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AbstractMultiple applications that execute concurrently on heterogeneous platforms compete for CPUand network resources. In this paper we analyze the behavior of K non-cooperative schedulersusing the strategy that would be optimal if they were alone on the platform. Meanwhile fairnessis ensured at a system level ignoring applications characteristics. We limit our study to simplesingle-level master-worker platforms and the case where applications consist of a large numberof independent tasks. The tasks of a given application all have the same computation andcommunication requirements, but these requirements can vary from one application to another.Therefore, each scheduler aims at maximizing its throughput. We give closed-form formulaof the equilibrium reached by such a system and study its performances. We characterizethe situations where this Nash equilibrium is Pareto-optimal and show that even though nocatastrophic situation (Braess-like paradox) can occur, such an equilibrium can be arbitrarilybad for any classical performance measure.

1 Introduction
The recent evolutions in computer networks technology, as well as their diversi�cation, yield to atremendous change in the use of these networks: applications and systems can now be designedat a much larger scale than before. Large-scale distributed platforms (Grid computing platforms,enterprise networks, peer-to-peer systems) result from the collaboration of many people. Thus,the scaling evolution we are facing is not only dealing with the amount of data and the numberof computers but also with the number of users and the diversity of their behavior. Thereforecomputation and communication resources have to be fairly shared between users, otherwise userswill leave the group and join another one. However, the variety of user pro�les requires resourcesharing to be ensured at a system level. We claim that even in a perfect system where eachapplication competing on a given resource always receives the same share as the other ones andwhere no degradation of resource usage (e.g. packet loss or context switching overhead) occurswhen a large number of applications use a given resource, non-cooperative usage of the systemleads to important application performance degradation and resource wasting. In this context, wemake the following contributions:� We present a simple yet realistic situation where the system-level fairness fails to achievea relevant application-level fairness. More precisely, we study the situation where multipleapplications consisting of large numbers of independent identical tasks execute concurrentlyon heterogeneous platforms and compete for CPU and network resources. As the tasks ofa given application all have the same computation and communication requirements (butthese requirements can vary for di�erent applications), each scheduler aims at maximizing itsthroughput. This framework had previously been studied in a cooperative centralized frame-work [BLCJF+06]. The resource sharing aspect was therefore not present and is extensivelydescribed in Section 2.

1



� We �rst characterize in Section 3.1 the optimal sel�sh strategy for each scheduler (i.e. thescheduling strategy that will maximize its own throughput in all circumstances and adaptto external usage of resources) and then propose in Section 3.2 equivalent representations ofsuch non-cooperative schedulers competition.
� The particularities of these representations enable us to characterize the structure of theresulting Nash equilibrium as well as closed-form values of the throughput of each application(see Section 3.3 and 3.4).
� Using these closed-form formulas, we derive in Section 4 necessary and su�cient conditionson the system parameters (in term of bandwidth, CPU speed, . . . ) for the non-cooperativeequilibrium to be Pareto-optimal. We also quickly study the degree of ine�ciency of thisequilibrium through a simple example.
� When studying properties of Nash equilibria, it is important to know whether paradoxicalsituations like the ones exhibited by Braess in his seminal work [Bra68] can occur. In suchsituations, the addition of resource (a new machine, more bandwidth or more computingpower in our framework) can result in a simultaneous degradation of the performance of allthe users. Such situations only occur when the equilibrium is not Pareto-optimal, which maybe the case in this framework. We investigate in Section 4.4 whether such situations canoccur in our considered scenario and conclude with a negative answer to this question.
� Last, we show in Section 5, that even when the non-cooperative equilibrium is Pareto-optimal,the throughput of each application is far from being monotonous with a resource increase.This enables us to prove that this equilibrium can be arbitrarily bad for any of the classicalperformance measures (average throughput, maximal throughput, minimum throughput).
Section 6 concludes the paper with a discussion of extensions of this work and future directionsof research.

2 Platform and Application Model
2.1 Platform Model

P0

P1 PNPn
W1 Wn WN

B1 BNBn

Our master-worker platform is made of N +1 processors P0; P1; : : : ; PN . P0 denotes the masterprocessor, which doesn't perform any computation. Each processor Pn is characterized by itscomputing power Wn (in Mop.s�1) and the capacity of its connection with the master Bn (inMb.s�1). Last, we de�ne the communication-to-computation ratio Cn of processor Pn as Bk=Wk.This model leads us to the following de�nition:
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De�nition 1. We denote by physical-system a triplet (N;B;W ) where N is the number ofmachines, and B and W the vectors of size N containing the link capacities and the computationalpowers of the machines.
We assume that the platform performs an ideal fair sharing of resources among the variousrequests. More precisely, let us denote by N (B)n (t) (resp. N (W )n (t)) the number of ongoing commu-nication (resp. computation) from P0 to Pn (resp. on Pn) at time t. Resources are shared \fairly"between the di�erent users. Thus, the platform ensures that the amount of bandwidth received attime t by a communication from P0 to Pn is exactly Bn=N (B)n (t). Likewise, the amount of processorpower received at time t by a computation on Pn is exactly Wn=N (W )n (t). Therefore, the time Tneeded to transfer a �le of size b from P0 to Pn starting at time t0 is such thatZ T

t=t0 BnN (B)n (t) :dt = b:
Likewise, the time T needed to perform a computation of size w on Pn starting at time t0 is suchthat Z T

t=t0 WnN (W )n (t) :dt = w:
Last, we assume that communications to di�erent processors do not interfere. This amounts tosay that the network card of P0 has a su�ciently large bandwidth not to be a bottleneck. Thishypothesis makes sense when workers are spread over the Internet and are not too numerous.
2.2 Application ModelWe consider K applications, Ak, 1 6 k 6 K. Each application is composed of a large set ofindependent, same-size tasks. We can think of each Ak as bag of tasks, and the tasks are �les thatrequire some processing. A task of application Ak is called a task of type k. SETI@home [SET],factoring large numbers [CDu+96], the Mersenne prime search [Pri], ClimatePrediction.NET [BOI],Einstein@Home [EIN], processing data of the Large Hadron Collider [LHC] are a few examples ofsuch typical applications. We let wk be the amount of computation (in oating point operations)required to process a task of type k. Similarly, bk is the size (in Mb) of (the �le associated to) a taskof type k. We assume that the only communication required is outwards from the master, i.e. thatthe amount of data returned by the worker is negligible. This is a common hypothesis [BOBLC+04]as in steady-state, the output-�le problem can be reduced to an equivalent problem with biggerinput-�les. Last, we de�ne the communication-to-computation ratio ck of tasks of type k as bk=wk.This model leads us to the following de�nition:
De�nition 2. We de�ne a user-system a triplet (K; b; w) where K is the number of applications,and b and w the vectors of size K representing the size and the amount of computation associatedto the di�erent applications.
2.3 Rules of the gameIn the following our K applications run on our N processors and compete for the network and CPUaccess:
De�nition 3. A system is a sextuplet (K; b; w;N;B;W ), with K,b,w,N ,B,W de�ned as for auser-system and a physical-system.
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We assume that each application is scheduled by its own scheduler. As each application com-prises a very large number of independent tasks, trying to optimize the makespan is known to bevainly tedious [Dut04] especially when resource availability may vary over time. Maximizing thethroughput of a single application is however known to be a much more relevant metric in our con-text [BLCJF+06, HP04]. Let us denote by �n;k the average number of tasks of type k performedper unit of time on the processor Pn. In the rest of this document, we will denote by �k =Pn �n;k.The scheduler of each application thus aims at maximizing its own throughput, i.e. �k. However,as they are sharing the same set of resources, we have the following general constraints1:
Computation 8n 2 J0; NK :PKk=1 �n;k:wk 6Wn
Communication 8n 2 J1; NK :PKk=1 �n;k:bk 6 Bn
3 A non-cooperative game
Is this article, we assume that a process running on P0 can communicate with as many processorsas it wants. This model is called multi-port [BSP+99, BNGNS00] and is reasonable if the numberof workers is relatively small and the process can make use of threads to handle communications.We �rst study the situation where only one application is scheduled on the platform. This willenable us to simply de�ne the scheduling strategy that will be used by each players in the moregeneral case where many applications are considered.
3.1 One applicationWhen there is only one application, our problem reduces to the following linear program:

