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Abstract. Distributed systems such as grids, peer-to-peer systems, and
even Internet DNS servers have grown significantly in size and complexity
in the last decade. This rapid growth has allowed distributed systems to
serve a large and increasing number of users, but has also made resource
and system failures inevitable. Moreover, perhaps as a result of system
complexity, in distributed systems a single failure can trigger within a
short time span several more failures, forming a group of time-correlated
failures. To eliminate or alleviate the significant effects of failures on per-
formance and functionality, the techniques for dealing with failures re-
quire good failure models. However, not many such models are available,
and the available models are valid for few or even a single distributed sys-
tem. In contrast, in this work we propose a model that considers groups
of time-correlated failures and is valid for many types of distributed sys-
tems. Our model includes three components, the group size, the group
inter-arrival time, and the resource downtime caused by the group. To
validate this model, we use failure traces corresponding to fifteen dis-
tributed systems. We find that space-correlated failures are dominant in
terms of resource downtime in seven of the fifteen studied systems. For
each of these seven systems, we provide a set of model parameters that
can be used in research studies or for tuning distributed systems. Last,
as a result of our work six of the studied traces have been made available
through the Failure Trace Archive (http://fta.inria.fr).

1 Introduction

Millions of people rely daily on the availability of distributed systems such as
peer-to-peer file-sharing networks, grids, and the Internet. Since the scale and
complexity of contemporary distributed systems make the occurrence of failures
the rule rather than the exception, many fault tolerant resource management
techniques have been designed recently [1–3]. The deployment of these tech-
niques and the design of new ones depend on understanding the characteristics
of failures in real systems. While many failure models have been proposed for
various computer systems [3–6], few consider the occurrence of failure bursts. In
this work we present a new model that focuses on failure bursts, and validate it
with real failure traces coming from a diverse set of distributed systems.

The foundational work on the failures of computer systems [4, 7–9] has al-
ready revealed that computer system failures occur often in bursts, that is, the
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occurrence of a failure of a system component can trigger within a short period
a sequence of failures in other components of the system. It turned out that the
fraction of bursty system failures is high in distributed systems; for example, in
the VAXcluster 58% of all errors and occurred in bursts and involved multiple
machines [4], and in both the VAXcluster and in Grid’5000 about 30% of all
failures involve multiple machines [4, 10].

A bursty arrival breaks an important assumption made by numerous fault
tolerant algorithms [1, 11, 12], that of independent and identical distribution
of failures among the components of the system. However, few studies [4, 10,
13] investigate the bursty arrival of failures for distributed systems. Even for
these studies, the findings are based on data corresponding to a single system–
until the recent creation of online repositories such as the failure Failure Trace
Archive [14] and the Computer Failure Data Repository [5], failure data for
distributed systems were largely inaccessible to the researchers in this area.

The occurrence of failure bursts often makes the availability behavior of dif-
ferent system components to be correlated; thus, they are often referred to as
component or space-correlated failures. The importance of space-correlated fail-
ures has been repeatedly noted: the availability of a distributed system may be
overestimated by an order of magnitude when as few as 10% of the failures are
correlated [4], and a halving of the work loss may be achieved when taking into
account space-correlated failures [11].

This work addresses both scarcity problems, of the lack of traces, and of the
lack of a model for space-correlated failures, with the following contributions:
1. We make publicly and freely available through the Failure Trace Archive six

new traces in standard format (Section 2);
2. We propose a novel model for space-correlated failures based on moving

windows (Sections 3);
3. We propose and validate a fully automated method for identifying space-

correlated failures (Sections 3 and 4, respectively). The validation uses failure
traces taken from fifteen diverse distributed systems;

4. We validate our model using real failure traces, and present for them the
extracted model parameters (Section 5).

2 Background

In this section we present the terminology and the datasets used in this work.

2.1 Terminology

We follow throughout this work the basic concepts and definitions associated
with system dependability as summarized by Avizienis et al. [15]. The basic
threats to reliability are failures, errors, and faults occurring in the system. A
failure (unavailability event) is an event in which the system fails to operate
according to its specifications. A failure is observed as a deviation from the
correct state of the system. An error is part of the system state that may lead to a
failure. An availability event is the end of the recovery of the system from failure.
As in our previous work [14], we define an unavailability interval (downtime) as
a continuous period of a service outage due to a failure. Conversely, we define
an availability interval as a contiguous period of service availability.
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Table 1. Summary of fifteen data sets in the Failure Trace Archive.

