Markov Decision Evolutionary Games

Eitan Altman, **Yezekael Hayel**, Hamidou Tembine, Rachid El Azouzi INRIA Sophia-Antipolis, France University of Avignon, France

Popeye seminar, 2008

・ロン ・四マ ・ヨン

- 2 Markov Decision Evolutionary Games
- Application to energy management in wireless networks
- Mumerical illustrations
- **5** Conclusions and perspectives

< ロ > < 同 > < 回 > < 回 > < □ > <

Markov Decision Evolutionary Games Application to energy management in wireless networks Numerical illustrations Conclusions and perspectives

- 2 Markov Decision Evolutionary Games
- 3 Application to energy management in wireless networks
- Numerical illustrations
- 5 Conclusions and perspectives

Markov Decision Evolutionary Games Application to energy management in wireless networks Numerical illustrations Conclusions and perspectives

Evolutionary Game Theory

Evolutionary Stable Strategy (ESS)

The ESS is characterized by a property of robustness against invaders (mutations). More specifically,

- if an ESS is reached, then the proportions of each population do not change in time.
- at ESS, the populations are immune from being invaded by other small populations.
- restriction to interactions that are limited to pairwise.

This notion is stronger than Nash equilibrium in which it is only requested that a single user would not benefit by a change (mutation) of its behavior.

ESS is robust against a deviation of a **whole fraction** of the population.

Markov Decision Evolutionary Games Application to energy management in wireless networks Numerical illustrations Conclusions and perspectives

Definitions

ESS

- *J*(*p*, *q*) the expected immediate payoff for an individual if it uses a strategy *p* when meeting another individual who adopts the strategy *q*.
- K available strategies which are called pure strategies.

Definition

A strategy q is said to be an ESS if for every $p \neq q$ there exists some $\overline{\epsilon}_q > 0$ such that for all $\epsilon \in (0, \overline{\epsilon}_q)$:

$$J(q,\epsilon p + (1-\epsilon)q) > J(p,\epsilon p + (1-\epsilon)q)$$

Markov Decision Evolutionary Games Application to energy management in wireless networks Numerical illustrations Conclusions and perspectives

Important theorem

Theorem

A strategy q is an ESS if and only if it satisfies

for all
$$p \neq q$$
, $J(q,q) > J(p,q)$,

or

for all
$$p \neq q$$
, $J(q,q) = J(p,q)$ and $J(q,p) > J(p,p)$

э

Markov Decision Evolutionary Games Application to energy management in wireless networks Numerical illustrations Conclusions and perspectives

Markov Decision Evolutionary Games (MDEG)

MDEG

- The fitness of a player depends not only on the actions chosen in the interaction but also on the individual state of the players.
- Players have finite life time and take during which they participate in several local interactions.
- The actions taken by a player determine not only the immediate fitness but also the transition probabilities to its next individual state.

< ロ > < 同 > < 回 > < 回 > :

Interactions and system model Computing the Weak (resp. Strong) ESS WESS and dynamic programming

Plan

Introduction

2 Markov Decision Evolutionary Games

3 Application to energy management in wireless networks

Numerical illustrations

5 Conclusions and perspectives

Interactions and system model Computing the Weak (resp. Strong) ESS WESS and dynamic programming

Model for individual player

Individual MDP

We associate with each player a Markov Decision Process (MDP) embedded at the instants of the interactions. The parameters of the MDP are given by the tuple $\{S, A, Q\}$ where

- S is the set of possible individual states of the player.
- A is the set of available actions. For each state *s*, a subset A_s of actions is available.
- *Q* is the set of transition probabilities; for each *s*, *s'* ∈ S and *a* ∈ A_s, Q_{s'}(*s*, *a*) is the probability to move from state *s* to state *s'* taking action *a*. ∑_{s'∈S} Q_{s'}(*s*, *a*) is allowed to be smaller than 1.