Maximize Pn �n;1;under the constraints8><>:
(1a) 8n 2 J0; NK : �n;1:w1 6Wn(1b) 8n 2 J1; NK : �n;1:b1 6 Bn(1c) 8n; �n;1 > 0

(1)
We can easily show that the optimal solution to this linear program is obtained by setting �n;1 =min�Wnw ; Bnb �. In a practical setting, this amounts to say that the master process will saturateeach of the workers by sending them as much tasks as possible. On a stable platform, Wn andBn can easily be measured and the �n;1's can thus easily be computed. On an unstable one thismay be more tricky. However a simple acknowledgement mechanism enables the master process toensure that it is not over-ooding the workers, while always converging to the optimal throughput.In a multiple-applications context, each player (process) strives to optimize its own performancemeasure, considered here to be its throughput �k. Hence, we will assume that each of themconstantly oods the workers while ensuring that all the tasks they sends are performed (e.g. usingan acknowledgement mechanism). This adaptive strategy automatically cope with other schedulersusage of resource and sel�shly maximize the throughput of each application. We suppose a purelynon-cooperative game where no scheduler decides to "ally" to any other. As the players constantlyadapt to each others' actions, they may (or not) reach some equilibrium, known in game theory asNash equilibrium [Nas50, Nas51]. In the remaining of this paper, we will denote by �(nc)n;k the ratesachieved at such stable states.

1The notation Ja; bK denotes the set of integers comprised between a and b, i.e. Ja; bK = N \ [a; b]
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3.2 Many applications: canonical representationsFirst, we can see that in the multi-port model, communication and computation resources are allindependent. Let us consider in this section the use of resources on a arbitrary worker n. Weonly need to ensure that the number of tasks sent to Pn is equal to the number of tasks processedon Pn. In a steady state, actions of the players will interfere on each resource in (a priori) a nonpredictable order. The resource usage may be arbitrarily complex (see Figure 1(a)). However,for any given subset S of J1;KK, we can de�ne the fraction of time where all players of S (andonly them) use a given resource. This enables us to reorganize the schedule into an equivalentrepresentation (see Figure 1(b)) with at most 2K time intervals (the number of possible choices forthe subset S). In this representation, the fractions of time spent using a given resource (which canbe a communication link or a processor) are perfectly equal to the ones in the original schedule.However such a representation is still too complex (2K is a large value). Hence, we now explainhow to build two more compact \equivalent" canonical representation (see Figure 1(c) and 1(d))

0 1

Resource Usage

time

(a) Complex arbitrary schedule

0 1

Resource Usage

time

(b) Sorted schedule

�(seq)n;2 �(seq)n;3�(seq)n;1

0 1

Resource Usage

time

(c) Sequential canonical representation: ar-eas are preserved but using times are min-imized

��(par)n;1 ��(par)n;2 ��(par)n;3

�(par)n;1 �
(par)n;2

�(par)n;3

0 1

Resource Usage

time

(d) Parallel canonical representation: ar-eas are preserved but using times are max-imized

Figure 1: Various schedule representations. Each application is associated to a color: Application 1is green, application 2 is yellow and application 3 is blue. The area of each application is preservedthroughout all transformations.
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Sequential canonical representation The �rst compact form we de�ne is called sequentialcanonical representation (see Figure 1(c)). If the schedulers were sending data one after the otheron this link, the kth scheduler would have to communicate during exactly �(seq)n;k = �(nc)n;k bkBn of thetime to send the same amount of data as in the original schedulers2. This value is called sequentialcommunication time ratio. Similarly, we can de�ne the sequential computation time ratio �(seq)n;k as�(nc)n;k wkWn . We have the following relation between �(seq)n;k and �(seq)n;k :
�(seq)n;k = ckCn �(seq)n;k (2)

We can therefore obtain a canonical schedule (see Figure 1(c)) with at most K + 1 intervalswhose respective sets of players are f1g, f2g, : : : , fKg, ;. This communication scheme is thuscalled sequential canonical representation and has the same �(nc)n;k values. However, communicationand computation times have all been decreased as each scheduler is now using the network link andthe CPU exclusively. We will see later that this information loss does not matter for multi-portschedulers.
Parallel canonical representation The second compact form we de�ne is called parallel canon-ical representation (see Figure 1(d)). In this scheme, resource usage is as conicting as possible.Let us denote by �(par)n;k (resp. �(par)n;k ) the fraction of time spent by player k to communicate withPn (resp. to compute on Pn) in such a con�guration. �(par)n;k is the parallel communication timeratio and �(par)n;k is the parallel computation time ratio. Let us focus on the canonical representationof resources in the communication channel, the case of processor sharing being similar. To simplifythe analysis, let us suppose that �(par)n;1 6 �(par)n;2 6 � � � 6 �(par)n;K . Thus, communication times verifythe following set of equations (where ��(par)n;k = �(par)n;k � �(par)n;k�1):8>>>>>>>>>>><>>>>>>>>>>>:

�(nc)n;1 b1 =BnK ��(par)n;1
�(nc)n;2 b2 =BnK ��(par)n;1 + BnK � 1��(par)n;2... ...
�(nc)n;KbK = KX

k=1 BnK � k + 1��(par)n;k
(3)

We can easily check that this system has a unique solution, that all the ��(par)n;k are non-negativeand that their sum is no larger than 1. From these ��(par)n;k 's we can therefore obtain a canonicalschedule (see Figure 1(d)) with at most K+1 intervals whose respective player sets are respectivelyf1; : : : ;Kg, f2; : : : ;Kg, : : : , fKg, ;. This communication scheme is thus called parallel canoni-cal representation and has the same �(nc)n;k values. However, communication times have all beenincreased as each scheduler is now interfering with as much other scheduler as possible.
Particularities of multi-port sel�sh schedulers The same reasonings can be applied to com-putation resources and therefore, for a given worker, both communication and computation re-sources can be put in canonical form (see Figure 2(a)). As we have seen in Section 3.1, the schedul-

