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Evolutionary Game Theory

Evolutionary Stable Strategy (ESS)

The ESS is characterized by a property of robustness against
invaders (mutations). More specifically,

if an ESS is reached, then the proportions of each population do
not change in time.
at ESS, the populations are immune from being invaded by other
small populations.
restriction to interactions that are limited to pairwise.

This notion is stronger than Nash equilibrium in which it is only
requested that a single user would not benefit by a change (mutation)
of its behavior.
ESS is robust against a deviation of a whole fraction of the
population.
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Definitions

ESS
J(p, q) the expected immediate payoff for an individual if it uses a
strategy p when meeting another individual who adopts the
strategy q.
K available strategies which are called pure strategies.

Definition

A strategy q is said to be an ESS if for every p 6= q there exists some
εq > 0 such that for all ε ∈ (0, εq):

J(q, εp + (1− ε)q) > J(p, εp + (1− ε)q)
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Important theorem

Theorem
A strategy q is an ESS if and only if it satisfies

for all p 6= q, J(q, q) > J(p, q),

or
for all p 6= q, J(q, q) = J(p, q) and J(q, p) > J(p, p).
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Markov Decision Evolutionary Games (MDEG)

MDEG
The fitness of a player depends not only on the actions chosen in
the interaction but also on the individual state of the players.
Players have finite life time and take during which they
participate in several local interactions.
The actions taken by a player determine not only the immediate
fitness but also the transition probabilities to its next individual
state.
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Model for individual player

Individual MDP
We associate with each player a Markov Decision Process (MDP)
embedded at the instants of the interactions. The parameters of the
MDP are given by the tuple {S,A, Q} where

S is the set of possible individual states of the player.
A is the set of available actions. For each state s, a subset As of
actions is available.
Q is the set of transition probabilities; for each s, s′ ∈ S and
a ∈ As, Qs′(s, a) is the probability to move from state s to state s′

taking action a.
∑

s′∈S Qs′(s, a) is allowed to be smaller than 1.
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Model for individual player

Policies
Define further

The set of policies is U . A general policy u is a sequence
u = (u1, u2, . . .) where ui is a distribution over action space A at
time i .
The subset of mixed (resp. pure or deterministic) policies is UM
(resp. UD). We define also the set of stationary policies US where
such policy does not depend on time.
α(u) = {α(u; s, a)} is the fraction of the population at individual
state s and that use action a when all the population uses
strategy u.
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Interactions and system model

Notations
r(s, a, s′, b) be the immediate reward that a player receives when
it is at state s and it uses action a while interacting with a player
who is in state s′ that uses action b.
The expected immediate reward of a player in state St and
playing action At at time t is given by

Rt =
∑
s,a

αt(u; s, a)r(St , At , s, a).

The global expected fitness when using a policy v is then

Fη(v , u) =
∞∑

t=1

Eη,v [Rt ],

where η is the initial state distribution.
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Assumptions

Assumptions

A1 : the expected lifetime of a player Tη,u is finite for all u ∈ UD.
A2 : When the whole population uses a policy u, then at any time
t which is either fixed or is an individual time of an arbitrary
player, αt(u) is independent of t and is given by

αt(u; s, a) =
fη,u(s, a)

Tη,u

for all s, a and where fη,u(s, a) =
∑+∞

t=1 pt(η, u; s, a) is the
expected number of time units during which it is at state s and it
chooses action a.
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Defining the weak (resp. strong) ESS

Equivalent class of strategies

We shall say that two strategies u and u′ are equivalent if the
corresponding occupation measures are equal for all state. We shall
write u =e u′.

Definition of the WESS (resp. SESS)

A strategy u is a weak (resp. strong) ESS, denoted by WESS (resp.
SESS), for the MDEG if and only if it satisfies one of the following:

for all v 6=e u (resp. v 6= u), F (u, u) > F (u, v) (1)

for all v 6=e u (resp. v 6= u), F (u, u) = F (v , u) and F (u, v) > F (v , v)
(2)
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Transforming the MDEG into a standard EG

MDEG into an EG
The fitness function is bilinear in the occupation measures of the
players. The set of occupation measures is a polytope whose
extreme points correspond to strategies in UD.
Consider the following standard evolutionary game EG:

the finite set of actions of a player is UD,
the fitness of a player that uses v ∈ UD when the other use a
policy u ∈ US is given by

F̃ (v , u) =
∑
s,a

fη,v (s, a)
∑
s′,a′

fη,u(s′, a′)r(s, a, s′, a′).

