On the performance of congestion games for optimum satisfiability problems

Laurent Gourvès

CNRS LAMSADE - Université Paris Dauphine

May 23, 2008

joint work with A. Giannakos, J. Monnot & V. Th. Paschos

< 6 >

A B > A B >

Congestion games

$$\langle N, M, (A_i)_{i \in N}, (c_j)_{j \in M} \rangle$$

- $N = \{1, \ldots, n\}$, selfish players
- $M = \{1, \ldots, m\}$, resources
- $A_i \subseteq 2^M$, strategy space of player *i*
- c_j, cost function associated with resource j

Rosenthal's potential function $\Phi : A_1 \times A_2 \times \ldots \times A_n \to \mathbb{Z}$ Existence of pure Nash equilibria

くぼう くまう くまう

Congestion games

Two fundamental questions:

- Time to converge to a pure NE
- Performance deterioration due to selfish behavior

Two devastating answers:

- finding a pure NE is PLS-complete
 [Fabrikant, Papadimitriou & Talwar STOC 2004]
- very far from the social optimum
 [Christodoulou & Koutsoupias STOC 2005]

Motivation

Previous results hold for the general (worst) case

If the strategy space of each player consists of the bases of a matroid over the set of resources, then the length of all best response sequences are polynomially bounded in the number of players and resources [Ackermann, Röglin and Vöcking. FOCS 2006]

We need to explore the underlying combinatorial structure of congestion games:

the focus of this talk is on :

- Performance deterioration due to selfish behavior
- paradigmatic problem in CO: SAT

A (1) > A (2) > A

Laurent Gourvès On the performance of congestion games for optimum satisfiabili

- 4 同 2 4 日 2 4 日 2

э

MAX SAT

- variable set: $X = \{x_1, \ldots, x_n\}$
- clause set: $C = \{C_1, \ldots, C_m\}$
 - a clause is a disjunction of literals (e.g. $x_1 \vee \overline{x}_3$)

• each clause
$$C_j$$
 has a weight w_j

MAX SAT: Find a truth assignment that maximizes the weight of satisfied clauses

MAX E k-SAT: each clause has exactly k literals MAX k-SAT: each clause has at most k literals

An example

$$X = \{x_1, x_2, x_3, x_4, x_5\}$$

$$C = \{C_1, C_2, C_3, C_4\}$$

$$(1 - \overline{X})$$

$$W_1 = 4$$

The truth assignment (true, true, true, false, false) has weight 6

(日) (同) (三) (三)

э

A MAX SAT game

Each variable x_i is controlled by a selfish player with strategy space $\{true, false\}$

General payment scheme:

- a variable receives nothing from a clause she does not satisfy
- if ℓ variables satisfy C_j then each of them get $f(\ell) w_j$

utility u_i of player i = sum of rewards received over all clauses

MAX SAT game \in congestion games

A "fair" payment scheme

 $f(\ell) = 1/\ell
ightarrow$ if ℓ variables satisfy C_j then each of them get w_j/ℓ

C_1	\overline{x}_1			$w_1 = 1$
<i>C</i> ₂	x_1	\vee	<i>x</i> ₂	$w_2 = 1$
<i>C</i> ₃	x_1	\vee	<i>X</i> 3	$w_3 = 1$

(*true*, *true*, *true*) is a Nash equilibrium for the fair payment scheme (*false*, *true*, *true*) is optimal

What is the deterioration of the system's performance due to the lack of coordination between selfish agents? Can we give a better payment scheme?

Price of Anarchy

Capturing the deterioration of the system's performance due to the lack of coordination between selfish agents

(pure) Price of Anarchy
$$\min_{\vec{a} \in PNE} \frac{Q(\vec{a})}{Q(\vec{a}^*)}$$

Koutsoupias & Papadimitriou, 99

・ 同 ト ・ ヨ ト ・ ヨ ト

System's state: $\vec{a} \in A = \times_{i \in N} A_i$ Overall quality of the system $Q : A \to \mathbb{R}_{\geq 0}$ PNE(G): set of (pure) Nash Equilibria of G $\vec{a}^* = argmax_{\vec{a} \in A} \{Q(\vec{a})\}$

Theorems

- Under the fair payment scheme, the PoA of the MAX E k-SAT game is $\frac{k}{k+1}$
- Under the fair payment scheme, the PoA of the MAX k-SAT game is $\frac{k}{2k-1}$

- 4 同 6 - 4 三 6 - 4 三 6

Proof sketch

THM: The PoA of the MAX E k-SAT game is $\frac{k}{k+1}$

Assumption: $\forall i \quad a_i = true$

Nash property: $u_i(\vec{a}) \ge u_i((\vec{a}_{-i}, false))$

- SAT = weight of the Nash equilibrium
 - UN = weight of the clauses not satisfied by the NE

$$\begin{array}{rcl} \sum\limits_{i \in N} u_i(\vec{a}) & \geq & \sum\limits_{i \in N} u_i\big((\vec{a}_{-i}, \textit{false})\big) \\ SAT & \geq & k \ UN \\ (k+1)SAT & \geq & k \ SAT + k \ UN \geq k \ OPT \end{array}$$

Tightness

(true, true, ..., true) is a NE satisfying C_2 , SAT = k(false, true, true, ..., true) satisfies { C_1 , C_2 }, OPT = k + 1

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Connection to local search

-

congestion game	local search	
system's state	\leftrightarrow	feasible solution
potential function Φ	\leftrightarrow	cost function <i>c</i>
unilateral move	\leftrightarrow	neighborhood
Nash equilibrium	\leftrightarrow	local optimum
PoA	Overall quality Q	locality gap

c = Q in *standard* local search

c not necessarily equal to Q in **non oblivious** local search

- 4 同 2 4 日 2 4 日 2

A better payment scheme for the MAX E 2-SAT game

We focus on the ${\rm MAX}~{\rm E}~2{\rm -SAT}$ game

Non oblivious payment scheme:

