equal to RTT, as done in [15].

1) At the end of a time-step for user u,
2) The user stops sending packets on its current route.
3) It receives the messages from all the nodes on its current

route. It sums the repercussion delays (note that the user
has no way to know the real delay on the nodes). This is
done over a time sliding window large enough so that the
delay estimation is close enough to the expected delay.

4) The user runs the Gibbs sampler to choose a new route
to transmit its packets

5) The user chooses the next time-step with an exponential
distribution.

C. Measures based on loads

To avoid the complicated procedure used in the previous
algorithm where users have to stop sending packets and nodes
have to first measure the delays with and then without flow
u, before sending the information to the source of u, it is
possible to base the algorithm on delay estimations rather
than on measurements.

Nodes measure the throughput for each flow u (number
of packets arriving per second) instead of the delays of each
packet of u. The average delay is estimated using formulas
(4)-(5). Similarly, the repercussion of flow u is estimated
without stopping flow u by using once more Formulas (4)-(5)
in which flow u is removed.

This approach has several advantages compared with the
true measures on delays. First it does not require that nodes
have access to universal time (to measure delays). Second, the
repercussions can be computed without stopping the flow and
finally it does not require the time scales of the algorithm and
of the delay estimation are of different orders of magnitude.

The main drawback of this new approach is that delays are
only indirectly estimated rather than measured. Yet, since the
number of route is limited for each flow, the choice of the

best route does not require an accurate computation of the
delay when the difference is large enough. In case both routes
have similar delays, a precise computation may be needed to
discriminate between both routes. However a bad choice will
not deteriorate the global performance by much in that case.

V. NUMERICAL RESULTS

In this section, we run several a large set of simulation to
evaluate our algorithm, and compare it to the performance of
AODV. We have used the Maple software to implement our
algorithm.

Let us now describe the experimental road map and how
the different parameters used in the simulations have been
chosen (the units of the value are not specified).

Network Topology: The graph of the network is gen-
erated at random over 20 vertices: any two vertices are
connected with a probability p and as long as the generated
graph is not strongly connected, it is rejected . All the service
rate of the arc are equal to 10.

Users: The number of users is 25 (defined as a pair
of vertices). A user is defined as a flow from a source to a
destination, and two different users may have the same pair
source destination (but the application is not necessarily the
same in both cases). The source and the destination of each
flow are uniformly sampled among the set of nodes. Each
user also has a level of priority and a rate. We only consider
two levels of priority. A user is of priority 1 (with delay
constraints) with probability 0.5 and has a flow rate λ, and of
priority 2 (without delay constraints) otherwise, with a flow
rate 5λ.

Delays: The delay is modeled by the mean delay of a
packet in a M/M/1 queue with 2 classes of priorities, in a
preemptive case (a packet in service will interrupt its service
when a customer of a higher priority class arrives).

Denote by λ1 and λ2 the arrival rate of each priority flow,
and assume that these flows are independent. Denote by µ
the service rate of the node. Then the mean delays d1 and
d2 for the packets of highest priority and lower priority are,
respectively

d1 =
λ1

µ− λ1
, (4)

and d2 =
1
λ2

(
λ2

µ− λ
− λ2

1

µ− λ1

)
, (5)

where λ = λ1 + λ2. Indeed, the nonpreemptive hypothesis
give the mean waiting time for priority class 1. By Little’s
law, we have Ni = λidi, where Ni is the mean number of
packets of priority class i in the queue. As the arrival flows
are independent, the global flow (independently of the priority
class) is Poisson, then the mean sojourn time in the system is
d = λ

µ−λ . We can apply the Little law to the global process,
i.e. N = λd. Finally, d2 = 1

λ2
N2 = 1

λ2
(N −N1). This gives

the result. Note that this computation can be extended easily
for an arbitrary number of priority classes.

Set of paths: The set of paths for each user is chosen to
be of cardinality less than 4. The first path is the one given
by the actual AODV protocol, i.e. the one that minimizes
the number of hops from the source to the destination. The

AODV protocol computes this path in a distributed fashion.
The second path is given by AODV over a modified graph:
the first arc of the previous path is removed3. The third path
is obtained by removing the first arcs of the both previous
paths. Similar for the fourth path.

Time

Global Delay

 10

 12

 14

 18

 20

 22

 24

 26

 1 50 2500

 16

Figure 3: Convergence of a sample trajectory of the global
delay, with the optimal Gibbs sampling algorithm.

