
Towards a Component-based Observation of
MPSoC

Carlos Prada-Rojas, Vania Marangozova-Martin,
Kiril Georgiev∗, Jean-François Méhaut
Laboratoire d�’Informatique de Grenoble

51, Av. J. Kuntzmann, 38330 Montbonnot, France
Email: rstName.lastName@imag.fr

Miguel Santana
STMicroelectronics

850, rue Jean Monnet, 38921 Crolles Cedex, France
Email: Miguel.Santana@st.com

Abstract�—Motivated by the increasing heterogeneity and com-
plexity of MPSoC systems, we propose a component-based
generic approach for MPSoC observation. We show that com-
ponents help in observing all software levels from system to
application. We present the EMBera prototype and relate our
experience in implementing it on two different platforms: a
Linux-based 16-core SMP machine and a 5-core embedded
system developed by STMicroelectronics.

Index Terms�—MPSoC; observation; component; parallel pro-
gramming; NUMA.

I. INTRODUCTION

The design of multi-processor systems-on-chip (MPSoC)
is a notoriously complex issue[1]. Manufacturers have to
integrate new hardware technologies, to develop new system
software and to provide new sophisticated functions in a very
short time to market.

A typical MPSoC commercialization involves the porting
of system software to the new architecture, the production
of dedicated development tools and the platform-specic im-
plementation of MPSoC applications. This platform-dedicated
process is however not adapted to future MPSoC which follow
current trends in processor development and will integrate
dozens and even hundreds of computing cores in various
hardware architectures.

To face the challenge of parallel multi-core architectures,
MPSoC need new programming models and development
tools. To ensure rapid software development and efcient
software tuning, MPSoC need new solutions for debugging
and performances evaluation both of which are to be based on
well-suited MPSoC observation.

Current techniques for MPSoC observation consist in gath-
ering execution traces mostly from hardware and the operating
system. Because these solutions are closely related to the
underlying platform, they offer a poor extensibility to new
architectures and programming strategies. In order to over-
come the lack of extensibility, we propose to use software
components.

Indeed, software components have proven to be a good

solution for reusing and organizing application code [2]. They
are largely used in the software engineering domain and have
been accepted in the distributed systems area [3][4]. The
MPSoC domain has started using components but mostly in
application development [5]. Using components for observa-
tion purposes will enable the isolation of low-level system
concerns from application level issues. This separation of
concerns may be used for observation of the application in
a more comprehensive way.

In this paper, we investigate the use of components for
observing MPSoC applications. We propose a component
model for applications and show that it can be used for multi-
level observation. We relate our experience in implementing
this model on two different platforms, discuss the problems of
implementation as well as what the basic observation functions
of a system should be.

This paper is organized as follows. Section II presents
related work. Section III introduce EMBera which is our
proposition for observing MPSoC using components. Sections
IV and V describe our experience in implementing EMBera
on two different platforms. Our conclusions about the use
of components and the needed observation functions are
presented in Section VI.

II. RELATED WORK

The observation of applications is a problem which has been
already addressed by numerous domains. In this section we
focus on embedded, parallel and software component systems.
Embedded systems are considered as they dene our working
context. Parallel systems are important to study as, with the
apparition of multi-core architectures, MPSoC become �”de
facto�” parallel systems. Finally, we consider components as
they provide a high-level representation of a target system.

Observation on MPSoC: The historically concurrent de-
velopment of SoCs�’ software and hardware has resulted in
the production of software that is specic to the underlying
hardware. Indeed, SoC software is usually low-level (drivers,
operating systems) and in charge of the management of a
proprietary hardware. As a consequence, the tools developed

!000000999 IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn PPPaaarrraaalllllleeelll PPPrrroooccceeessssssiiinnnggg WWWooorrrkkkssshhhooopppsss

!555333000---222000!666///000999 $$$222666...000000 ©©© 222000000999 IIIEEEEEEEEE

DDDOOOIII !000...!!000999///IIICCCPPPPPPWWW...222000000999...777666

555444222

for SoC platform observation are also proprietary and low-
level. They mostly give information about hardware state
(memory dumps, CPU register values) and kernel events
(interruptions, function calls). They usually do not provide
information about the application layer and even if they do,
there is no mapping between application operations and lower-
level observation data. Examples of typical SoC observation
tools are KPTrace [6] and OS21 Activity Viewer, both de-
veloped by STMicroelectronics. The rst tool operates on a
Linux based system [7] while the latter works on OS21, an
in-house real-time operating system. Another example is the
SpyKer product [8] proposed by LynuxWorks.