System Type # of Nodes Period Year # of Events

Grid’5000 Grid 1,288 1.5 years 2005-2006 588,463

Websites Web servers 129 8 months 2001-2002 95,557

LDNS DNS servers 62,201 2 weeks 2004 384,991

LRI Desktop Grid 237 10 days 2005 1,792

Deug Desktop Grid 573 9 days 2005 33,060

SDSC Desktop Grid 207 12 days 2003 6,882

UCB Desktop Grid 80 11 days 1994 21,505

LANL SMP, HPC Clusters 4,750 9 years 1996-2005 43,325

Microsoft Desktop 51,663 35 days 1999 1,019,765

PlanetLab P2P 200-400 1.5 year 2004-2005 49,164

Overnet P2P 3,000 2 weeks 2003 68,892

Notre-Dame 1 Desktop Grid 700 6 months 2007 300,241

Notre-Dame 2 Desktop Grid 700 6 months 2007 268,202

Skype P2P 4,000 1 month 2005 56,353

SETI Desktop Grid 226,208 1.5 years 2007-2009 202,546,160
1

This is the host availability version which is according to the multi-state availability model of Brent Rood.

2
This is the CPU availability version.

2.2 The Datasets

The datasets used in this work are part of the Failure Trace Archive (FTA) [14].
The FTA is an online public repository of availability traces taken from diverse
parallel and distributed systems.

The FTA makes available online failure traces in a common, unified format.
The format records the occurrence time and duration of resource failures as an
alternating time series of availability and unavailability intervals. Each availabil-
ity or unavailability event in a trace records the start and the end of the event,
and the resource that was affected by the event. Depending on the trace, the
resource affected by the event can be either a node of a distributed system such
as a node in a grid, or a component of a node in a system such as CPU or
memory.

Prior to the work leading to this article, the FTA made available in its stan-
dard format nine failure traces; as a result of our work, the FTA now makes
available fifteen failure traces. Table 1 summarizes the characteristics of these
fifteen traces, which we use throughout this work. The traces originate from
systems of different types (multi-cluster grids, desktop grids, peer-to-peer sys-
tems, DNS and Web servers) and sizes (from hundreds to tens of thousands of
resources), which makes these traces ideal for a study among different systems.
Furthermore, the traces cover statistically relevant periods of time, and many of
the traces cover several months of system operation. A more detailed description
of each trace is available on the FTA web site (http://fta.inria.fr).

3 Model Overview

In this section we propose a novel model for failures occurring in distributed
systems. We first introduce our notion of space-correlated failures, and then
build a model around it.
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Fig. 1. Generative processes for space-correlated failures: (left) moving windows; (mid-
dle) time partitioning; (right) extending windows.

3.1 Space-Correlated Failures

We call space-correlated failures a groups of failures that occur within a short
time interval; the seminal work of Siewiorek [7, 16], Iyer [4, 8], and Gray [9, 17]
has shown that for tightly coupled systems space-correlated failures are likely to
occur. Our investigation of space-correlated failures is hampered by the lack of
information present in failure traces—none of the computer system failure traces
we know records failures with sufficient detail to reconstruct groups of failures.
We adopt instead a numeric approach that groups failures based on their start
and finish timestamps. We identify three such approaches, moving windows, time
partitioning, and extending windows, which we describe in turn.

Let TS(·) be the function that returns the time stamp of an event, either
failure or repair. Let O be the sequence of failure events ordered according to
increasing event time stamp, that is, O = [Ei|TS(Ei−1) ≤ TS(Ei),∀i ≥ 1].