2Note that we have �(seq)n;1 6 �(seq)n;2 6 � � � 6 �(seq)n;K .
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�(par)n;1�(par)n;1 �(par)n;3�(par)n;2 �(par)n;2�(par)n;4 �(par)n;4 �(par)n;30

Communication Computation

0

(a) Parallel canonical form of an arbitrary schedule

�(par)n;1�(par)n;1 �(par)n;3�(par)n;2 �(par)n;2�(par)n;4 �(par)n;4 �(par)n;30

Communication Computation

0

(b) Parallel canonical schedule for a given processor under the non-cooperative multi-port assumptions. Application 3 (blue) and 4 (red)are communication saturated : they receive the same amount of commu-nication resource. Application 1 (green) and 2 (yellow) are computation
saturated : they receive the same amount of computation resource.

Figure 2: Parallel canonical schedules
ing algorithm used by the players consist in constantly ooding workers. Hence it is impossible thatboth �(par)n;k and �(par)n;k are smaller than 1. A player is thus said to be either communication-saturated(�(par)n;k = 1) or computation-saturated (�(par)n;k = 1).
Proposition 1. If there exists an communication-saturated application then Pk �(seq)n;k = 1. Simi-larly, if there exists an computation-saturated application then Pk �(seq)n;k = 1.

As two computation-saturated players k1 and k2 receive the same amount of computation powerand compute during the same amount of time, we have �(nc)n;k1wk1 = �(nc)n;k2wk2 . Therefore if ck1 6 ck2 ,we have �(nc)n;k1bk1 6 �(nc)n;k2bk2 . The same reasoning holds for two communication-saturated playersas well as for a mixture of both. As a consequence, in a multi-port setting, players should be�rst sorted according the ck to build the canonical schedule. The very particular structure of thisschedule (see Figure 2(b)) will enable us in the following section to give closed-form formula for the�(nc)n;k . All these remarks can be summarized in the following proposition:
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Proposition 2. If there is an equilibrium, let us denote by Bn the set of communication-saturatedapplications and by Wn the set of computation-saturated applications. If c1 6 c2 6 � � � 6 cK , thenthere exists m 2 J0;KK such that Wn = J1;mK and Bn = Jm+ 1;KK. We have:
� Parallel representation:8>>>><>>>>:

Communications: �(par)n;1 6 � � � 6 �(par)n;m <
Bnz }| {�(par)n;m+1 = � � � = �(par)n;K = 1 andComputations: 1 = �(par)n;1 = � � � = �(par)n;m| {z }Wn

> �(par)n;m+1 > � � � > �(par)n;K
� Sequential representation:8>>>><>>>>:

Communications: �(seq)n;1 6 � � � 6 �(seq)n;m <
Bnz }| {�(seq)n;m+1 = � � � = �(seq)n;K = Gn andCommunications: Fn = �(seq)n;1 = � � � = �(seq)n;m| {z }Wn

> �(seq)n;m+1 > � � � > �(seq)n;K
3.3 Closed-form solution of the equationsTheorem 1. We assume c1 6 c2 6 � � � 6 cK . Let us denote by Wn the set of players that arecomputation-saturated and by Bn the set of players that are communication-saturated.

1. If Bn and Wn are non-empty, we have:8>><>>:
�(nc)n;k = Bnbk jWnj�Pp2Wn cpCnjWnjjBnj�Pp2Wn cp Pp2Bn 1cp if k 2 Bn
�(nc)n;k = Wnwk jBnj�Pp2Bn CncpjWnjjBnj�Pp2Wn cp Pp2Bn 1cp if k 2 Wn (4)

2. If Wn = ;: �(nc)n;k = BnK:bk3. If Bn = ;: �(nc)n;k = WnK:wkProof. Let us start by the two easy cases where Wn = ; or Bn = ;:
� If Bn = ;, then all applications use the CPU of Pn at any time. Therefore they all receivethe exact same amount of CPU, i.e. Bn=K, hence �(nc)n;k = WnK:wk .
� If Wn = ;, the exact same reasoning holds and we get �(nc)n;k = BnK:bk .Let us now focus on the more interesting case where both Bn 6= ; andWn 6= ;. Using the de�nitionof sequential communication and computation times, we have:(Pp2Bn �(seq)n;p +Pp2Wn �(seq)n;p = 1Pp2Bn �(seq)n;p +Pp2Wn �(seq)n;p = 1 (5)
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As we have �(nc)n;k = bkBn�(seq)n;k and �(nc)n;k = wkWn �(seq)n;k , �(seq)n;p and �(seq)n;p are linked by the followingrelation: 8p; �(seq)n;p = Cncp �(seq)n;p (6)
Two applications from Bn communicate all the time. Therefore the send the exact same amount ofdata and thus: 8p 2 Bn; �(seq)n;p = GnSimilarly, we get 8p 2 Wn; �(seq)n;p = FnUsing these relations, equations (5) can be written:(jBnjGn + FnPp2Wn cpCn = 1jWnjFn +GnPp2Bn Cncp = 1
Solving this system, we get: 8>><>>:

Gn = jWnj�Pp2Wn cpCnjWnjjBnj�Pp2Wn cp Pp2Bn 1cpFn = jBnj�Pp2Bn CncpjWnjjBnj�Pp2Wn cp Pp2Bn 1cp :And �nally: 8>><>>:
�(nc)n;k = Bnbk jWnj�Pp2Wn cpCnjWnjjBnj�Pp2Wn cp Pp2Bn 1cp if k 2 Bn
�(nc)n;k = Wnwk jBnj�Pp2Bn CncpjWnjjBnj�Pp2Wn cp Pp2Bn 1cp if k 2 Wn

3.4 Conditions on the setsLet us �rst start with a technical lemma that will prove to be very useful in the following.
Lemma 1. Let 1 < � � � < K be K positive numbers. We have:

1. If Pk 1=k 6 K then Pk k > K;
2. If Pk k 6 K then Pk 1=k > K;
3. If Pk k > K and Pk 1=k > K, then there exists exactly one m 2 J1;KK such that:

m < Pmk=1 1� kPKk=m+1 1� 1k < m+1
Proof. Let us prove each statement one after the other:

1. Let us assume that Pk 1=k 6 K. As (1� k)2 > 0, we have (2� k) 6 1=k. Therefore, wehave Pk(2� k) < K, hence Pk k > K.
2. The same proof as before can be used by setting 0k = 1=k.
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3. Let us now assume that Pk k < K and Pk 1=k > K and let us de�ne % by %(m) =Pmk=1 1�kPKk=m+1 1� 1k . Let us also de�ne f and g by
f(m) = m+1 KX

k=m+1
�1� 1k

�� mX
k=1 (1� k)

g(m) = m KX
k=m+1

�1� 1k
�� mX

k=1 (1� k)
From these de�nitions, we can easily see that:

(9!m j m < %(m) < m+1), (9!m j f(m) > 0 and g(m) < 0) (7)
By noticing that we have

f(m)� g(m+ 1) = m+1�1� 1m+1
�+ (1� m+1) = 0;

condition (7) can be rewritten as
(9!m j m < %(m) < m+1), (9!m j f(m) > 0 and f(m� 1) < 0)

Therefore, to prove our lemma, we should study the variations of f . We have3:8>>>>>>>><>>>>>>>>:

f(0) = K+1 �K �PKk=1 1k� < 0 (by hypothesis)f(K) = �PKk=1 k��K > 0 (by hypothesis)
f(m+ 1)� f(m) = (m+2 � m+1) KX

k=m+2
�1� 1k

�
| {z }d(m)

Then, we have 8><>:
d(0) = K �PKk=1 1k < 0 (by hypothesis)d(K � 1) = 0d(m+ 1)� d(m) = 1m+2 � 1

So let us denote by M the �rst value k such that k > 1 and k�1 < 1 (we know that suchvalue exist otherwise we would have Pk k 6 K or Pk 1=k 6 K). Therefore, we know thatd is strictly increasing on J0;M � 2K and strictly decreasing on JM � 2; 0K (see Figure 3).Since d(0) < 0, and d(K � 1) = 0, we know that d(M � 2) > 0. Therefore, there exists aM 0 2 J1;K � 1K such that d is negative on J0;M 0 � 1K and positive on JM 0;K � 1K. Last,since f(0) < 0 and f(K) > 0, we know there exists exactly one m such that f(m) > 0 andf(m� 1) < 0, hence the result.
Theorem 2. Assuming c1 6 ::: 6 cK , Bn and Wn can be determined using the following formula:

1. If Pk ckCn 6 K then Bn = ;.
3We can freely set K+1 = K + 1 so that f is de�ned on J0;KK.
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0
0

k

f(k)
d(k)

0
k

1 KK � 1M � 2 MM 0

m

K + 1

Figure 3: Variation table of f , h and .
2. Else if Pk Cnck 6 K then Wn = ;.
3. Else we have Wn 6= ; and Bn 6= ;. Let m be the integer such that4:

cmCn < m�Pmk=1 ckCnK �m�PKk=m+1 Cnck < cm+1Cn
Then we have Wn = f1; : : : ;mg and Bn = fm+ 1; : : : ;Kg.

Proof. First of all, we shall remark that the previous cases are exclusives using Lemma 1 withk = ck=Cn. Therefore, we only have to prove that, depending on the structure of Bn and Wn, wefall in either one or the other of the previous cases:
� Suppose that Bn = ;, then 8k; �(seq)n;k = 1=K and 1 > Pk �(seq)n;k = Pk ckCn �(seq)n;k = Pk ckKCn .Hence Bn = ; )Pk Cnck 6 K.
� Suppose that Wn = ;, then 8k; �(seq)n;k = 1=K and 1 > Pk �(seq)n;k = Pk Cnck �(seq)n;p = Pk CnKck .Hence Wn = ; )Pk Cnck 6 K.
� Suppose that both Wn 6= ; and Bn 6= ;. Remember that �(seq)n;p and �(seq)n;p are linked by thefollowing relation: 8p; �(seq)n;p = Cncp �(seq)n;p
Let m such that m 2 Bn and m+ 1 2 Wn. Recalling proposition 2, we have:
�(seq)n;1 6 � � � 6 �(seq)n;m < �(seq)n;m+1 = � � � = �(seq)n;K and �(seq)n;1 = � � � = �(seq)n;m > �(seq)n;m+1 > � � � > �(seq)n;K
From �(seq)n;m+1 = Cncm+1�(seq)n;m+1 and equation (4) of Theorem 1, we get:

cm+1Cn = �(seq)n;m+1�(seq)n;m+1 > �(seq)n;m+1�(seq)n;m = m�Pmk=1 ckCnK �m�PKk=m+1 Cnck
4We know such an integer exists using Lemma 1 with k = ck=Cn
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Similarly, we have:
cmCn = �(seq)n;m�(seq)n;m < �(seq)n;m+1�(seq)n;m = m�Pmk=1 ckCnK �m�PKk=m+1 CnckTherefore, we have: cmCn < m�Pmk=1 ckCnK �m�PKk=m+1 Cnck < cm+1Cnthat is to say m < m�Pmk=1 kK �m�PKk=m+1 1k < m+1:

Remark 1. From these equations, we see that there always exists exactly one non-cooperativeequilibrium.
4 Ine�ciencies and paradoxes
In this section, we study the ine�ciency of the Nash equilibria, in the Pareto sense, and theirconsequences. Let us start by recalling the de�nition of the Pareto optimality.De�nition 4. Let G be a game with K players. Each of them is de�ned by a set of possiblestrategies Sk and utility functions uk de�ned on S1 � � � � � SK .A vector of strategy is said to be Pareto optimal if it is impossible to strictly increase the utility ofa player without strictly decreasing the one of another. In other words,�(s1; : : : ; sK) 2 S1 � � � � � SK is Pareto optimal � i��8(s�1; : : : ; s�K) 2 S1 � � � � � SK ;

9i; ui(s�1; : : : ; s�K) > ui(s1; : : : ; sK)) 9j; uj(s�1; : : : ; s�K) < uj(s1; : : : ; sK)�We recall that in the considered system, the utility functions are the �k, that is to say, theaverage number of tasks of application k processed per time-unit, while the strategies are thescheduling algorithms (i.e. which resource to use and when to use them).After expressing the utility set, i.e. the achievable utility vectors (subsection 4.1), we commentof the e�ciency of the Nash equilibrium, in the case of a single worker (subsection 4.2), and thenof multiple workers (4.3). Additionally, it is known that when Nash Equilibria are ine�cient, someparadoxical phenomenon can occur (see, for instance [Bra68]). We hence study in subsection 4.4,the occurrence of Braess phenomena in this system.
4.1 Convex and compact utility setLet consider a system with K applications running over N machines. We recall that the set ofachievable utilities is:8>>>>><>>>>>:

(�k)16k6K
�����������

9�1;k; : : : ; �n;k;8k 2 J1;KK :PNn=1 �n;k = �k8n 2 J1; NK :PKk=1 �n;k:wk 6Wn8n 2 J1; NK :PKk=1 �n;k:bk 6 Bn8n 2 J1; NK; 8k 2 J1;KK : �n;k > 0

9>>>>>=>>>>>;
The utility set is hence convex and compact.
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4.2 Single processorIn this subsection we show that when the players (here the applications) compete in a non-cooperative way over a single processor, the resulting equilibrium (see Section 3.2) is Pareto optimal.
Theorem 3. On a single-processor system, the allocation at the Nash equilibrium is Pareto optimal.
Proof. Suppose that the non-cooperative allocation �(nc) is not Pareto optimal on Pn. Then, thereexists another allocation e�. such that