Observation on Parallel Systems: There are some very
efcient observation tools in parallel systems. Shared memory
systems, for example, use the thread programming model
and are provided with thread observation tools [9][10].
In the same time, there are tools [11][12] for monitoring
distributed-memory parallel applications written in MPI [13]
or OpenMP [14]. However, as MPSoC are not likely to
become dedicated to a given parallel programming model,
these existing tools cannot be applied �”as is�”.

Observation on Component-based Systems: A different
approach to observation is proposed in component-based soft-
ware systems. Unlike SoC systems, observation is mostly
focused on high-level software layers like end-user applica-
tions and component-oriented middleware. It typically covers
the component architecture and components�’ interactions. The
Fractal component model [2], for example, can detail the set of
executing components and the existing bindings between them.
It can also trace component creations and communications.
Similarly, OpenCCM [15], an open-source implementation of
the CORBA Component Model, uses interceptors in order
to capture method invocation, and thus, monitor component
creations and communications. The same approach is applied
to the implementations of the EJB model [3]. Component
observation at the application level has an important advantage
which is to be independent of the underlying system. However,
it is unfortunately unrelated to low-level performance metrics
which are crucial for embedded system development.

To bridge the gap between components and MPSoC it is
possible to use component-based operating systems. However,
existing implementations either do not target MPSoC archi-
tectures [16][17], or do not consider the aspect of observa-
tion. [18]. The only project applying components to MPSoC
observation we are aware of is the Nomadik Multiprocessing
Framework project [5] of STMicroelectronics in which our
work is to be integrated.

III. THE EMBERA OBSERVATION MODEL

The major motivation behind EMBera is to provide an
observation solution for embedded systems so that:

• it can be used to observe different types of embedded
applications (i.e. application-independent).

• it can be used to observe different levels related to the
execution of an embedded application.

• it can be used on different MPSoC hardware platforms
(i.e. platform-independent).

• it can be congured to serve a specic observation
context.

In other terms, our main objective is to be able to dene
observation in generic terms and yet be able to efciently
observe specic embedded hardware and software. We will
focus on the way to dene observation functions separately
from the embedded platform. Then, we will use components
as they appear to be a successful solution to the problem of
separation of concerns.

The EMBera model is based on the Fractal component
model [2]. We have chosen Fractal since it is a general compo-
nent model that is system and language independent. Indeed,
it can be used at the system level, as well as middleware or
application levels and it can be implemented in Java, C or other
programming languages. Another major advantage of Fractal
is that it is already used at STMicroelectronics which denes
our working context.

A. The EMBera Component Model

An EMBera application is composed of a number of in-
terconnected components. A component is a software entity
with a well-dened functionality. A part of this functionality
can be visible to other components, in this case the component
denes provided interfaces. Some components may depend on
this functionality, in that case they dene required interfaces.
Connections between components are established by linking
required and provided interfaces.

The components in EMBera are active entities and each
component has its own execution ow. This choice follows
the current practice for MPSoC applications in which multiple
treatments are executed on different processor units.

EMBera components provide a predened interface for
component control. The control operations include component
creation, component interconnection and component life-cycle
management (launching and termination).

B. The Motion-JPEG Decoder Application Example

To illustrate the EMBera model, let us consider a typical
MPSoC application: a video codec which decodes a stream
of independent and individually encoded JPEG images1. The
decoding is done by dividing each individual image in smaller
blocks. Each block is decoded mainly by applying a Huffman
algorithm, a pixel reordering and the Inverse Discrete Cosine
Transformation (IDCT). Then, all the blocks are reordered in
order to reconstitute original images.

1Implemented for [19] in the scope of the cycle-accurate simulation
platform.