Interactions and system model Computing the Weak (resp. Strong) ESS WESS and dynamic programming

Model for individual player

Policies

Define further

- The set of policies is U. A general policy u is a sequence u = (u₁, u₂,...) where u_i is a distribution over action space A at time i.
- The subset of mixed (resp. pure or deterministic) policies is U_M (resp. U_D). We define also the set of stationary policies U_S where such policy does not depend on time.
- α(u) = {α(u; s, a)} is the fraction of the population at individual state s and that use action a when all the population uses strategy u.

Interactions and system model Computing the Weak (resp. Strong) ESS WESS and dynamic programming

Interactions and system model

Notations

- r(s, a, s', b) be the immediate reward that a player receives when it is at state s and it uses action a while interacting with a player who is in state s' that uses action b.
- The expected immediate reward of a player in state *S_t* and playing action *A_t* at time *t* is given by

$$R_t = \sum_{s,a} \alpha_t(u; s, a) r(S_t, A_t, s, a).$$

• The global expected fitness when using a policy v is then

$$F_{\eta}(\mathbf{v}, \mathbf{u}) = \sum_{t=1}^{\infty} E_{\eta, \mathbf{v}}[R_t],$$

where η is the initial state distribution.

Interactions and system model Computing the Weak (resp. Strong) ESS WESS and dynamic programming

Assumptions

Assumptions

- A1 : the expected lifetime of a player $T_{\eta,u}$ is finite for all $u \in U_D$.
- A2 : When the whole population uses a policy u, then at any time t which is either fixed or is an individual time of an arbitrary player, $\alpha_t(u)$ is independent of t and is given by

$$lpha_t(u; s, a) = rac{f_{\eta, u}(s, a)}{T_{\eta, u}}$$

for all *s*, *a* and where $f_{\eta,u}(s, a) = \sum_{t=1}^{+\infty} p_t(\eta, u; s, a)$ is the expected number of time units during which it is at state *s* and it chooses action *a*.

< ロ > < 同 > < 回 > < 回 > .

Interactions and system model Computing the Weak (resp. Strong) ESS WESS and dynamic programming

Defining the weak (resp. strong) ESS

Equivalent class of strategies

We shall say that two strategies u and u' are equivalent if the corresponding occupation measures are equal for all state. We shall write $u =_e u'$.

Definition of the WESS (resp. SESS)

A strategy *u* is a weak (resp. strong) ESS, denoted by WESS (resp. SESS), for the MDEG if and only if it satisfies one of the following:

for all
$$v \neq_e u$$
 (resp. $v \neq u$), $F(u, u) > F(u, v)$ (1)

for all $v \neq_e u$ (resp. $v \neq u$), F(u, u) = F(v, u) and F(u, v) > F(v, v)(2)

Interactions and system model Computing the Weak (resp. Strong) ESS WESS and dynamic programming

Transforming the MDEG into a standard EG

MDEG into an EG

The fitness function is bilinear in the occupation measures of the players. The set of occupation measures is a polytope whose extreme points correspond to strategies in U_D . Consider the following standard evolutionary game **EG**:

- the finite set of actions of a player is U_D ,
- the fitness of a player that uses v ∈ U_D when the other use a policy u ∈ U_S is given by

$$\widetilde{F}(\mathbf{v}, u) = \sum_{s,a} f_{\eta, \mathbf{v}}(s, a) \sum_{s', a'} f_{\eta, u}(s', a') r(s, a, s', a').$$

- Enumerate the strategies in U_D such that $U_D = (u_1, ..., u_m)$.
- Define γ = (γ₁,..., γ_m) where γ_i is the fraction of the population that uses u_i.

Interactions and system model Computing the Weak (resp. Strong) ESS WESS and dynamic programming

Transforming the MDEG into a standard EG

Proposition

Let $\hat{\gamma}$ be an ESS for the game **EG**. Then it is a WESS for the original MDEG.

< ロ > < 同 > < 回 > < 回 > .

Interactions and system model Computing the Weak (resp. Strong) ESS WESS and dynamic programming

What about stationary policies ?