Moving Windows We consider the following iterative process that, starting
from O, generates the space-correlated failures with time parameter ∆. At each
step in the process we select as the group generator F the first event from O

unselected yet, and generate the space-correlated failure by further selecting from
O all events E occurring within ∆ time units from TS(F ), that is, TS(E) ≤
TS(F ) + ∆. The process we employ ends when all the events in O have been
selected. The maximum number of generated space-correlated failures is |O|, the
number of events in O. The process uses a time window of size ∆, where the
window ”moves” to the next unselected event in O at each step. Thus, we call
this process the generation of space-correlated failures through moving windows.
Figure 1 (left) depicts the use of the moving windows for various values of ∆.

Time Partitioning This approach partitions time in windows of fixed size
∆, starting either from a hypothetical time 0 or from the first event in O. We call
this process generation of space-correlated failures through time partitioning.

Extending Windows A group of failures in this approach is a maximal sub-
sequence of events such that each two consecutive events are at most a time ∆

apart, i.e., for each consecutive events E and F in O, TS(F ) ≤ TS(E)+∆. Thus,
∆ is the size of the window that extends the horizon for each new event added
to the group; thus, we call this second process generation of space-correlated
failures through extending windows. We have already used this process to model
the failures occurring in Grid’5000 [10].

The three generation processes, moving windows, time partitioning, and ex-
tending windows, can generate very different space-correlated failures from the
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Fig. 2. Parallel and single-node job downtime for a sample space-correlated failure.

same input set of events O (see Figure 1). The following two considerations mo-
tivate our selection of a single generation process from these three. First, time
partitioning may introduce artificial time boundaries between failure events be-
longing to consecutive space-correlated failures, because each space-correlated
failure starts at a multiple of ∆. Thus, the groups identified through time parti-
tioning do not relate well to groups naturally occurring in the system, and may
confuse the fault-tolerant mechanisms and algorithms based on them; the moving
and extending windows do not suffer from this problem. Second, the extending
windows process may generate infinitely-long space-correlated failures: as the
extending window is considered between consecutive failures, a failure can occur
long after its group generator (its first occurring failure). Thus, the groups gen-
erated through extending windows may reduce the efficiency of fault tolerance
mechanisms that react to instantaneous bursts of failures. Thus, we select and
use in the remainder of this work the generative processes for space-correlated
failures through moving windows.

3.2 Model Components

We now build our model around the notion of space-correlated failures (groups)
introduced in the previous section. The model comprises three components: the
group inter-arrival time, the group size, and the group downtime. We describe
each of these three components in turn.
Inter-Arrival Time This component characterizes the process governing the

arrival of new space-correlated failures (including groups of size 1).
Size This component characterizes the number of failures present in each space-

correlated failure.
Downtime This component characterizes the downtime caused by each space-

correlated failure. When failures are considered independently instead of in
groups, the downtime is simply the duration of the unavailability correspond-
ing to each failure event. A group of failure may, however, affect users in ways
that depend on the user application. We consider in this work two types of
user applications: parallel jobs and single-node jobs. We define the parallel

job downtime (DMax) of a failure group as the product of the number of in-
dividual nodes affected by the failure events within the group, and the time
elapsed between the earliest failure event and the latest availability event cor-
responding to a failure within the group. We further define the single-node

job downtime (DΣ) as the sum of the downtimes of each individual fail-
ure within the failure group. Figure 2 depicts these two downtime notions.



6

The parallel job downtime gives an upper bound to the downtime caused by
space-correlated failures for parallel jobs that would run on any of the nodes
affected by failures. Similarly, the single-node job downtime characterizes
the impact of a failure group on workloads dominated by single-node jobs,
which is the case for many grid workloads [6].

3.3 Method for Modeling

Our method for modeling is based on analyzing in two steps failure traces taken
from real distributed systems; we describe each step, in turn, in the following.

The first step is to analyze for each trace the presence of space-correlated
failures comprising two or more failure events, for values of ∆ between 1 second
and 10 minutes. Tolerating such groups of failures is important for interactive
and deadline-oriented system users.