555444333

For computing independent data in parallel, the MJPEG
decoder code can be divided into three parts. The rst part
is responsible for le management, Huffman decoding and
pixel reordering. A second part executes the IDCT treatment,
either in sequence on all blocks, or in parallel by separating
the blocks. Finally, the third part deals with the reordering of
blocs. If we set these parts onto components, we obtain the
application on Figure 1. The connections between components
are used to manage the data ow.

Fig. 1. Componentized MJPEG Decoder Application

C. Observation in EMBera

We have decided to explicitly model the observation in
EMBera. For this purpose, we have dened a new control
interface dedicated to observation.

We consider that MPSoC observation has to take into
account at least three levels: the system, the middleware and
the application level. The observation interface may provide
functions related to each level such as memory and system
time, communication time, and application structure (e.g. the
component structure). However, the exact information to be
provided by this interface is still to be dened.

The information obtained, accessible through the observa-
tion interface, is gathered and analyzed by a new component
connected to the observation interfaces. We have named it the
observer component.

D. Implementation of the EMBera Model

We have implemented the EMBera model on two different
platforms: a 16-core SMP Linux system and a 5-Processor
STMicroelectronics MPSoC. The former platform is a standard
x86 multiprocessor architecture, while the latter is an MPSoC
currently used in STMicroelectronics products.

The main propose of these implementations is to validate
that a component model provides the means for observing
embedded applications at different levels. Another objective
is to try to identify the basic observation functions to be
provided by default at each level. These implementations do
not address the intrusiveness problem due to the component
implementation or to the data collection.

Fig. 2. 16-core Symmetric Multiprocessor Platform.

IV. IMPLEMENTATION OF EMBERA ON SMP - LINUX

The 16-core platform is a Symmetric Multiprocessor eight
dual core AMD Opteron 2.2 GHz and 2 MB of cache memory
for each processor. It is organized in eight nodes and has in
total 32 GB of main memory (4GB of local memory). Each
node has three connections to communicate with other nodes.
This platform uses a Linux kernel 2.6, providing native C
compilation and POSIX thread support [20].

This platform follows a NUMA (Non-Uniform Memory
Access) memory organization. A NUMA platform is a multi-
processor system in which the processing elements are served
by multiple memory levels, physically distributed through the
platform. Such distributed memory is seen by the application
as a single shared memory [21]. However, the access time
to the distributed memory changes depending on the distance
between the processor and the memory.

A. Implementation of the EMBera Component Model

The implementation of EMBera is done in the C language
as it is the �”de facto�” standard for embedded software due to
its performance and to legacy reasons [22].

An EMBera application is a Linux user process. A com-
ponent is composed of a data structure and a POSIX thread.
The thread belongs to the Linux user process and provides an
execution support for the code inside the component.

The communication between components is based on simple
one way asynchronous message-oriented mechanism providing
the send and receive primitives. A provided interface is
represented by a FIFO data structure, we have named mailbox
through which it receives messages. A required interface is a
pointer to a provided interface (mailbox) which is used to send
messages. A connection is established by setting the pointer
on the required interface to a given provided interface.

The deployment of any EMBera application is carried out by
explicitly invoking control functions into the main application
function.

B. Implementation of the Observation Interface

The observation interface is implemented as a couple of
interfaces (one provided and one required) and a set of
observation functions.

This couple of interfaces for the observation is created by
default on any EMBera component. A component may thus

555444444

receive messages requesting observation information (using
the provided interface) and return the requested information
(using the required interface).

The set of observation functions concerns functions for
collecting execution data from different software levels. The
current implementation addresses three levels of observation:
the operating system, the middleware, and the application
itself. The operating system is the Linux system software
which directly manages the SMP platform. Most of the infor-
mation related to the platform and resources utilization can be
retrieved or inferred from this level. The middleware concerns
the EMBera communication primitives, the application level
being the component structure and the code inside EMBera
components.

The observation information provided is obtained by imple-
menting the observation functions into the EMBera component
implementation without modifying the application code. We
will now describe the functions currently implemented for
observing each level.

Operating System: We have currently gathered information
about the execution time and the memory occupation. For
obtaining the execution time, we have calculated the time
elapsed between the start and the termination of a component.
The time has been measured by using the getTimeOfDay
system function.

For obtaining the component memory, we have calculated
the memory allocated for the component thread and the size
of memory allocated for all the component provided interfaces
and related structures. These measures have been gathered
by using pthread_attr_getstacksize and sizeof
functions respectively.

