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Congestion games

〈N,M, (Ai )i∈N , (cj )j∈M〉

N = {1, . . . , n}, selfish players

M = {1, . . . ,m}, resources

Ai ⊆ 2M , strategy space of player i

cj , cost function associated with resource j

Rosenthal’s potential function Φ : A1 × A2 × . . . × An → Z

Existence of pure Nash equilibria
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Congestion games

Two fundamental questions:

1 Time to converge to a pure NE

2 Performance deterioration due to selfish behavior

Two devastating answers:

1 finding a pure NE is PLS-complete

[Fabrikant, Papadimitriou & Talwar STOC 2004]

2 very far from the social optimum

[Christodoulou & Koutsoupias STOC 2005]
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Motivation

Previous results hold for the general (worst) case

If the strategy space of each player consists of the bases of a
matroid over the set of resources, then the length of all best
response sequences are polynomially bounded in the number of
players and resources [Ackermann, Röglin and Vöcking. FOCS 2006]

We need to explore the underlying combinatorial structure of
congestion games:

the focus of this talk is on :

Performance deterioration due to selfish behavior

paradigmatic problem in CO: sat
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max sat

variable set: X = {x1, . . . , xn}

clause set: C = {C1, . . . ,Cm}

a clause is a disjunction of literals (e.g. x1 ∨ x3)

each clause Cj has a weight wj

max sat: Find a truth assignment that maximizes the weight
of satisfied clauses

max e k−sat: each clause has exactly k literals

max k−sat: each clause has at most k literals

Laurent Gourvès On the performance of congestion games for optimum satisfiabilit



Congestion games
A max sat game
A min sat game

Conclusion

An example

X = {x1, x2, x3, x4, x5}

C = {C1,C2,C3,C4}

C1 x1 w1 = 4
C2 x1 ∨ x3 w2 = 1
C3 x2 ∨ x4 w3 = 2
C4 x3 ∨ x5 w4 = 3

The truth assignment (true, true, true, false, false) has weight 6
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A max sat game

Each variable xi is controlled by a selfish player with strategy space
{true, false}

General payment scheme:
• a variable receives nothing from a clause she does not satisfy
• if ` variables satisfy Cj then each of them get f (`)wj

utility ui of player i = sum of rewards received over all clauses

max sat game ∈ congestion games
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A ”fair” payment scheme

f (`) = 1/` → if ` variables satisfy Cj then each of them get wj/`

C1 x1 w1 = 1
C2 x1 ∨ x2 w2 = 1
C3 x1 ∨ x3 w3 = 1

(true, true, true) is a Nash equilibrium for the fair payment scheme

(false, true, true) is optimal

What is the deterioration of the system’s performance due to the
lack of coordination between selfish agents?

Can we give a better payment scheme?
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Price of Anarchy

Capturing the deterioration of the system’s performance due to the
lack of coordination between selfish agents

(pure) Price of Anarchy min~a∈PNE
Q(~a)
Q(~a∗)

Koutsoupias & Papadimitriou, 99

System’s state: ~a ∈ A = ×i∈NAi

Overall quality of the system Q : A → R≥0

PNE (G ): set of (pure) Nash Equilibria of G

~a∗ = argmax~a∈A{Q(~a)}
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PoA

Theorems

Under the fair payment scheme, the PoA of the max e

k−sat game is k
k+1

Under the fair payment scheme, the PoA of the max k−sat

game is k
2k−1
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Proof sketch

THM: The PoA of the max e k−sat game is k
k+1

Assumption: ∀i ai = true

Nash property: ui (~a) ≥ ui

(

(~a−i , false)
)

SAT = weight of the Nash equilibrium
UN = weight of the clauses not satisfied by the NE

∑

i∈N

ui(~a) ≥
∑

i∈N

ui

(

(~a−i , false)
)

SAT ≥ k UN

(k + 1)SAT ≥ k SAT + k UN ≥ k OPT
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Tightness

