Cooperation in Multi-Organization Matching

Fanny Pascual, LIP6

Joint work with Laurent Gourvès and Jérôme Monnot (Lamsade)

Gamecomp, 22 mai 2008
Outline

1. Presentation of the problem
 • Definition
 • Applications
 • Advantages and limits of the cooperation

2. Complexity

3. Approximation

4. Generalization: relaxing the selfishness
Presentation of the problem

Given:
- a set of k organizations O_1, \ldots, O_k (agencies)
- a bipartite graph $G=(V_1,V_2,E)$ where each vertex belongs to an organization.

Cost of edge e: $w(e)$ (price the buyer can pay)

Aim of an organization: maximize its gain.
(percentage on the amount of transactions done)

- p_1 and p_2 s.t. $0 \leq p_1 \leq p_2 \leq 1$ and $p_1 + p_2 = 1$.

Profit of O_i in a matching M:
$Gain(O_i,M) = p_1 \sum_{e \in (M \cap V_1) \cap O_i} w(e) + p_2 \sum_{e \in (M \cap V_2) \cap O_i} w(e)$

Example: $Gain(O_2,M) = w(e_2) + p_1 w(e_3) + p_2 w(e_1)$
Let $\text{GainAlone}(O_i)$ be the max. weight of a matching induced by the edges of O_i.

The multi-organization assignment problem (MOA):
Find a maximum weight matching M such that for each O_i:

$$\text{Gain}(O_i,M) \geq \text{GainAlone}(O_i).$$

Notation: $\text{Gain}(M) = \bigcup_{1 \leq i \leq k} \text{Gain}(O_i,M)$
Presentation of the problem

Example:
(all the weights are equal to 1, \(p_1 = p_2 = 0.5 \))

\[
\begin{align*}
\text{Gain Alone}(O_1) &= 2 \\
\text{Gain Alone}(O_2) &= 1 \\
\text{Gain Alone}(O_3) &= 2
\end{align*}
\]

\[
\begin{align*}
\text{Gain}(O_1, M) &= 2 \\
\text{Gain}(O_2, M) &= 2.5 \\
\text{Gain}(O_3, M) &= 2.5
\end{align*}
\]
A scheduling example

Each organization owns:
- Machines (which may be different)
- Users: each user wants to execute a unit task on a machine, and gives its preferences (integer between 1 and B).

Aim of each organization: maximize the average satisfaction of its users.

Global aim: maximize the average total satisfaction.

MOA problem with $p_1 = 1$ and $p_2 = 0$.

Tasks

(Machine, time slot)

T_{1A} $M_1,[0,1]$ T_{1B} $M_1,[1,2]$ T_{1C}

T_{2A} $M_2,[0,1]$ T_{2B} $M_2,[2,3]$ $M_2,[3,4]$ T_{3A} $M_3,[0,2]$ $M_4,[0,1]$
Cooperation can help a lot

Cooperation allows much better solutions.

Without cooperation:
Gain = 2ε << 1

With cooperation:
Gain = 1
Limits of cooperation

- **Non-cooperating game:**
 - **Players** = organizations
 - **Strategies** = \{accept the proposed solution; compute its own maximum matching\}

- **Price of stability =**
 \[
 \max_{\text{instances}} \frac{\text{Gain in the best Nash equilibrium}}{\text{Gain in the best solution}}
 \]
 \[
 \max_{\text{instances}} \frac{\text{Gain}(\text{MOAopt})}{\text{Gain}(M^*)} \quad (M^* \text{ is a max. weight matching of } G)
 \]
Limits of cooperation

- Proposition: The price of stability is p_1.

\[
\text{Price of stability } \geq \frac{\text{Gain(MOAopt)}}{\text{Gain(M*)}} = \frac{1}{1/p_1 - \varepsilon} = \frac{p_1}{1 - (p_1 \varepsilon)}
\]
Outline

1. Presentation of the problem
 • Definition
 • Applications
 • Advantages and limits of the cooperation

2. Complexity
 • A polynomial case
 • General case

3. Approximation

4. Generalization: relaxing the selfishness
A polynomial case

- **Proposition:** If the graph is unweighted, then the MOA problem is polynomial time solvable.

Algorithm:
- Compute a maximum weight matching for each organization.
- Increase the size of the matching of G by augmenting its paths while it is possible.
A polynomial case

• This algorithm returns an optimal solution:
 - Improving the matching via an augmenting an alternating path does not diminish the gain of any organization.
 - The resulting matching is feasible and of max. cardinality since no more augmenting path exists.