Middleware: We have obtained information about the exe-
cution time of send and the receive operations by instru-
menting the corresponding primitives. The time stamping is
also supported by the getTimeOfDay system function.

Application: The information we have collected is about the
component structure and the total number of communication
operations performed. The former consists in listing provided
and required interfaces of the components, while the latter
is achieved by adding counters to send and receive
primitives and associating them to components.

C. Implementation of The Motion-JPEG Decoder

Figure 3(a) depicts the architecture of the MJPEG EMBera
application implemented with ve components: one Fetch,
three parallel IDCT and one Reorder component. Figure 3(b),
shows the main application function, in which each one of the
ve components and its interfaces are instantiated. Then, this
function species the connections between all the components.

The MJPEG application is executed on two different input
les containing 578 and 3000 JPEG images respectively. The

Fig. 3. EMBera MJPEG Architecture and Deployment

dimensions of each single image are the same in both cases.

D. Analysis of Observation Data

Let us look into more detail the collected information data.

Operating System: The data in table I gives the components�’
execution times and the component memory initially allocated.

Component Time578 (µs) Time3000 (µs) Mem (kB)

Fetch 4 084 20 088 8 392

IDCTx 4 084 20 218 10 850

Reorder 4 086 21 538 13 308

TABLE I
MJPEG COMPONENTS EXECUTION TIME AND MEMORY ALLOCATED

We observe in both execution cases that having three IDCT
components computing in parallel balances the execution times
of the three parts of the MJPEG application.

For this experience, the memory values obtained for a
Linux thread stack correspond to 8 392 kb. The memory
allocated to the Fetch component memory corresponds to
this value, therefore, the component does not instantiate any
provided interface. Higher memory values for IDCTs and
Reorder represent their provided interfaces and can thus be
used to evaluate the memory consumption of our component
implementation.

Communication: Figure 4 presents the evolution of send
execution time when the message size increases. The execution

555444555

 0

 50

 100

 150

 200

 250

 300

 350

0 25 50 75 100 125

Ti
m

e
(µ

s)

Message size (kb)

Architecture: 16-core SMP

Fig. 4. send Primitives Execution Time.

time values obtained show that the time spent for sending
a message increases almost linearly with the size of the
message. This shows that, in the considered execution cases,
the send operation depends only on the message size and
not of the communication mechanism, nor the SMP platform�’s
architecture.

Application: One rst information obtained gives the num-
ber of communication operations (table II).

Component send578 receive578 send3000 receive3000

Fetch 10 386 0 53 982 0

IDCTx 3 462 3 462 17 994 17 994

Reorder 0 10 386 0 53 982

TABLE II
MJPEG COMPONENTS COMMUNICATION OPERATIONS PERFORMED

The values in this table indicate that the Fetch component
sends messages but it does not execute any receive op-
eration. The IDCT components receive and send the same
amount of messages. Finally, the Reorder component receives
the same number of messages as initially sent by Fetch. If
we do not have access to the internal code of components,
this information is useful to infer the functioning of the
application. The Fetch component takes an input le, prepares
a set messages and sends one third of this set to each IDCT.
Each IDCT treats the received message and sends a result to
the Reorder component. The Reorder component receives all
results from the three IDCTs.

Interfaces component [IDCT_1]

[Interface] [Type]
introspection provided
_fetchIdct1 provided
introspection required
idctReorder required

Fig. 5. Interfaces for Component IDCT 1

Another information obtained is related to the components�’
structure. Figure 5 shows that IDCT1 component has four
interfaces: the two observation interfaces (one provided and
one required), the provided interface for the Fetch component
and the required interface to connect to the Reorder compo-

Fig. 6. STi7200 Platform

nent. This observation can provide valuable information for
applications whose conguration changes dynamically.

The information obtained by observing the MJPEG ap-
plication through the observation interface ensures a better
understanding of the application behavior and therefore helps
to nd potential performance improvements. For example, the
execution times indicate that the application is well load-
balanced for the JPEG input size but if that size changes,
the execution times could cause a bottleneck on the IDCT
components.