C1 x1 ∨ x2 ∨ . . . ∨ xk w1 = 1
C2 x1 ∨ x2 ∨ . . . ∨ xk w2 = k

(true, true, . . . , true) is a NE satisfying C2, SAT = k

(false, true, true, . . . , true) satisfies {C1,C2}, OPT = k + 1
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Connection to local search

congestion game local search

system’s state ↔ feasible solution
potential function Φ ↔ cost function c

unilateral move ↔ neighborhood
Nash equilibrium ↔ local optimum
PoA Overall quality Q locality gap

c = Q in standard local search

c not necessarily equal to Q in non oblivious local search
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A better payment scheme for the max e 2−sat game

We focus on the max e 2−sat game

Non oblivious payment scheme:
• if 1 variable satisfies Cj then she gets wj

• if 2 variables satisfy Cj then each one gets wj/3

THM: The PoA of the max e 2−sat game under the
non oblivious payment scheme is 3/4

Recall that PoA= 2/3 under the fair payment scheme
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Proof sketch

SAT = weight of the Nash equilibrium
ONE = weight of the clauses satisfied by one variable
TWO = weight of the clauses satisfied by two variables
UN = weight of the clauses not satisfied

∑

i∈N

ui(~a) ≥
∑

i∈N

ui

(

(~a−i , false)
)

ONE +
2

3
TWO ≥ 2UN +

1

3
ONE

2

3
ONE +

2

3
TWO ≥ 2UN

2

3
SAT ≥ 2UN

SAT ≥ 3UN

4SAT ≥ 3UN + 3SAT ≥ 3OPT
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Tightness

k = 2

x1 ∨ x2

x3 ∨ x4

x1 ∨ x2

x2 ∨ x3

x3 ∨ x4

x4 ∨ x1

(true, true, true, true, true, true) is a NE satisfying 4 clauses

(false, true, false, true, true, true) satisfies 6 clauses
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Better payment schemes

There exists a payment scheme such that the PoA of the max

e k−sat game is 1 − 1
2k

There exists a payment scheme such that the PoA of the max

k−sat game is 2
3

There exists a non oblivious local search algorithm with locality
gap 1 − 1/2k for max e k sat [Khanna et al, 98]

There exists a non oblivious local search algorithm with locality
gap 2/3 for max k sat
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Best payment schemes

General payment scheme:
• a variable receives nothing from a clause she does not satisfy
• if ` variables satisfy Cj then each of them get f (`)wj

There exists a family of instances of the max e k− sat game
such that PoA= 1 − 1/2k

x1 ∨ x2

x1 ∨ x3

x2 ∨ x4

x3 ∨ x4
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Other results

How good is the best Nash equilibrium?

Price of Stability max~a∈PNE
Q(~a)
Q(~a∗)

Lemma : PoA = PoS for the max sat game
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A min sat game

min sat: Find a truth assignment that minimizes the weight
of satisfied clauses

Players are penalized for satisfying a clause

Fair penalty scheme:
• a variable pays nothing for a clause she does not satisfy
• if ` variables satisfy Cj then each one must pay wj/`

Theorems:

The PoA of the min k− sat game is k

The PoS of the min k− sat game is 1 + 1
2 + . . . + 1

k
= H(k)
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PoA

C0 x1 ∨ x2 ∨ · · · ∨ xk w0 = 1
C1 x1 w1 = 1
C2 x2 w2 = 1
...

...
...

Ck xk wk = 1
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PoS

Rosenthal’s potential function of the min k− sat game

Φ(a) =
k

∑

j=1

H(j)W (covj (a))

where covj (a) is the clauses satisfied by exactly j variables

SAT = W (a) ≤ Φ(a) ≤ Φ(a∗) ≤ H(k)W (a∗) = H(k)OPT
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PoS

C0 x1 ∨ x2 ∨ · · · ∨ xk w0 = 1 + ε
C1 x1 w1 = 1
C2 x2 w2 = 1/2
...

...
...

Cj xj wj = 1/j
...

...
...

Ck xk wk = 1/k
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Conclusion & future work

PoA and PoS of the max sat and min sat games

Matching lower and upper bounds on the PoA

Connection with non oblivious local search

Other prices: Strong price of anarchy

Explore other paradigmatic problems in CO:

set cover

max cut

spanning tree

etc
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Questions?

Thank you for your attention

Laurent Gourvès On the performance of congestion games for optimum satisfiabilit


	Congestion games
	A max sat game
	A min sat game
	Conclusion