Enumerate the strategies in UD such that UD = (u1, ..., um).
Define γ = (γ1, ..., γm) where γi is the fraction of the population
that uses ui .
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Transforming the MDEG into a standard EG

Proposition

Let γ̂ be an ESS for the game EG. Then it is a WESS for the original
MDEG.
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What about stationary policies ?

Theorem

(i) A necessary condition for a policy u to be WESS is that
F (u, u) ≥ F (v , u) for all stationary v.
(ii) Assume that the following set of dynamic programming equations
holds: For all state s ∈ S,

Fs(u, u) = max
a

[
r(u; s, a) +

∑
s′

Qs′(s, a)Fs′(u, u)

]
. (3)

Then F (u, u) ≥ F (v , u) for any v.
(iii) If η(s) > 0 for all s, then the converse also holds: and (3) is
equivalent to F (u, u) ≥ F (v , u) for all stationary v.
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Model of Energy Management in a Distributed
Aloha Network

Actions and states
A terminal i attempts transmissions during time slots.
At each attempt, it has to take a decision on the transmission
power based on his battery energy state.
We assume that the state can take three values: {F , A, E} for
Full, Almost empty or Empty.
The transmission signal power of a terminal can be High (h) or
Low (l).
Transmission at high power is possible only when the mobile is in
state F .
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Model of Energy Management in a Distributed
Aloha Network

Aloha-type game

A mobile transmits a packet with success during a slot if:
the mobile is the only one to transmit during this slot
the mobile transmits with high power and all others transmitting
nodes use low power
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Some notations

Notations
p is the probability for a mobile to be the only transmitter during a
slot.
Qi(a) is the probability of remaining at energy level i when using
action a.
α is the fraction of the population who use the action h at any
given time (situation in which the system attains a stationary
regime).
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Policies and fitness

Policies
A general policy u is a sequence u = (u1, u2, ...) where ui is the
probability of choosing h if at time i the state is F . We consider only
stationary policies, ui = β for all time i .

Fitness
Let Rt denote the number of packets (zero or one) successfully
transmitted at time slot t and the fitness of the terminal to be given by∑∞

t=1 Rt .
Vβ(i , α) is the total expected fitness (i.e. reward or valuation) of a
user given that it uses policy β, that it is in state i and given the
parameter α.
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Computing fitness and sojourn times

State E and A
When the level of energy is in state E , the valuation is equal to
V (E) = 0.
When the state is A, the valuation is V (A) = p

1−QA
and expected

time during which a mobile spends in state A is T (A) = 1
1−QA

.

State F
Define the dynamic programming operator Y (v , a, α) to be the total
expected fitness of an individual starting at state F , if

It takes action a at time 1,
If at time 2 the state is F then the total sum of expected fitness
from time 2 onwards is v .
At each time the mobile attempts transmission, the probability
that another interfering mobile uses action h is α.

22 / 39



logo

Introduction
Markov Decision Evolutionary Games

Application to energy management in wireless networks
Numerical illustrations

Conclusions and perspectives

Model
DP approach
Matrix Game approach

Computing fitness and sojourn times

State F

Y (v , l) = p + QF (l)v + p
1−QF (l)

1−QA
.

and

Y (v , h, α) = α(p + QF (h)v + (1−QF (h))V (A))

+(1− α)(1 + QF (h)v + (1−QF (h))V (A)),

= αp + (1− α) + QF (h)v + p
1−QF (h)

1−QA
.
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Computing fitness and sojourn times

State F
The expected time it spends at state F is

T (F ) =
1

1− βQF (h)− (1− β)QF (l)
.

The fraction of time that the mobile uses action h is then

α̂(β) = β
T (F )

T (F ) + T (A)
= β

1−QA

2−QA − βQF (h)− (1− β)QF (l)
.
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Computing fitness and sojourn times

State F
The total expected utility Vβ(F , α) the mobile gains starting from state
F is the unique solution of v = (1−β)Y (v , l)+βY (v , h, α). This gives

Vβ(F , α) = V (A) +
p + β(1− p)(1− α)

1−QF (l) + β(QF (l)−QF (h))
.

some remarks

aggressive policy β = 1, V1(F , α) = V (A) + 1−α(1−p)
1−QF (h) ,

passive policy β = 0, V0(F , α) = V (A) + p
1−QF (l) ,

Vβ(F , α) is either constant or strictly monotone in β over the
whole interval [0, 1].
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Characterization of the ESS

Relation with EG
The fitness that is maximized is not the outcome of a single
interaction but of the sum of fitnesses obtained during all the
opportunities in the mobile’s lifetime.
The ESS can be defined using the following fitness:

Vβ(F , α̂(β′)) = J(β, β′).