V. IMPLEMENTATION OF EMBERA ON MPSOC - OS21

The STi7200 MPSoC platform (Figure 6) is composed of
one 450 Mhz general purpose RISC CPU (ST40) and four 400
Mhz accelerators (ST231). The ST40 CPU has access to the
total on-chip memory including one big external block of 2
GB SDRAM memory. Each ST231 CPU has access to a block
of local data and control memory.

The ST231 and ST40 CPUs communicate using one shared
block of memory associated with one interruption controller.
The chip can be programmed by using STMicroelectronics
implementation of standard ANSI C. It is supplied with a
complete toolset including among others optimized compilers,
assemblers, linkers and observation tools. As ST40 and ST231
processors have different instruction sets, each has its own
toolset.

STi7200 processors run OS21: a lightweight, real-time
multitasking operating system (RTOS). The OS21 RTOS
provides portable APIs to handle tasks, memory, interrupts,
exceptions, synchronization and time management. The OS21
tasks behave like processes and communicate via a specic
middleware, called EMBX, developed by STMicroelectronics.
This middleware manages shared memory regions accessible
by several CPUs. These memory regions are called distributed
objects and are accessed by dedicated EMBX_Send and
EMBX_Receive functions. The EMBX_Send is an asyn-
chronous operation corresponding to a write operation on the
distributed object. The EMBX_Receive is a synchronous
operation corresponding to a read operation on the distributed
object.

A. Implementation of the EMBera Component Model

An EMBera application is a set of OS21 tasks, each
task representing a component. The current implementation

555444666

supports one component per CPU and thus avoids dealing with
the low-level multi-tasking OS21 support.

A component�’s provided interface is represented by a dis-
tributed object. A component�’s required interface corresponds
to a pointer towards a distributed object. A connection be-
tween both interfaces is established using EMBX primitives
managing distributed objects.

When a component needs to communicate through a re-
quired interface, it executes EMBX_Send and thus updates
the corresponding distributed object. As the distributed object
represents a provided interface, the component providing inter-
face needs to execute EMBX_Receive in order to complete
the communication.

The deployment of an EMBera application on the STi7200
platform consists in loading one binary code per CPU which
is performed by using STMicroelectronics proprietary devices
and software tools. Each binary code contains a main function
which creates, connects, starts and stops the component.

B. Implementation of the Observation Interface

As shown in the Linux EMBera implementation, the ob-
servation is applied to three software levels: the system, the
middleware and the user application. We will discuss the
observation at the system level and at the middleware level
since the user application level observation is identical to the
Linux implementation.

Operating System: At the system level, our objective is to
observe the system memory utilization and the component task
execution time. When the OS21 initializes, the component task
is created and starts . We can observe the task execution time
by using an OS21 supplied task_time system function.

The system memory used by an EMBera component is
related to the local memory for the task and the SDRAM
memory for the distributed objects. The observation of the lo-
cal memory is carried out by OS21 functions. Those functions
provide the task�’s memory size and the amount of memory
currently used which, in the SDRAM, is equal to the size of
all distributed objects. This size value is xed and gathered at
component creation time.

Middleware: At the middleware level the observation mech-
anism is the same as in the Linux implementation and is based
on gathering execution information about the sending and the
reception of messages. What differs is that the timestamp is
given with the time_now OS21 system function which gives
the local time on each CPU.

C. Implementation of The Motion-JPEG Decoder

We have deployed the MJPEG application on three (ST40
and two ST231) out of ve processors on the STi7200 plat-
form. Indeed, the software toolset provided by STMicroelec-
tronics for our experience supports only three processors.

Fig. 7. Componentized MJPEG Decoder Application on STi7200 platform

Figure 7 presents the componentized MJPEG application.
We have decided to create a single I/O component by merging
the Fetch and the Reorder functionalities in a Fetch-Reorder
component. This component is deployed on the general pur-
pose ST40 CPU. It is connected with the two IDCT compu-
tation components, each one deployed on one ST231 CPU.

D. Analysis of Observation Data

We will now show and discuss the observation information
provided at RTOS level and EMBera middleware level. The
information collected at the application level for the OS21
MJPEG implementation does not provide additional informa-
tion in comparison with the Linux implementation.