Theorem

(i) A necessary condition for a policy u to be WESS is that $F(u, u) \ge F(v, u)$ for all stationary v. (ii) Assume that the following set of dynamic programming equations holds: For all state $s \in S$,

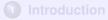
$$F_{s}(u, u) = \max_{a} \left[r(u; s, a) + \sum_{s'} Q_{s'}(s, a) F_{s'}(u, u) \right] .$$
(3)

Then $F(u, u) \ge F(v, u)$ for any v. (iii) If $\eta(s) > 0$ for all s, then the converse also holds: and (3) is equivalent to $F(u, u) \ge F(v, u)$ for all stationary v.

< ロ > < 同 > < 回 > < 回 > .

Model DP approach Matrix Game approach

Plan



2 Markov Decision Evolutionary Games

Application to energy management in wireless networks

- 4 Numerical illustrations
- 5 Conclusions and perspectives

・ ロ マ チ 雪 マ チ 雪 マ ト キ 目 マ

Model DP approach Matrix Game approach

Model of Energy Management in a Distributed Aloha Network

Actions and states

- A terminal *i* attempts transmissions during time slots.
- At each attempt, it has to take a decision on the transmission power based on his battery energy state.
- We assume that the state can take three values: {*F*, *A*, *E*} for Full, Almost empty or Empty.
- The transmission signal power of a terminal can be High (*h*) or Low (*l*).
- Transmission at high power is possible only when the mobile is in state *F*.

Model DP approach Matrix Game approach

Model of Energy Management in a Distributed Aloha Network

Aloha-type game

A mobile transmits a packet with success during a slot if:

- the mobile is the only one to transmit during this slot
- the mobile transmits with high power and all others transmitting nodes use low power

< ロ > < 同 > < 回 > < 回 > < □ > <

Model DP approach Matrix Game approach

Some notations

Notations

- p is the probability for a mobile to be the only transmitter during a slot.
- *Q_i(a)* is the probability of remaining at energy level *i* when using action *a*.
- α is the fraction of the population who use the action *h* at any given time (situation in which the system attains a stationary regime).

< ロ > < 同 > < 回 > < 回 > .

Model DP approach Matrix Game approach

Policies and fitness

Policies

A general policy *u* is a sequence $u = (u_1, u_2, ...)$ where u_i is the probability of choosing *h* if at time *i* the state is *F*. We consider only *stationary policies*, $u_i = \beta$ for all time *i*.

Fitness

Let R_t denote the number of packets (zero or one) successfully transmitted at time slot *t* and the *fitness* of the terminal to be given by $\sum_{t=1}^{\infty} R_t$. $V_{\beta}(i, \alpha)$ is the total expected fitness (i.e. reward or valuation) of a user given that it uses policy β , that it is in state *i* and given the parameter α .

< ロ > < 同 > < 回 > < 回 > < □ > <

Model DP approach Matrix Game approach

Computing fitness and sojourn times

State E and A

- When the level of energy is in state *E*, the valuation is equal to V(E) = 0.
- When the state is *A*, the valuation is $V(A) = \frac{p}{1-Q_A}$ and expected time during which a mobile spends in state *A* is $T(A) = \frac{1}{1-Q_A}$.

State F

Define the dynamic programming operator $Y(v, a, \alpha)$ to be the *total* expected fitness of an individual starting at state *F*, if

- It takes action a at time 1,
- If at time 2 the state is *F* then the total sum of expected fitness from time 2 onwards is *v*.
- At each time the mobile attempts transmission, the probability that another interfering mobile uses action h is α .

206

Model DP approach Matrix Game approac

Computing fitness and sojourn times

State F

$$Y(v, l) = p + Q_F(l)v + p \frac{1 - Q_F(l)}{1 - Q_A}.$$

and

$$\begin{aligned} Y(v,h,\alpha) &= \alpha(p+Q_F(h)v+(1-Q_F(h))V(A)) \\ &+(1-\alpha)(1+Q_F(h)v+(1-Q_F(h))V(A)), \\ &= \alpha p+(1-\alpha)+Q_F(h)v+p\frac{1-Q_F(h)}{1-Q_A}. \end{aligned}$$

23/39

э

<ロ> <部> < き> < き> < 。</p>

Model DP approach Matrix Game approach

Computing fitness and sojourn times

State F

The expected time it spends at state F is

$$T(F) = \frac{1}{1 - \beta Q_F(h) - (1 - \beta)Q_F(l)}.$$

The fraction of time that the mobile uses action h is then

$$\widehat{\alpha}(\beta) = \beta \frac{T(F)}{T(F) + T(A)} = \beta \frac{1 - Q_A}{2 - Q_A - \beta Q_F(h) - (1 - \beta)Q_F(I)}.$$

< ロ > < 同 > < 回 > < 回 > .