8k; �(nc)n;k 6 e�n;k; and 9q 2 J1;KK; �(nc)n;q < e�n;q:
Then 8k; �(nc)n;k = �(seq)n;k Bnbk 6 e�(seq)n;k Bnbk = e�n;k and �(seq)n;q Bnbk < e�(seq)n;q Bnbk , which implies

KX
k=1 �(seq)n;k < KX

k=1 e�(seq)n;k (8)
Similarly, we get KX

k=1 �(seq)n;k < KX
k=1 e�(seq)n;k (9)

We have two possibilities:
� If in the non-cooperative solution, at least one application is communication-saturated (i.e.Bn 6= ;), then 1 =Pk �(seq)n;k (recall proposition 1). However, as Pk e�(seq)n;k 6 1 by de�nition,we have PKk=1 �(seq)n;k >PKk=1 e�(seq)n;k , which is in contradiction with (8).
� We get a similar contradiction with (9) when at least one application is computation-saturated(i.e. Wn 6= ;) in the non-cooperative solution.

4.3 Multi-processors and ine�cienciesInterestingly, although we have seen that the Nash Equilibria are Pareto optimal on each worker,we show in this section that this Equilibrium is not Pareto optimal for the whole system.We show that the Nash Equilibrium can be ine�cient and exhibit such an example on a systemconsisting of two machines and two applications (subsection 4.3.1). We then give a formal necessaryand su�cient condition for the equilibrium to be Pareto optimal (subsection 4.3.2 and 4.3.3). We�nally comment on di�erent measures of ine�ciency (subsection 4.3.4).
4.3.1 Example of Pareto ine�ciencyThe Pareto optimality is a global notion. Hence, although at each processor, the allocation is Paretooptimal, the result may not hold for a random number of machines. We will see later (Theorem 4)that the result holds if we have on all the machines Wn 6= ; OR on all the machines Bn 6= ;. Yet, ifthere are two workers n1 and n2 such thatWn1 = ; and Bn2 = ;, then the allocation may be Paretosub-optimal. We illustrate this on a simple example with a two-applications and two-machinessystem.
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Example 1. Consider a system with two computers A and B, with parameters B1 = 50, W1 = 100,B2 = 100, B2 = 50 and two applications of parameters b1 = 1, w1 = 2, b2 = 2 and w2 = 1.If the applications were collaborating such that application 1 was processed exclusively to computerA and application 2 in computer B, their respective throughput would be
�(coop)1 = �(coop)2 = 50:

Yet, with the non-cooperative approach they only get a throughput of
�(nc)1 = �(nc)2 = 37:5:

4.3.2 Su�cient conditionTheorem 4. If, in a system with a �nite number N of machines, we have
8n 2 J1; NK;Bn 6= ;

then, the non-cooperative allocation is Pareto optimal.
Proof. Suppose that for the N machines, Bn 6= ;. Suppose that the non-cooperative allocation�(nc) is not Pareto optimal. Then, there exists another allocation e� such that

8k; �(nc)k 6 e�k; and 9q 2 J1;KK; �(nc)q < e�q:
Then 8k;PNn=1 �(seq)n;k Bnbk =PNn=1 �(nc)n;k = �(nc)k 6 e�k =PNn=1 e�n;k =PNn=1 e�(seq)n;k Bnbk andPNn=1 �(seq)n;q Bnbq <PNn=1 e�(seq)n;q Bnbq , which implies

KX
k=1

NX
n=1�(seq)n;k Bn < KX

k=1
NX
n=1 e�(seq)n;k Bn (10)

However, as on each machine, at least one application is communication saturated (i.e. 8n;Bn 6= ;)then Pk �(seq)n;k = 1, which implies that 8n;Pk �(seq)n;k >Pk e�(seq)n;k . Hence �nally
NX
n=1

KX
k=1 �(seq)n;k Bn > NX

n=1
KX
k=1 e�(seq)n;k Bn;

which is in contradiction. with (10).
Corollary 1. If, in a system with a �nite number N of machines, we have

8n 2 N;Wn 6= ;
then, the non-cooperative allocation is Pareto optimal.
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4.3.3 Necessary and su�cient conditionSuppose that the applications are not all identical, that is to say that there exists k1 and k2 suchthat ck1 < ck2 . We have seen in Section 4.3.2, that two su�cient conditions for the Nash equilibriumto be Pareto optimal is that:
� 8n;Wn 6= ; (i.e. 8n;Pk Cnck > K)
� or 8n;Bn 6= ; (i.e. 8n;Pk ckCn > K).
In this section, we show that this condition is actually necessary.

Theorem 5. Suppose that the applications are not all identical, that is to say that there exists k1and k2 such that ck1 < ck2. Suppose that there exists two workers, namely n1 and n2 such that:
� Wn1 = ;
� and Bn2 = ;,

then the allocation at the Nash Equilibrium is Pareto ine�cient.
Proof. Let renumber the applications such that c1 6 c2 6 � � � 6 cK and suppose that there existsk 2 J1;K � 1K such that ck < ck+1. To show the Pareto ine�ciency of the Nash Equilibrium, weconstruct another allocation e� in which:

8k 2 J2;K � 1K; �(nc)k = e�k �(nc)1 < e�1 �(nc)K < e�K
The idea for this is to keep the allocations of the applications 2; : : : ;K � 1 unchanged. Wenote that n1 is relatively poor in bandwidth while n2 relatively lacks of computational capability.Also, as c1 < cK , the idea of the construction is to increase the fraction of jobs from application 1(respectively K) sent to worker n1 (resp. n2). More precisely, we take:
� 8n =2 fn1; n2g;8k 2 J1;KK; �(seq)n;k = e�(seq)n;k ; �(seq)n;k = e�(seq)n;k ,
� 8n 2 fn1; n2g;8k 2 J2;K � 1K; �(seq)n;k = e�(seq)n;k ; �(seq)n;k = e�(seq)n;k ,
� �(seq)n2;1 = e�(seq)n2;1 � "1, �(seq)n2;K = e�(seq)n2;K + "3, �(seq)n1;1 = e�(seq)n1;1 + "2, and �(seq)n1;K = e�(seq)n1;K � "4.