RTOS: In table III, we show the overall execution time of
the components�’ tasks and the local memory consumption.
On the Linux EMBera implementation, the Fetch and the
Reorder components computation times are almost the same as
those of the IDCT components. On the OS21 implementation,
the Fetch-Reorder component runs ten times slower than the
IDCT components. This difference might be due to the ST40
processor which is general purpose and computes slowly the
Reorder algorithm.

Component Time (s) Mem (kb)

Fetch-Reorder 1173 110

IDCTx 95 85

TABLE III
MJPEG COMPONENTS EXECUTION TIME AND MEMORY ALLOCATED

It is interesting to observe the huge difference between
the Linux IDCT component overall execution time (approx.
4 s) and the OS21 IDCT component overall execution time
(approx. 100 s). Despite the frequency differences between the
SMP platform processors and the STi7200 accelerators, tthis
difference is not justied. This problem might occur because
we execute the Linux version of the MJPEG code without
applying any optimizations.

The 85 KB memory consumption on the IDCT component
corresponds to 60 KB for the task data and component
structure and 25 KB for one distributed object. The Fetch-
Reorder component uses two distributed objects which justies
the 100 KB consumed memory.

The 85 KB allocated memory for the IDCT component is
several times smaller than the memory allocated for the Linux
IDCT component (8 MB) but is explained by the memory
differences between the two architectures (1 MB for MPSoC
and 32 GB for Linux).

555444777

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 25 50 100 200

Ti
m

e
(m

s)

Message size (Kb)

Architecture: STi7200
Compiller: ST ANSI C

Fetch-Reorder(ST40)
IDCT(ST231)

Fig. 8. EMBera send execution time over 578 MJPEG images

Middleware: In gure 8, we show the average execution
time of the EMBera send function for 578 MJPEG images,
performed by the Fetch-Reorder component and the IDCT
component. We can see, in gure 8, that IDCT component
executes the send operation faster than the Fetch-Reorder
component for the same message size. That difference in
the execution time is due to the hardware architecture of
the STi7200 platform, which favors the memory operations
of the ST231 accelerators. These memory operations are
the most time consuming. Indeed, the general purpose ST40
CPU is mainly designed to access peripherals while ST231
accelerators are designed for intensive computing which needs
fast memory access.

The message size has a direct consequence on the appli-
cation performance. Indeed, the performance of the EMBera
send function is linear for message sizes smaller than 50 KB.
Over 50 KB, the send function decreases its performance.
Since the performance depends on the size of the message,
we can deduce from this observation that OS21 EMBera
implementation is well suited for the hardware architecture
when the message size is less than 50 KB.

The generic observation information we gathered in this
example can be useful for optimizing the communication time
between the components. For instance, we can force the Fetch-
Dispatch component to send different number of messages,
according to the message size, in order to balance the EMBera
send execution time between the components.

VI. CONCLUSIONS AND PERSPECTIVES

The EMBera model has enabled us to set an application
in terms of components. The observation modeled in EMBera
provides us with a generic mechanism for obtaining meaning-
ful information about the execution of an MPSoC application.
Both implementations demonstrate that the componentized
MJPEG application can be observed without modifying its
code. Indeed, we are able to observe the application behavior
based on the interaction among the application components as
well as between the components and other execution levels.

As a matter of fact, we have found interesting to observe
at least three execution levels: the operating system, the
middleware and the application. At the OS level, we have
proposed to implement functions for observing memory and
execution times. At the middleware level, we have observed
the behavior of communication primitives. Finally, at the
application level we have focused on the observation of the
use of middleware and on the component structure. According
to us, these functions are the basis to observe any MPSoC
application.

In the ongoing work, we focus our research on dening and
extending EMBera observation functions, for instance, cache
misses and the evolution of memory during the execution
of a program. For extending observation capabilities, we are
working on abstracting operating system observation functions
and communication observation metrics from the component
model. We will concentrate our future work on what functions
should be provided with the observation interface, how to
select the events to be observed, how to set the treatments
to apply and nally, how to manage multi-level information.

Another important open question is about intrusiveness and
data collection treatments. In the long term we are interested
in dening an observation mechanism in which it is possible
to measure and control the intrusiveness by conguring the
data collection treatments.