- if 1 variable satisfies C_j then she gets w_j
- if 2 variables satisfy C_j then each one gets $w_j/3$

THM: The PoA of the MAX E 2-SAT game under the non oblivious payment scheme is 3/4

Recall that PoA = 2/3 under the fair payment scheme

Proof sketch

- SAT = weight of the Nash equilibrium
- ONE = weight of the clauses satisfied by **one** variable
- TWO = weight of the clauses satisfied by **two** variables
 - UN = weight of the clauses not satisfied

$$\sum_{i \in N} u_i(\vec{a}) \geq \sum_{i \in N} u_i((\vec{a}_{-i}, false))$$

$$ONE + \frac{2}{3}TWO \geq 2UN + \frac{1}{3}ONE$$

$$\frac{2}{3}ONE + \frac{2}{3}TWO \geq 2UN$$

$$\frac{2}{3}SAT \geq 2UN$$

$$SAT \geq 2UN$$

$$SAT \geq 3UN$$

$$4SAT \geq 3UN + 3SAT \geq 3OPT$$

Tightness

k = 2

$$\begin{array}{cccc} \overline{x}_1 & \lor & \overline{x}_2 \\ \overline{x}_3 & \lor & \overline{x}_4 \\ x_1 & \lor & x_2 \\ x_2 & \lor & x_3 \\ x_3 & \lor & x_4 \\ x_4 & \lor & x_1 \end{array}$$

(*true*, *true*, *true*, *true*, *true*) is a NE satisfying 4 clauses (*false*, *true*, *false*, *true*, *true*) satisfies 6 clauses

(日) (同) (三) (三)

э

Better payment schemes

- There exists a payment scheme such that the PoA of the MAX E k-SAT game is $1-\frac{1}{2^k}$
- There exists a payment scheme such that the PoA of the MAX k-SAT game is $\frac{2}{3}$

There exists a non oblivious local search algorithm with locality gap $1 - 1/2^k$ for MAX E k SAT [Khanna et al, 98]

There exists a non oblivious local search algorithm with locality gap 2/3 for MAX k $_{\rm SAT}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Best payment schemes

General payment scheme:

- a variable receives nothing from a clause she does not satisfy
- if ℓ variables satisfy C_j then each of them get $f(\ell) w_j$

There exists a family of instances of the MAX $\to k-$ SAT game such that ${\rm PoA}{=}\;1-1/2^k$

$$\overline{x}_1 \lor \overline{x}_2 x_1 \lor \overline{x}_3 x_2 \lor \overline{x}_4 x_3 \lor x_4$$

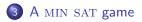
Other results

How good is the best Nash equilibrium?

Price of Stability
$$\max_{\vec{a} \in PNE} \frac{Q(\vec{a})}{Q(\vec{a}^*)}$$

Lemma : PoA = PoS for the max sat game

(日) (同) (三) (三)



- 4 同 2 4 日 2 4 日 2

э

A MIN SAT game

MIN SAT: Find a truth assignment that minimizes the weight of satisfied clauses

Players are penalized for satisfying a clause

Fair penalty scheme:

- a variable pays nothing for a clause she does not satisfy
- if ℓ variables satisfy C_j then each one must **pay** w_j/ℓ

Theorems:

The PoA of the MIN k- SAT game is kThe PoS of the MIN k- SAT game is $1 + \frac{1}{2} + \ldots + \frac{1}{k} = H(k)$

A (1) < A (2) < A (2) < A (2) </p>

PoA

$$C_0 \quad \overline{x_1} \lor \overline{x_2} \lor \cdots \lor \overline{x_k} \quad w_0 = 1$$

$$C_1 \quad x_1 \qquad \qquad w_1 = 1$$

$$C_2 \quad x_2 \qquad \qquad w_2 = 1$$

$$\vdots \quad \vdots \qquad \qquad \vdots$$

$$C_k \quad x_k \qquad \qquad w_k = 1$$

・ロン ・回 と ・ ヨン ・ ヨン …

PoS

Rosenthal's potential function of the MIN k- SAT game

$$\Phi(a) = \sum_{j=1}^{k} H(j) W(cov_j(a))$$

where $cov_i(a)$ is the clauses satisfied by exactly *j* variables

$$SAT = W(a) \le \Phi(a) \le \Phi(a^*) \le H(k) W(a^*) = H(k) OPT$$

PoS

$$\begin{array}{ccccc} C_0 & \overline{x_1} \lor \overline{x_2} \lor \cdots \lor \overline{x_k} & w_0 = 1 + \varepsilon \\ C_1 & x_1 & w_1 = 1 \\ C_2 & x_2 & w_2 = 1/2 \\ \vdots & \vdots & \vdots \\ C_j & x_j & w_j = 1/j \\ \vdots & \vdots & \vdots \\ C_k & x_k & w_k = 1/k \end{array}$$

・ロン ・回 と ・ヨン ・ヨン

2 A MAX SAT game

э

Conclusion & future work

PoA and PoS of the MAX SAT and MIN SAT games Matching lower and upper bounds on the PoA Connection with non oblivious local search

Other prices: Strong price of anarchy

Explore other paradigmatic problems in CO:

- set cover
- max cut
- spanning tree
- etc

- 4 医下 4 医下

Questions?

Thank you for your attention

Laurent Gourvès On the performance of congestion games for optimum satisfiabili

- 4 同 2 4 日 2 4 日 2