Hence 8k 2 J2;K � 1K; e�k = �(nc)k and 8n =2 fn1; n2g;�e�n;1 = �(nc)n;1 and e�n;K = �(nc)n;K�. Thesede�nitions leads us to the following equations for "1, "2, "3 and "4:8<:
Pk �(seq)n2;k = �Pk e�(seq)n2;k �+ � cKCn2 "3 � c1Cn2 "1�Pk �(seq)n2;k = �Pk e�(seq)n2;k �+ ("3 � "1)

8<:
Pk �(seq)n1;k = �Pk e�(seq)n1;k �+ ("2 � "4)Pk �(seq)n1;k = �Pk e�(seq)n1;k �+ �Cn1c1 "2 � Cn1cK "4�

As Bn2 = ;, we have Wn2 6= ; hencePk �(seq)n2;k = 1. By setting "1 = "3, we getPk e�(seq)n2;k = 1. Also,as Bn2 = ;, we have Pk �(seq)n2;k < 1, hence for "1 su�ciently small Pk e�(seq)n2;k < 1.As Wn1 = ;, we have Bn1 6= ; hence Pk �(seq)n1;k = 1. By setting "3 = "4, we get Pk e�(seq)n1;k = 1.Also, as Wn1 = ;, we have Pk �(seq)n1;k < 1, hence for "2 su�ciently small Pk e�(seq)n1;k < 1. Therefore,by setting "1 and "2 su�ciently small, e� is a valid allocation.
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Finally, since Wn1 = Bn2 = ;, then �(nc)n1;k = Bn1K:bk and �(nc)n2;k = Wn1K:wk . Hence �nally, e�1 > �(nc)1and e�K > �(nc)K are equivalent to e�n1;1 + e�n2;1 > �(nc)n1;1 + �(nc)n2;1 and e�n1;K + e�n2;K > �(nc)n1;K + �(nc)n2;K .We have:
e�n1;1 + e�n2;1 � �(nc)n1;1 + �(nc)n2;1 = Bn1b1 "2 � Wn2w1 "1

and
e�n1;K + e�n2;K > �(nc)n1;K + �(nc)n2;K = Wn2wK "1 � Wn1wK "2

Therefore, the conditions e�1 > �(nc)1 and e�K > �(nc)K are equivalent to:Wn2Bn1 c1 < "2"1 < Wn2Bn1 cK (11)
Hence, for "1 and "2 su�ciently small and satisfying (11), the allocation e� is strictly Paretosuperior to the Nash equilibrium of the system.

4.3.4 Degree of ine�ciencyWe have seen that the Nash equilibrium of the system can be Pareto ine�cient. An natural questionthen raising is "how much ine�cient" is it ? Unfortunately, de�ning Pareto ine�ciency is still anopen question. We recall in the following some possible de�nitions and study their properties.
De�nition of degree of ine�ciency Let us denote by f an e�ciency measure on the �k.Classical e�ciency measure are:Pro�t f(�1; : : : ; �K) =PKk=1 �kMax-min f(�1; : : : ; �K) = minKk=1 �kProportional f(�1; : : : ; �K) =QKk=1 �k
Inverse f(�1; : : : ; �K) = �PKk=1 1�k��1For a given system S (i.e. platform parameters along with the description of ourK applications),we denote by �(nc)k (S), the rates achieved on system S by the non-cooperative algorithm of Section 3.Let us denote by �(f)k (S), the optimal rates on system S for the metric f .One can de�ne the ine�ciency of the non-cooperative allocation for a given metric and a givensystem as: f ��(f)1 (S); : : : ; �(f)K (S)�

f �(�(nc)1 (S); : : : ; �(nc)K (S)� > 1
The degree of ine�ciency �f can be de�ned as the largest ine�ciency:

�f = maxI f ��(f)1 (S); : : : ; �(f)K (S)�
f ��(nc)1 (S); : : : ; �(nc)K (S)� > 1

Similarly, Papadimitriou [Pap98] introduced the now popular measure \price of anarchy", whichcorresponds to the ine�ciency degree for the pro�t metrics.
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Figure 4: Pareto-ine�ciency of the Nash Equilibrium on a two-machines/two-applications system
Properties Consider again a system with two applications and two machines with parameters:

b1 = 1 w1 = N b2 = N w2 = 1BA = 100 WA = 100 �N BB = 100 �N WB = 100
Consider then the non-cooperative approach. We have WA = ; and BB = ;. We have:

�(nc)n;1 = BA2b1 + WB2w1 = 50�1 + 1N
�

�(nc)n;2 = BA2b2 + WB2w2 = 50�1 + 1N
�

However, �(coop)n;1 = 100 �(coop)n;2 = 100:As the utility set is clearly symmetrical for this system (see Figure 4), and the e�ciency measuredo not favor a particular application, the optimal point for all the previous measures is �(coop). As�(coop)n;1�(nc)n;1 = �(coop)n;2�(nc)n;2 �����!N!+1 2, the e�ciency degree of all previous measures is larger than two (exceptfor the Proportional measure that is equal to 4).
4.4 Braess-like paradoxesWhen studying properties of Nash equilibria in routing systems, Braess exhibited an example inwhich, by adding resource to the system (in his example, a route), the performance of all the userswere degraded. We investigate in this section whether such situations can occur in our consideredscenario.Based on the de�nition of the Pareto optimality, we de�ne the concept of strict Pareto-superiority.
De�nition 5. We say that a utility point a is strictly Pareto-superior to a point b is for all playersai < bi.
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Obviously, a Pareto-optimal point is such that there exists no achievable point strictly-Paretosuperior to it.Let us consider a system (called "initial") and a second one (referred to as the "augmented"system), derived from the �rst one by adding some quantity of resource. Intuitively, the Nashequilibrium aug in the augmented system should be Pareto-superior to the one in the initial systemini. We say that a Braess paradox happens when ini is strictly Pareto-superior to point aug.Obviously, every achievable state in the initial system is also achievable in the augmentedsystem. Hence if a is an achievable point in the initial system and if b is a Pareto optimal pointis the augmented one, then a cannot be strictly Pareto superior to b. Hence Braess paradoxes areconsequences of the Pareto ine�ciencies of the Nash equilibria.
4.4.1 PropertyWe show that, even though the Nash equilibria may not be Pareto optimal, in the consideredscenario, Braess paradoxes cannot occur.
Theorem 6. In the non-cooperative multi-port scheduling problem, Braess like paradoxes cannotoccur.

To prove this proposition, we need to use two lemmas and the following de�nition.
De�nition 6 (Equivalent subsystem). Consider a system S = (K; b; w;N;B;W). We de�nethe new subsystem eS = (K; b; w;N; eB;fW) by: For each worker n,

fWn = (Pk BnKck if Wn = ;,Wn otherwise. and eBn = (Pk WnckK if Bn = ;,Bn otherwise.
We shall now precise why eS is said to be an equivalent subsystem of S.