A necessary condition for β∗ to be an ESS is

for all β′ 6= β∗, Vβ∗(F , α̂(β∗)) ≥ Vβ′(F , α̂(β∗)).
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Pure equilibrium with high power

Theorem
Define

∆h :=
1−QF (h)

2−QA −QF (h)
(1− p)− QF (l)−QF (h)

1−QF (l)
p

Let u be the pure aggressive strategy that uses always h at state F .
(i) ∆h > 0 is a sufficient condition for u to be an ESS.
(ii) ∆h ≥ 0 is a necessary condition for u to be an ESS.

Remarks:
If QF (l) = QF (h), the strategy high power is obviously an ESS.
If p = 0, there is no benefit from transmission with high power.
∆h > 0 is a sufficient and necessary condition for u to be a
strongly immune ESS.
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Pure equilibrium with low power

Theorem
Define

∆l := p(1−QF (h))− (1−QF (l))

Let v be the pure strategy that uses always l at state F .
(i) ∆l > 0 is a sufficient condition for v to be an ESS.
(ii) ∆l ≥ 0 is a necessary condition for v to be an ESS.

Remarks:
If QF (l) = QF (h), the strategy low power is not an ESS.
The condition for the policy v to be ESS does not depend on QA.
∆l > 0 is a sufficient and necessary condition for v to be a
strongly immune ESS.
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Mixed equilibrium

Theorem
(a) Each one of the following conditions is necessary for there to exist
a Weakly Immune ESS:

Condition (i): ∆l ≤ 0,
Condition (ii): ∆h ≤ 0,

(b) Assume that Condition (i) and (ii) hold. Then there exists a unique
weakly immune ESS given by

β∗ =
(QA + QF (l))[QF (l)− pQF (h)]

QApQF (l)− (QF (l)−QF (h))(QF (l)− pQF (h))

Theorem
For all QA, QF (l), QF (h) and p, the ESS β∗ of the stochastic
evolutionary game exists and is unique.
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Price of Anarchy (equilibrium aggressiveness
comparison)

PoA

The strategy β̃ is globally optimal if it maximizes Vβ(F , α̂(β)).
The global optimal solution is solution of a second order
polynomial function.
We compare the optimal global solution to the ESS.

Theorem

ESS strategy is more aggressive than the social optimum strategy, i.e.

β∗ ≥ β̃.
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Matrix Game of the EG

Matrix Game with deterministic policies

We restrict to the deterministic policies u1 = (l , l) and u2 = (l , h) (use
always high power in state F ). The WESS of the MDEG is the ESS of
a standard EG defined by through the related matrix game:

G̃ =

(
p(X1 + X3)

2 p(X1 + X3)(X1 + X4)

(X1 + X3)(p(X1 + X4) + (1− p)X4) p(X1 + X4)
2 + (1− p)X1X4

)
with

X1 =
1

1 − Q(1, l)
, X2 =

1

1 − Q(1, h)
, X3 =

1

1 − Q(2, l)
, X4 =

1

1 − Q(2, h)
.
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ESS of the EG

Proposition

The ESS γ̂ exists and is unique.

Proposition

Policies β∗ and γ̂ are in the same equivalent class,i.e.

β∗ =e γ̂.
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ESS and the global optimum
Comparison of the ESS and the global optimum depending on the
probability p.
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ESS and the global optimum
Comparison of the ESS and the global optimum depending on the
difference QF (l)−QF (h).
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Comparison of the two approaches
Comparison of the two mixed ESS β∗ and γ̂ given by the two
approaches.
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Conclusions

Conclusions
Extension of evolutionary game paradigm considering action
state dependance.
Application to competitive energy management in wireless
terminals.
Two different methods for computing ESS of a MDEG.
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Perspectives

Perspectives

Generalization of our energy management application.
Develop the theoretical results to other rewards like the mean
and the discounted ones.
Notion of population dynamics into this framework.
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