Figure 3 displays a trajectory of the Gibbs sampling al-
gorithm over one example, randomly chosen according to
the procedure detailed above. Small jumps correspond to the
occasional visits to weak associations, however, the global
behavior is a fast convergence to the best association.

Global Delay

Number of

 0

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8

 10

λ

paths ∈ {1, 2, 3, 4}

Figure 4: Global delay as a function of the total arrival rate in
the network, for a fixed topology, with 1, 2, 3 and 4 available
paths.

Figure 4 displays the gain that can be obtained by adding
one, two or three alternative routes to the AODV route. As the
input rate of all flows grows (vertical axis), the gain increases
when one route is added. While adding one route is very
beneficial, the addition of a second route brings very little
gain and a third alternative route is useless.

Figure 5 shows the number of steps needed for the Gibbs
sampler to reach an association whose delay is less than 1%
larger than the optimal association. Less than 50 iterations
are sufficient in most cases, confirming the applicability of the
technique in real ad-hoc systems. Furthermore, the distribution
fits a Poisson distribution with parameter λ = 18.76 rather
well.

3if no path connects the source to the destination in the modified graph,
AODV does not return any additionnal path

Time
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 10 20 30 40 50 60

Figure 5: Distribution of the maximal number of iteration per
user to reach an association with a delay less than 1% larger
than the optimal one.

VI. CONCLUSION

This paper shows that performance of Ad-hoc networks
can get substantial improvements by replacing AODV routes
for each flow by a choice between a small number of
alternatives and pick the best among them. This choice can
be based on a Gibbs sampling algorithm run by every flow
independently and is guaranteed to convergence to a social
optimal configuration.

REFERENCES

[1] K. Ghada, J. Li, and Y. Ji, “Cross-layer approach for energy efficient
routing in wanets,” in IEEE MASS, 2009.

[2] I. D. Chakeres and E. M. Belding-Royer, “Aodv routing protocol imple-
mentation design,” in Proceedings of the 24th International Conference
on Distributed Computing Systems, 2004.

[3] H. Kaaren, A. Ahtiainen, L. Laitinen, S. Naghian, and V. Niemi, UMTS
networks: architecture, mobility, and services. Wiley, 2005.

[4] D. Monderer and L. S. Shapley, “Potential games,” Games and Eco-
nomic Behavior, vol. 14, pp. 124–143, 1996.

[5] B. Vocking, “Congestion games: Optimization in competition,” in Pro-
ceedings of the 2nd Algorithms and Complexity in Durham Workshop,
2006.

[6] B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, D. Papagian-
naki, and C. Diot, “Measurement-based self organization of interfering
802.11 wireless access networks,” in IEEE Infocom, 2007.

[7] B. Hajek, “Cooling schedules for optimal annealing,” MATHEMATICS
OF OPERATIONS RESEARCH, vol. 13, pp. 311–329, 1988.

[8] J. Galtier and A. Laugier, “Flow on data network and a positive
semidefinite representable delay function,” Journal of Interconnection
Networks, vol. 8, pp. 29–43, 2007.

[9] R. W. Rosenthal, “A class of games possessing pure-strategy Nash
equilibria,” Int. J. Game Theory, vol. 2, pp. 65–67, 1973.

[10] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,” in Proc.
of STACS, 1998.

[11] T. Roughgarden and E. Tardos, “Bounding the inefficiency of equilibria
in nonatomic congestion games,” GAMES AND ECONOMIC BEHAV-
IOR, vol. 47, pp. 389–403, 2004.

[12] R. Cominetti, J. R. Correa, and N. E. Stier-Moses, “The impact of
oligopolistic competition in networks,” OPERATIONS RESEARCH,
vol. 57, pp. 1421–1437, 2009.

[13] P. Bremaud, Markov Chains, Gibbs Fields, Monte Carlo Simulation,
and Queues. Springer, 1999.

[14] C. Alos-Ferrer and N. Netzer, “The logit-response dynamics,” Thur-
gauer Wirtschaftsinstitut, Universitat Konstanz, Tech. Rep., 2008.

[15] C. S. Chen and F. Baccelli, “Self-optimization in mobile cellular
networks: power control and user association,” IEEE International
Conference on Communications, pp. 1–6, 2010.