The second step follows the traditional modeling steps for failures in com-
puter systems [5, 8]. We first characterize the properties of the empirical distri-
butions using basic statistics such as the mean, the standard deviation, the min
and the max, etc. This allows us to get a first glimpse of the type of probability
distribution that could characterize the real data. We then try to find a good
fit, that is, a well-known probability distribution and the parameters that lead
to the best fit between that distribution and the empirical data. When selecting
the probability distributions, we look at the degrees of freedom (number of pa-
rameters) of that distribution; while a distribution with more degrees of freedom
may provide a better fit for the data, such a distribution can make the under-
standing of the model more difficult, can increase the difficulty of mathematical
analysis based on the model, and may also lead to overfitting to the empirical
datasets. Thus, we select five probability distributions to fit to the empirical
data: exponential, Weibull, Pareto, lognormal, and gamma. The fitting of the
probability distributions to the empirical datasets uses the Maximum Likelihood
Estimation (MLE) method [18], which delivers good accuracy for the large data
samples specific to failure traces.

After finding the best fits for each candidate distribution, goodness-of-fit
tests are used to assess the quality of the fitting for each distribution, and to
establish the best fit. We use for this purpose both the Kolmogorov-Smirnov
(KS) and the Anderson-Darling (AD) tests, which essentially assess how close
the cumulative distribution function (CDF) of the probability distribution is
to the CDF of the empirical data. For each candidate distribution with the
parameters found during the fitting process, we formulate the hypothesis that
the empirical data are derived from it (the null-hypothesis of the goodness-of-
fit test). Neither of the KS and AD tests can confirm the null-hypothesis, but
both are useful in understanding the goodness-of-fit. For example, the KS-test
provides a test statistic, D, which characterizes the maximal distance between
the CDF of the empirical distribution of the input data and that of the fitted
distribution.
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Table 2. Selected failure group window size for each system.

Platform Grid’5000 Websites LDNS LRI Deug SDSC UCB

Window Size [s] 250 100 150 100 150 120 80

4 Failure Group Window Size

An important assumption in this work is that space-correlated failures are present
and significant in the failure traces of distributed systems. In this section we show
that this is indeed the case. Section 3.1 the characteristics of the space-correlated
failures are dependent on the window size ∆; we investigate this dependency in
this section.

The importance of a failure model derives from the fraction of downtime
caused by the failures whose characteristics it explains, from the total downtime
of the system. For the model we have introduced in Section 3 we are interested
in space-correlated failures of at least two failures. As explained in Section 3.1,
the characteristics of the space-correlated failures depend on the window size ∆.
Large values for ∆ lead to more groups of at least two failures, but reduce the
usefulness of the model for predictive fault tolerance. Conversely, small values for
∆ lead to few groups of at least two failures, and effectively convert our model
into the model for individual failures we have investigated elsewhere [14].

We assess the effect of ∆ on the number of and downtime caused by space-
correlated failures by varying ∆ from one second to one hour; the most inter-
esting values for ∆ are below a few minutes, useful for proactive fault tolerance
techniques. Figure 3 shows the results for each of the fifteen datasets (see Sec-
tion 2.2). We distinguish in the figure the first seven systems, Grid’5000, Web-
sites, LDNS, LRI, Deug, SDSC, and UCB, for which a significant fraction
of the total system downtime is caused by space-correlated failures of size at
least 2, when ∆ is equal to a few minutes. For similar values of ∆, the space-
correlated failures do not cause most of the system downtime for the remaining
systems. We do not include in the distinguished systems Microsoft, Overnet,
Notre-Dame, and Skype, since the dependence of the depicted curves on ∆

looks more like an artifact of the data, due to the regular probing of nodes.
The seven distinguished traces have similar dependency on ∆: as ∆ increases

slowly, the number of groups quickly decreases and the cumulative downtime
quickly increases. Then, both slowly stabilize; this point, which occurs for values
of ∆ of a few minutes, is a good trade-off between small window size and large
capture of failures into groups. We extract for each of the seven selected traces
the best observed trade-off, and round it to the next multiple of 10 seconds;
Table 2 summarizes our findings.

5 Analysis Results

In the previous section we have selected seven systems for which space-correlated
failures are responsible for most of the system downtime. In this section, we
present the results of fitting common distributions to the empirical distribu-
tions extracted from the failure traces of these seven traces selected. The space-
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Fig. 3. Number of groups and cumulated downtime, for groups of at least 2 failures.

correlated failures are generated using the moving windows method introduced
in Section 3, and the values of ∆ selected in Section 4.