Lemma 2 (Equivalent subsystem). Consider a system S = (K; b; w;N;B;W) and its Nashequilibrium �(nc).
i) The system eS is a subsystem of S, i.e. for all worker n: eBn 6 Bn and fWn 6Wn.ii) The Nash equilibrium e�(nc) of the subsystem eS veri�es:

8n; 8k; �(nc)n;k = e�(nc)n;k
iii) The Nash equilibrium e�(nc) of the subsystem eS is Pareto-optimal.
Proof. Let n 2 J1;NK.
i) If Wn = ;, then using theorem 2, we know that Pk Cnck 6 K, hence fWn = Pk BnKck 6 Wn. IfWn 6= ;, then fWn =Wn, hence the result.Similarly, if Bn = ;, then using theorem 2, we know thatPk ckCn 6 K, hence eBn =Pk WnckK 6Bn. If Bn 6= ;, then eBn = Bn, hence the result.
ii) If Wn = ;, then using theorem 1, we know that �(nc)n;k = BnK:bk . As Wn = ;, we have eBn = Bn.Therefore Pk eCnKck = 1, hence fWn = ; and e�(nc)n;k = eBnK:bk = BnK:bk = �(nc)n;k .
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If Bn = ;, then using theorem 1, we know that �(nc)n;k = WnK:wk . As Bn = ;, we have fWn = Wn.Therefore Pk ckK eCn = 1, hence eBn = ; and e�(nc)n;k = fWnK:wk = WnK:wk = �(nc)n;k .Last, if neither Bn = ; nor Wn = ;, then (Bn;Wn) = ( eBn;fWn), and e�(nc)n;k = �(nc)n;k .
iii) Finally, note that 8n;fWn 6= ; and eBn 6= ;. Hence, from Prop. 4 the Nash equilibrium e�(nc) isPareto optimal.
Lemma 3. Consider two systems S = (K; b; w;N;B;W) and S0 = (K; b; w;N;B0;W 0) and theirrespective equivalent subsystems eS = (K; b; w;N; eB;fW) and eS0 = (K; b; w;N; eB0;fW 0). Suppose that8n;B0n > Bn and W 0n >Wn then 8n; eB0n > eBn and fW 0n > fWn.
Proof. Let �(nc) and �(nc)0 be the Nash equilibrium of S and S0.If �(nc)0 is Pareto optimal then eB0n = B0n and fW 0n =W 0n. Hence, 8n; eBn 6 Bn 6 B0n = eB0n. Similarly8n;fWn 6 fW 0n hence the result.Suppose that �(nc)0 is not Pareto optimal. Let n 2 J1; NK.

� If Ws 6= ; and Bs 6= ; then BB0s = B0s and WW 0s = W 0s. Hence BBs 6 Bs 6 B0s = BB0s,similarly WWs 6WW 0s.� If Bs = ; then WW 0s = Pk ckB0s=K. But, as Bs 6 B0s, then Pk ckBs=K 6 WW 0s. AsWWsBBs 6
PckK (from the construction of (N;BB;WW )), then WWs 6WW 0s and BBs 6 Bs 6B0s = BB0s.

� Similarly, if Bn = ;, then BB0s = W 0s P 1=ckK . As W 6 W 0 then BBs 6 BB0s while WWs 6Ws 6W 0s =WW 0s.We can then �nally prove Theorem 6:
Proof. Consider a user-system S = (K; b; w), and two physical-systems: the initial system (N;B;W)and its Nash equilibrium �(nc) and a second system obtained by adding some quantity of resourceto the �rst one (N 0; B0;W 0), and its Nash equilibrium �(nc)0. We want to show that �(nc) cannotbe Pareto superior to �(nc)0.Suppose that the second system is obtained by adding some machines to the system (i.e. N 0 >N). Then, as the non cooperative game at each machine is independent, the equilibrium on theN original machines will not be a�ected by the new machines. On the other hand, as in the newmachine the allocation of throughput of each application will be strictly positive, then necessary�(nc)0 is strictly Pareto superior to �(nc).Suppose now that the second system consists ofN machines with respective bandwidth and com-putational capacities B0 andW 0. By de�nition of the augmented system we have 8n 2 J1; NK; B0n >Bn and W 0n >Wn.Consider the equivalent subsystems of the initial and the augmented systems (N; eB;fW) and(N; eB0;fW 0) (de�ned as in Lemma 2). Then, from Lemma 3, we have 8n; eBn 6 eB0n and fWn 6 fW 0n.As the Nash equilibria �(nc) and �(nc)0 are both Pareto optimal in these systems, then �(nc) cannotbe Pareto superior to �(nc)0.
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5 Performance measures
In this section we show that unexpected behavior of some typical performance can occur even forPareto optimal situations. To ensure optimality of the Nash equilibrium, we consider applicationsrunning on a single processor (Prop. 3).We recall that the Pareto optimality is a global performance measure. Yet, it is possible that,while the resources of the system increase (either by the adding of capacity to a link or of com-putational capabilities to a processor), the performance measure of a given application decreases.The aim of this section is to illustrate this phenomenon on some typical performance measures.More precisely, we show through examples the non-monotonicity of the maximal throughput(Subsection 5.2), of the minimal throughput (Subsection 5.3) and of the average throughput (Sub-section 5.4). We �nally end this section with an example where all these performance measuresdecrease simultaneously with the increase of the resources.We can note that all of these performance measures are consequences of the non-monotonicityof the throughput of a given application (�(nc)k ), which we hence analytically study (Subsection5.1).In the following, we suppose that only one of the resource of the system increases. By symmetry,we suppose that the computational capacity (Wn) is constant, while the link capacity Bn increases.
5.1 Variation of the throughput of a given applicationEven on a single processor, the throughput of the application is not a increasing function. Evenworse, the degradation can be arbitrarily large.When considering the equations at the Nash equilibrium (1), we can distinguish 3 cases :

� 2 "saturated" situations that are :
satWn If Wn = ; (i.e. Bn 6 Wn=Pk 1Kck ), then �(nc)n;k = BnK:bk , i.e. the throughput of eachapplication is proportional to Bn. We will note satWn =]0;Wn=Pk 1Kck ].satBn If Bn = ; (i.e. Pk ckWnK 6 Bn), then �(nc)n;k = WnK:wk , i.e. the throughput of eachapplication is constant with respect with Bn. We will note satBn =]Pk ckWnK ;+1].

� 1 "continuous" situation when Wn=Pk 1Kck < Bn <Pk ckWnK .
Obviously, in the "saturated" situations, the throughput �(nc)n;k are increasing or constant andthe order between the applications is preserved (i.e. if for Bn 2 satWn (resp. satBn), �(nc)n;k1 6 �(nc)n;k2then for all B0n 2 satWn (resp. satBn) we have �(nc)n;k1 6 �(nc)n;k2 .To simplify the analysis, we consider the degradation obtained when Bn =Pk ckWnK comparedto the situation where Bn = Wn=Pk 1Kck . It is hence a lower bound on the actual maximumachievable degradation.Consider now a system of K applications. Suppose that Wn is given. For Bn = Wn=Pk 1Kck ,then, for all k, �(nc)n;k = BnKbk = WnPp bkcp . When Bn is larger than Pk ckWnK , then �(nc)n;k = WnKwk . Hence:

�(nc)n;k before�(nc)n;k after = KPp ck=cp
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Suppose now that 8p 6= k; cp = K and ck = 1. Then �before�after � K=2. Hence, when the number ofapplications grows to in�nity, the degradation of the application having the smaller ck also growsto in�nity.
Remark 2. The applications with the smaller coe�cient ck is the most penalized by an increase ofthe communication resource.
5.2 Maximal performanceWe show in this section that even in a single processor system, the maximal throughput can strictlydecrease with the adding of resource, and illustrate it with a numerical example (Fig. 5).
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Figure 5: The maximal throughput can decrease while the resource (the bandwidth) increases.
Theorem 7. In a system with K applications and a single processor, for a given Wn,

� if Bn 6 Wn Pk ckK the application k having the higher throughput �(nc)n;k is the one having thesmaller value of bk.
� if B >Pk ckWnK the application k having the higher throughput �(nc)n;k is the one whose wk isthe smallest.