REFERENCES

[1] W. Wolf, �“The Future of Multiprocessor Systems-on-Chips,�” in DAC
�’04: Proceedings of the 41st annual conference on Design automation.
New York, NY, USA: ACM, 2004, pp. 681�–685.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,
�“The Fractal Component Model and its Support in Java,�” Software
�– Practice and Experience (SP&E), vol. 36, no. 11-12, pp. 1257�–
1284, Sep. 2006, special issue on �“Experiences with Auto-adaptive and
Recongurable Systems�”.

[3] �“Enterprise JavaBeans Technology,�” Website, SUN, http://java.sun.com/
products/ejb/.

[4] �“CORBA Component Model, v4.0,�” Website, OMG, http://www.omg.
org/technology/documents/formal/components.htm.

[5] J.-P. Fassino, �“Nomadik Multiprocessing Framework, a Component-
based Programming Model for MP-SoC,�” 7th International Forum
on Application-Specic Multi-Processor SoC, June 2007. [Online].
Available: http://www.mpsoc-forum.org/2007/slides/Fassino.pdf

[6] �“Dynamic Kernel Tracing with KPTrace,�” Website, SUN, http://www.
stlinux.com/docs/manual/development/advanced development30.php.

[7] �“STLinux,�” Website, http://www.stlinux.com/drupal/.
[8] �“SpyKer,�” Website, http://www.lynuxworks.com/products/spyker/spyker.

php3.
[9] Q. A. Zhao and J. T. Stasko, �“Visualizing the Execution of Threads-

based Parallel Programs,�” Georgia Institute of Technology, Tech. Rep.
GIT-GVU-95-01, 1995. [Online]. Available: http://hdl.handle.net/1853/
3546

[10] �“POSIX Thread Trace Toolkit (PTT),�” Website, http://nptltracetool.
sourceforge.net/.

[11] S. Shende and A. Malony, �“The TAU Parallel Performance System,�”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287�–311, 2006.

[12] B. Mohr, A. D. Malony, S. Shende, and F. Wolf, �“Design and Prototype
of a Performance Tool Interface for OpenMP,�” Journal of Supercomput-
ing, vol. 23, no. 1, pp. 105�–128, 2002.

[13] �“Message Passing Interface (MPI),�” Website, http://www-unix.mcs.anl.
gov/mpi/index.htm.

555444888

[14] �“The OpenMP Application Program Interface,�” Website, http://openmp.
org/.

[15] �“CORBA Component Model, v4.0,�” Website, ObjectWeb Project, http:
//openccm.objectweb.org/doc/index.html.

[16] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silberschatz, �“The
Pebble Component-based Operating System,�” in ATEC �’99: Proceedings
of the annual conference on USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 1999, pp. 20�–20.

[17] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers,
�“The Flux OSKit: A Substrate for Kernel and Language Research,�”
Proceedings of 16th ACM Symposium on Operating Systems Principles
(SOSP), 1997.

[18] D. Beuche, A. Guerrouat, H. Papajewski, W. Schroder-preikschat,
O. Spinczyk, and U. Spinczyk, �“The PURE Family of Object-Oriented
Operating Systems for Deeply Embedded Systems,�” in In 2nd IEEE Int.
Symp. on OO Real-Time Distributed Computing (ISORC 99, 1999, pp.
45�–53.

[19] I. Augé, F. Pétrot, F. cois. Donnet, and P. Gomez, �“Platform-Based De-
sign From Parallel C Specications,�” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 24, no. 12, pp.
1811�–1826, Dec. 2005.

[20] Portable Operating System Interface (POSIX)�—Part 2: Shell and Util-
ities (Volume 1), ser. Information technology�—Portable Operating Sys-
tem Interface (POSIX), 1993.

[21] M. Tao, T. Jie, S. Martin, and M. S. A., �“Interactive Locality Opti-
mization on NUMA architectures,�” in SoftVis �’03: Proceedings of the
2003 ACM symposium on Software visualization. New York, NY, USA:
ACM, 2003, pp. 133�–ff.

[22] E. Rohou, A. Ornstein, and M. Cornero, �“Compiling C to CLI for
Heterogeneous Multicore SoCs,�” 5th HiPEAC Industrial Workshop, June
2008.

555444999