Model DP approach Matrix Game approach

Computing fitness and sojourn times

State F

The total expected utility $V_{\beta}(F, \alpha)$ the mobile gains starting from state *F* is the unique solution of $v = (1 - \beta)Y(v, l) + \beta Y(v, h, \alpha)$. This gives

$$V_{eta}(F, lpha) = V(A) + rac{p + eta(1-p)(1-lpha)}{1 - Q_F(I) + eta(Q_F(I) - Q_F(h))}.$$

some remarks

- aggressive policy $\beta = 1$, $V_1(F, \alpha) = V(A) + \frac{1 \alpha(1-p)}{1 Q_F(h)}$,
- passive policy $\beta = 0$, $V_0(F, \alpha) = V(A) + \frac{p}{1 Q_F(I)}$,
- V_β(F, α) is either constant or strictly monotone in β over the whole interval [0, 1].

< ロ > < 同 > < 回 > < 回 > < □ > <

Model DP approach Matrix Game approach

Characterization of the ESS

Relation with EG

- The fitness that is maximized is not the outcome of a single interaction but of the sum of fitnesses obtained during all the opportunities in the mobile's lifetime.
- The ESS can be defined using the following fitness:

$$V_{\beta}(F,\widehat{\alpha}(\beta')) = J(\beta,\beta').$$

• A necessary condition for β^* to be an ESS is

for all $\beta' \neq \beta^*$, $V_{\beta^*}(F, \widehat{\alpha}(\beta^*)) \ge V_{\beta'}(F, \widehat{\alpha}(\beta^*))$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model DP approach Matrix Game approach

Pure equilibrium with high power

Theorem

Define

$$\Delta_h := \frac{1 - Q_F(h)}{2 - Q_A - Q_F(h)} (1 - p) - \frac{Q_F(l) - Q_F(h)}{1 - Q_F(l)} p$$

Let u be the pure aggressive strategy that uses always h at state F. (i) $\Delta_h > 0$ is a sufficient condition for u to be an ESS. (ii) $\Delta_h \ge 0$ is a necessary condition for u to be an ESS.

Remarks:

- If $Q_F(I) = Q_F(h)$, the strategy high power is obviously an ESS.
- If p = 0, there is no benefit from transmission with high power.
- Δ_h > 0 is a sufficient and necessary condition for *u* to be a strongly immune ESS.

Model DP approach Matrix Game approach

Pure equilibrium with low power

Theorem

Define

$$\Delta_l := p(1 - Q_F(h)) - (1 - Q_F(l))$$

Let v be the pure strategy that uses always I at state F. (i) $\Delta_I > 0$ is a sufficient condition for v to be an ESS. (ii) $\Delta_I \ge 0$ is a necessary condition for v to be an ESS.

Remarks:

- If $Q_F(I) = Q_F(h)$, the strategy low power is not an ESS.
- The condition for the policy v to be ESS does not depend on Q_A .
- Δ₁ > 0 is a sufficient and necessary condition for v to be a strongly immune ESS.

Model DP approach Matrix Game approach

Mixed equilibrium

Theorem

(a) Each one of the following conditions is necessary for there to exist a Weakly Immune ESS:

- Condition (i): $\Delta_1 \leq 0$,
- Condition (ii): $\Delta_h \leq 0$,

(b) Assume that Condition (i) and (ii) hold. Then there exists a unique weakly immune ESS given by

$$\beta^* = \frac{(\overline{Q_A} + \overline{Q_F(I)})[\overline{Q_F(I)} - p\overline{Q_F(h)}]}{\overline{Q_A}\overline{p}\overline{Q_F(I)} - (Q_F(I) - Q_F(h))(\overline{Q_F(I)} - p\overline{Q_F(h)})}$$

Theorem

For all Q_A , $Q_F(I)$, $Q_F(h)$ and p, the ESS β^* of the stochastic evolutionary game exists and is unique.