The Failure Trace Archive already offers a toolbox (see [14, Section III.B]
for details) for fitting common distributions to empirical data. We have adapted
the tools already present in this toolbox for our model by extending the set of
common distributions with the Pareto distribution, by adding a data prepro-
cessing step that extracts groups of failures for a specific value of ∆, and by
improving the output with automated graphing, tabulation, and summarization
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of results in text. These additions and are now publicly available as part of the
FTA toolbox code repository.

5.1 Detailed Results

We have fitted to the empirical distributions five common distributions, expo-
nential, Weibull, Pareto, lognormal, and gamma. We now present the results
obtained for each model component, in turn.

Table 3. Failure Group Inter-Arrival Time: Best found parameters when

fitting distributions to empirical data. Values in bold denote the best fit.

Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 0.53 0.15 0.18 0.86 1.22 0.47 0.51
Weibull 0.44 0.79 0.16 1.21 0.12 0.74 0.46 0.63 0.23 0.47 0.13 0.57 0.07 0.48
Pareto 0.42 0.29 0.01 0.15 0.36 0.08 0.62 0.25 0.84 0.09 0.40 0.07 0.51 0.03
Logn -1.39 1.03 -2.17 0.76 -2.57 0.81 -1.46 1.28 -2.28 1.35 -2.63 0.86 -3.41 0.98

Gamma 0.79 0.67 1.83 0.08 0.71 0.25 0.48 1.79 0.28 4.33 0.36 1.31 0.26 2.00

Failure Group Inter-Arrival Time To understand the failure group inter-
arrival time, we consider for each failure group identified in the trace (including
groups of size 1), the group generator (see Section 3.1). We then generate the
empirical distribution from the time series corresponding to the inter-arrival
time between consecutive group generators. Table 3 summarizes for each plat-
form the parameters of the best fit obtained for each of the five common dis-
tribution we use in this work. The goodness-of-fit values for the AD and KS
tests (see Section 3.3) are presented in Appendix A in Tables 9 and 10, respec-
tively. These results reveal that the failure group inter-arrival time is not well
characterized by a heavy-tail distribution as the p-values for the Pareto are low.
Moreover, we identify two categories of platforms. The first category, represented
by Grid’5000, Websites, and LRI, is well-fitted by Log-Normal distributions.
The second category, represented by LDNS, Deug, SDSC, and UCB, is not
well-fitted by any of the common distributions we tried; for these, the best-fits
are either the lognormal or the gamma distributions.

Table 4. Failure Group Size: Best found parameters when fitting distribu-

tions to empirical data. Values in bold denote the best fit.

Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 17.09 2.55 13.44 5.74 10.96 5.19 4.47
Weibull 12.82 0.71 2.87 1.60 15.12 2.29 5.76 1.01 12.12 1.39 4.94 0.93 5.05 2.52
Pareto 0.68 6.75 -0.06 2.68 -0.18 15.09 0.22 4.43 -0.03 11.26 0.22 3.70 -0.41 5.76
Logn 1.88 1.25 0.84 0.35 2.52 0.41 1.32 0.77 2.15 0.70 1.19 0.70 1.41 0.42

Gamma 0.64 26.78 5.33 0.48 6.23 2.16 1.30 4.40 2.22 4.94 1.23 4.24 6.03 0.74

Failure Group Size To understand the failure group size, we generate the
empirical distribution of the sizes of each group identified in the trace (including
groups of size 1). Table 4 summarizes for each platform the parameters of the
best fit obtained for each of the five common distribution we use in this work. The
goodness-of-fit values for the AD and KS tests are presented in Appendix A in
Tables 11 and 12, respectively. similarly to our findings for the failure group inter-
arrival time, the results for the failure group size reveal heavy-tail distributions
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are not good fits. We find that the lognormal and gamma distributions are good
fits for the empirical distributions.

Table 5. Failure Group Duration, Dmax: Best found parameters when fitting

distributions to empirical data. Values in bold denote the best fit.

Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 3.33e6 21225.18 2.48e6 2.46e5 1.18e5 67183.25 4071.25
Weibull 75972.13 0.28 10658.82 0.63 2.430e6 0.96 1.051e5 0.48 61989.86 0.54 35581.34 0.63 4131.60 1.03
Pareto 3.10 2686.08 0.73 5493.50 0.16 2.071e6 1.71 24187.13 1.53 15901.44 0.54 20627.60 0.09 3711.35
Logn 9.51 3.21 8.57 1.36 14.16 1.15 10.41 2.45 10.03 2.02 9.80 1.30 7.82 1.03

Gamma 0.14 2.362e6 0.46 46006.96 1.01 2.452e6 0.34 7.317e5 0.40 2.950e5 0.49 1.384e5 1.16 3509.88

Table 6. Failure Group Duration, DΣ: Best found parameters when fitting

distributions to empirical data. Values in bold denote the best fit.

Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 4.40e5 10363.55 4.17e5 1.63e5 29979.27 30139.69 1500.92
Weibull 30951.59 0.33 6605.36 0.70 4.576e5 1.37 80091.30 0.50 13239.84 0.57 19008.04 0.69 1646.49 1.35
Pareto 2.54 2215.71 0.47 4258.00 -0.11 4.576e5 1.61 20672.26 0.91 5832.36 0.41 12570.49 -0.10 1645.39
Logn 8.89 2.71 8.20 1.13 12.64 0.84 10.16 2.40 8.67 1.62 9.25 1.16 7.01 0.81

Gamma 0.18 2.418e6 0.59 17462.56 1.82 2.292e5 0.36 4.484e5 0.40 74867.95 0.59 51497.86 1.82 825.92

Failure Group Duration The two last components of our model are the
parallel- and single-node downtime of the space-correlated failures. To under-
stand these two components, we generate for each the empirical data distribu-
tion using the durations of each group identified in the trace (including groups
of size 1). The results of the fitting of the parallel downtime component are
presented in Table 5, and the results of the fitting of the single-node downtime
component are given in Table 6. Furthermore, the results of the AD and KS
goodness of fit tests are shown in Tables 13 and 14 (parrallel downtime), and in
Tables 15 and 16 (single-node downtime). Similarly to our previous findings in
this section, we find that heavy-tail distributions such as Pareto do not fit well
the empirical distributions. In contrast, the lognormal distribution is by far the
best fit, with only two systems (LDNS and LRI) being better represented by
the other distributions (the Gamma and Weibull distributions, respectively).

5.2 Results Summary

For all the component of our model and for all platforms, the most well-suited
distribution is presented in Table 7. The main result is that Log-Normal dis-
tributions provide good results for almost all parts of our model. Thus, we can
model most of node-level failures in the whole platform by groups of failures, each
group being characterized by its size, its parallel downtime and its single-node
downtime.

Table 7. Best fitting distribution for all model components, for all systems.

Group size Group IAT Dmax DΣ

Grid’5000 Logn (1.88,1.25) Logn (-1.39,1.03) Logn (9.51,3.21) Logn (8.89,2.71)
Websites Gamma (0.84,0.35) Logn (-2.17,0.76) Logn (8.57,1.36) Logn (8.20,1.13)

LDNS Logn (2.52,0.41) Logn (-2.57,0.81) Logn (14.16,1.15) Gamma (1.82,2.292e5)
LRI Logn (1.32,0.77) Logn (-1.46,1.28) Weibull (1.051e5,0.48) Weibull (80091.30,0.50)
Deug Logn (2.15,0.70) Logn (-2.28,1.35) Logn (10.03,2.02) Logn (8.67,1.62)
SDSC Logn (1.10,0.70) Logn (-2.63,0.86) Logn (9.80,1.30) Logn (9.25,1.16)
UCB Gamma (6.03,0.74) Logn (-3.41,0.98) Logn (7.82,1.03) Logn (7.01,0.81)
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6 Related work

From the large body of research already dedicated to modeling the availability of
parallel and distributed computer systems–see [3–6] and the references within–,
relatively little attention has been given to space-correlated errors and failures [4,
10,13], despite their reported importance [1, 3].

Table 8. Research on space-correlated availability in distributed systems.