Gain = 1 \quad \text{Gain} = p1 + p2 = 1
General case

• Proposition: The MOA problem is NP-hard if $k \geq 2$.

 Proof: Reduction from the Partition problem.

• Proposition: The MOA problem is strongly NP-hard if k is not fixed.

 Proof: Reduction from the 3-Partition problem.
Outline

1. Presentation of the problem
2. Complexity
3. Approximation
 • Approximate algorithm
 • Inapproximability
4. Generalization: relaxing the selfishness
Approximation algorithms

- An algorithm A is x-approximate if
 \[\max_{\text{instances}} \frac{\text{Gain in the solution returned by } A}{\text{Gain in the best solution}} \geq x \]

\Rightarrow Algorithm $\frac{1}{2}$-approximate: returns a matching whose gain is at least $\frac{1}{2}$ the gain of an optimal solution of the MOA problem.
Approximate algorithm (APPROX)

- Construct from G a graph G' with the same vertices and edges and s.t. for each e of E:
 - if e is shared between 2 organizations: $w(e') = p_1 w(e)$;
 - otherwise $w'(e) = w(e)$.

- Return a maximum weight matching in G'.

$p_1 = p_2 = \frac{1}{2}$:
Approximate algorithm

Proposition: APPROX is a p_1-approximate algorithm for the MOA problem.

Proof: ($p_1=p_2=\frac{1}{2}$):

- APPROX is $\frac{1}{2}$-approximate:

 Gain of the returned solution $\geq \text{Gain}(M^*(G'))$

 In G', the weight of each edge has been at most divided by 2.

 Thus $\text{Gain}(M^*(G')) \geq \frac{1}{2} \text{Gain}(M^*(G)) \geq \frac{1}{2} \text{Gain}(\text{MOAopt})$
Approximate algorithm

• M, the solution returned by APPROX is feasible:
 - $\text{Mint}(i)$: edges of M whose both endpoints belong to O_i
 - $\text{Mshared}(i)$: edges of M whose 1 endpoint belongs to O_i

M is a max. weight matching of G'

$\Rightarrow \text{Gain}'(\text{Mint}(i)) + \text{Gain}'(\text{Mshared}(i)) \geq \text{GainAlone}(i)$

$\text{Gain}(O_i) = \text{Gain}(\text{Mint}(i)) + \frac{1}{2} \text{Gain}(\text{Mshared}(i))$

$\geq \text{Gain}'(\text{Mint}(i)) + \text{Gain}'(\text{Mshared}(i))$

$\geq \text{GainAlone}(i)$
Inapproximation

Proposition: If $k \geq 3$, for all $\varepsilon > 0$,
$(p_1 + \varepsilon)$-approximation is NP-hard.

Proof: We can map a Partition instance into a MOA instance s.t. there are two possible optimal solutions A and A/p_1 and so that
\exists Partition \iff OPT = A

$(p_1 + \varepsilon)$-approximate algorithm can distinguish between the instances with OPT = A from instances with OPT = A/p_1.
Outline

1. Presentation of the problem
2. Complexity
3. Approximation
4. Generalization: relaxing the selfishness
Relaxing the selfishness of the organizations

- Each organization accepts to divide its gain by $\alpha \geq 1$.

- **MOA(α) problem**: find a max. weight matching s.t. \(\text{Gain}(O_i,M) \geq \text{GainAlone}(O_i) / \alpha \).

- If $\alpha = 1$: this is the MOA problem.
- If $\alpha \geq 1/p_1$: a max. weight matching (without taking into account the constraints of the organizations) is feasible.
- What happens when $1 > \alpha > 1/p_1$?
Relaxing the selfishness of the organizations

• **Complexity:**
 For all $1 > \alpha > 1/p_1$, the MOA(α) problem is strongly NP-hard if $k \geq 3$.

• **Approximate algorithm:**
 We slightly modify APPROX: the cost of each shared edge is multiplied in G' by (αp_1). This is a (αp_1)-approximate algorithm.
Conclusion

• A study of the incentive to make agents cooperate at the algorithmic level, for the assignment problem.

• A problem polynomial in the unweighted case; NP-hard, p_1-approximable (and not $(p_1+\varepsilon)$-approximable when $k>2$) otherwise. It remains hard when we relax the selfishness of the organizations.
Perspectives

• Is the MOA problem strongly NP-hard when $k=2$? [related to the exact perfect matching problem]

• When we relax the selfishness: is the MOA(α) problem inapproximable?

• Experimental results

• Fairness issues