200

Model DP approach Matrix Game approach

Price of Anarchy (equilibrium aggressiveness comparison)

PoA

- The strategy $\tilde{\beta}$ is globally optimal if it maximizes $V_{\beta}(F, \hat{\alpha}(\beta))$.
- The global optimal solution is solution of a second order polynomial function.
- We compare the optimal global solution to the ESS.

Theorem

ESS strategy is more aggressive than the social optimum strategy, i.e.

$$\beta^* \geq \widetilde{\beta}.$$

Model DP approach Matrix Game approach

Matrix Game of the EG

Matrix Game with deterministic policies

We restrict to the deterministic policies $u_1 = (I, I)$ and $u_2 = (I, h)$ (use always high power in state *F*). The WESS of the MDEG is the ESS of a standard EG defined by through the related matrix game:

$$\widetilde{G} = \left(egin{array}{cc} p(X_1 + X_3)^2 & p(X_1 + X_3)(X_1 + X_4) \ (X_1 + X_3)(p(X_1 + X_4) + (1 - p)X_4) & p(X_1 + X_4)^2 + (1 - p)X_1X_4 \end{array}
ight)$$

with

$$X_1 = \frac{1}{1 - Q(1, l)}, \quad X_2 = \frac{1}{1 - Q(1, h)}, \quad X_3 = \frac{1}{1 - Q(2, l)}, \quad X_4 = \frac{1}{1 - Q(2, h)}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Model DP approach Matrix Game approach

ESS of the EG

Proposition

The ESS $\hat{\gamma}$ exists and is unique.

Proposition

Policies β^* and $\widehat{\gamma}$ are in the same equivalent class, i.e.

$$\beta^* =_{e} \widehat{\gamma}.$$

Plan

Introduction

2 Markov Decision Evolutionary Games

3 Application to energy management in wireless networks

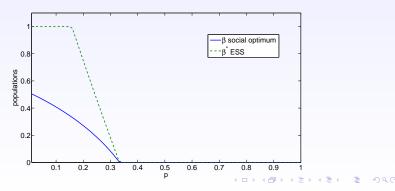
4 Numerical illustrations

Conclusions and perspectives

< ロ > < 同 > < 回 > < 回 > .

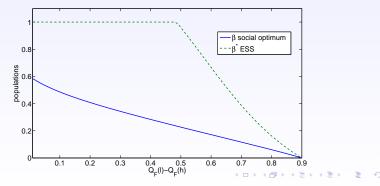
ESS and the global optimum

Comparison of the ESS and the global optimum depending on the probability p.



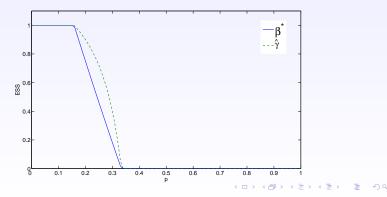
ESS and the global optimum

Comparison of the ESS and the global optimum depending on the difference $Q_F(I) - Q_F(h)$.



Comparison of the two approaches

Comparison of the two mixed ESS β^* and $\widehat{\gamma}$ given by the two approaches.



Plan

Introduction

- 2 Markov Decision Evolutionary Games
- 3 Application to energy management in wireless networks
- 4 Numerical illustrations
- 6 Conclusions and perspectives

< ロ > < 同 > < 回 > < 回 > < □ > <

Conclusions

Conclusions

- Extension of evolutionary game paradigm considering action state dependance.
- Application to competitive energy management in wireless terminals.
- Two different methods for computing ESS of a MDEG.

・ロット (雪) (日) (日)

Perspectives

- Generalization of our energy management application.
- Develop the theoretical results to other rewards like the mean and the discounted ones.
- Notion of population dynamics into this framework.

< ロ > < 同 > < 回 > < 回 > < □ > <