Additionally, for given values of ck, the degradation of the higher throughput when Bn increasescan be unbounded. More precisely, a lower bound of the maximal degradation is proportional toKPk 1=ck mink wkmink bk . Hence, for appropriate choices of mink bk and mink wk (for all ck �xed), thedegradation can be chosen arbitrarily large.
Proof. Let us consider a system with K applications, with given values of ck and a given value ofWn. Then,

� when Bn =Wn=Pk 1Kck then Wn = ; and maxk �(nc)n;k = BnK:mink bk = Wn(mink bk)Pk 1ck
� and when Bn = ckWnK we have Bn = ; and maxk �(nc)n;k = WnKmink wk .
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Hence, the application having the higher throughput can be di�erent in satBn and satWn (asillustrated in Fig 5) and the maximum degradation when B grows from satBn to satWn is henceKP 1=ck mink wkmink bk .Consider for example the example depicted in Fig. 5. As maxk wk = w1 and mink bk = b4, thenthe application having the higher throughput is application 1 in satBn and application 4 in satWn,and a lower bound of the degradation is 90=79.
5.3 Minimal performanceWe show here a similar result as what we obtained in Section 5.2 for the minimal throughput. Thatis, even in a single processor system, the minimal performance can decrease with an increase of theresource. We illustrate this property with a numerical example (Fig. 6).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12

�1�2�3�4
�(nc)n;k

Bn

b = f5; 7; 10; 4g;w = f4; 7; 14; 6g;K = 4;W = 10:

Figure 6: The minimal throughput can decrease with the resource (here the bandwidth)
Theorem 8. In a system with K applications and a single processor, for a given Wn,

� if Bn 6 Wn=Pk 1Kck the application k having the smaller throughput �(nc)n;k is the one havingthe largest value of wk.
� if Bn > Pk ckWnK the application k having the lower throughput �(nc)n;k is the one whose bk isthe largest.

Additionally, for given values of ck, the degradation of the smaller throughput when B increasescan be unbounded. More precisely, a lower bound of the maximal degradation is proportional toKP 1=ck maxk wkmaxk bk . Hence, for appropriate choices of maxk bk and maxk wk (for all ck �xed), thedegradation can be chosen arbitrarily large.
Proof. Let us consider a system with K applications, with given values of ck and a given value ofWn. Then,
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� when Bn =Wn=Pk 1Kck then Wn = ; and mink �(nc)n;k = BnKmaxk bk = Wnmaxk bk:Pk 1=ck
� and when Bn =Pk ckWnK we have Bn = ; and mink �(nc)n;k = WnKmaxk wk .Hence, the application having the smaller throughput can be di�erent in satBn and satWn (asillustrated in Fig 6) and the maximum degradation when Bn grows from satBn to satWn is henceKP 1=ck maxk wkmaxk bk .Consider for example the example depicted in Fig. 6. As argmaxfwkg = argmaxfbkg = 3, thenthe application having the lower throughput is application 3 in both satBn and satWn, and a lowerbound of the degradation is 56=47.

5.4 Average performanceIn this section we focus on the monotonicity of the average throughput, and illustrate our resultwith a numerical example (Fig. 7).
Theorem 9. Consider, as a performance measure, the average of the applications throughputs.Then, the degradation of these performance measure when B increase can be arbitrarily large.
Proof. Consider a system with K applications, with given values of ck and a given value of Wn.Then, when Bn = Wn=Pk 1Kck then Wn = ; and Pk �(nc)n;k = WnPk 1=ck Pk 1bk and when Bn =Pk ckWnK we have Bn = ; andPk �(nc)n;k = WnK Pk 1wk . Hence, the performance degradation becomespbefpaft = KPk wkbk

Pk 1bkPk 1wk . Suppose further that the applications are such that b1 = w1 = 1 and
8k 6= 1; bk = P 2 wk = P . Then, the lower bound becomes: pbefpaft = K 1 + K�1P 2�1 + K�1P �2 ����!P!1 K.

Consider the example depicted in Fig. 7. A lower bound of the degradation is 17409=14018 '1:24.
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Figure 7: The average throughput can decrease with the resource (here the bandwidth)
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5.5 All measures considered simultaneouslyWe end this section with an example in which all the performance measures we considered aresimultaneously degraded when the bandwidth Bn of the link connecting the master to the slave isincreased.Consider the example represented in Fig. 8. In this example, when the bandwidth B is 9:5 thethree measures (namely the higher throughput, the lower throughput and the average throughput)have lower values than when the bandwidth B is only equal to 7:9.
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Figure 8: The three performance measures can simultaneously decrease with the resource
6 Conclusion
We have presented a simple yet realistic situation where the system-level fairness fails to achieve arelevant application-level fairness. Even though the system achieves a perfect sharing of resourcesbetween applications, the non-cooperative usage of the system leads to important application perfor-mance degradation and resource wasting. We have proved the existence and uniqueness of the Nashequilibrium in our framework and extensively studied its property. Surprisingly, the equilibriumis Pareto-optimal on each worker independently. However, it may not be globally Pareto-optimal.We have proved that no Braess-like paradoxical situations could occur, which is, to the best ofour knowledge, the �rst situation where Pareto-ine�cient non-cooperative equilibrium cannot leadto Braess-like paradox. However, even if such situations cannot occur, the performances of theequilibrium are relatively poor and can be arbitrarily bad for any classical performance measure.The key hypothesis for deriving a closed-form description of the equilibria is the multi-porthypothesis. Under this hypothesis, some time information could be lost when using equivalentrepresentations, which resulted in simpler equations than if a 1-port model had been used. Prelimi-nary simulations with this model show that Braess-like paradoxes may occur. The understanding ofsuch situation is crucial to large-scale system planing and development as there is no way to predicttheir apparition so far. Analytical characterizations of such a framework could provide signi�cantinsights on the key ingredients necessary to the occurrence of Braess-like paradoxes.Last, we can see from this study that cooperation between applications is essential even forsimple applications constituted of a huge number of independent identical tasks. As far as theframework of this article is concerned, some steps in this direction have been given in [BLCJF+06]where some distributed algorithms are proposed and compared to an optimal but centralized one.
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However in this work, there is a single scheduler whose duty is to achieve the best throughput for allapplications while ensuring a max-min fairness criteria. In a fully-decentralized setting, some formof cooperation (e.g. similar to the one proposed by [YRRMCR00] for elastic tra�c in broadbandnetworks) between di�erent schedulers should be designed.
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