System Type System Name Data Source Errors/ Setup Type
Study (Number of Systems/Total Size [nodes]) (Length) Failures Gen. Process (∆ [min])

[4] SC VAXcluster (1 sys./7) Sys.logs (10 mo.) Errors time partitioning manual (5 min.)
[13] NoW Microsoft (1 sys./>50,000) Msmts. (5 weeks) Failures instantaneous manual (0 min.)
[10] Grid Grid’5000 (15 cl./>2,500) Sys.logs (1.5 years) Failures extending window auto (0.5–60)

This study Various Various (15 sys./>500,000) Various (>6 mo. avg.) Failures moving window auto (0.02–60)
Note: SC, NoW, Sys, Cl, Msmts, and Mo are acronyms for supercomputer, network of workstations, system, cluster,

measurements, and months, respectively.

The main differences between this work and the previous work on space-
correlated errors and failures is summarized in Table 8. Our study is the first
to investigate the problem in the broad context of distributed systems, through
the use of a large number of failure traces. Besides a broader scope, our study is
the first to use a generation process based on a moving window, and to propose
a method for the selection of the moving window size.

7 Conclusion and Future Work

It is highly desirable to understand and model the characteristics of failures in
distributed systems, since today millions of users depend on their availability.
Towards this end, in this study we have developed a model for space-correlated
failures, that is, for failures that occur within a short time frame across distinct
components of the system. For such groups of failures, our model considers three
aspects, the group arrival process, the group size, and the downtime caused by
the group of failures. We found that the best models for these three aspects are
mainly based on the lognormal distribution.

We have validated this model using failure traces taken from diverse dis-
tributed systems. Since the input data available in these traces, and, to our
knowledge, in any failure traces available to scientists, do not contain informa-
tion about the space correlation of failures, we have developed a method based
on moving windows for generating space-correlated failure groups from empirical
data. Moreover, we have designed an automated way to determine the window
size, which is the unique parameter of our method, and demonstrated its use on
the same traces.

We found that for seven out of the fifteen traces investigated in this work, a
majority of the system downtown is caused by space-correlated failures. Thus,
these seven traces are better represented by our model than by traditional mod-
els, which assume that the failures of the individual components of the system
are independently and identically distributed.

This study has also allowed us to contribute six new failure traces in standard
format to the Failure Trace Archive, which we hope can encourage others to use
the Archive and also to contribute to it with failure traces.
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A Goodness-of-Fit Results

In this appendix we present additional tables to support the claims of good
fit and the claims of best fit we made throughout Section 5. To this end, we
present here two tables with the p-values of the AD and KS tests, respectively,
for each model component. Consistent with the standard method for computing
p-values [14, 19], each value we show is an average of 1,000 p-values, each of
which is computed by selecting 30 samples randomly from the dataset.

Failure Group Inter-Arrival Time Tables 9 and 10 show the p-values for
the AD and KS goodness of fit tests, respectively.

Failure Group Size Tables 11 and 12 show the p-values for the AD and
KS goodness of fit tests, respectively.

Failure Group Duration, Dmax Tables 13 and 14 show the p-values for
the AD and KS goodness of fit tests, respectively.

Failure Group Duration, DΣ Tables 15 and 16 show the p-values for the
AD and KS goodness of fit tests, respectively.

Table 9. Failure Group Inter-Arrival Time: P-values for AD goodness of

fit tests. Values in bold denote p-values above the test threshold for the

significance level 0.5.

Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 0.185 0.329 0.0175 0.0361 1.50e-5 1.25e-6 5.78e-7
Weibull 0.221 0.491 0.034 0.287 0.0242 0.0074 0.0047
Pareto 9.39e-5 1.09e-5 9.85e-7 6.56e-4 3.14e-6 2.57e-6 6.58e-8
Logn 0.446 0.607 0.183 0.569 0.0801 0.156 0.0153

Gamma 0.2 0.55 0.026 0.147 0.0072 0.0018 0.0012

Table 10. Failure Group Inter-Arrival Time: P-values for KS goodness of

fit tests. Values in bold denote p-values above the test threshold for the

significance level 0.5.

Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 0.0911 0.185 8.27e-4 0.0035 3.10e-10 3.21e-11 1.61e-17
Weibull 0.075 0.409 5.27e-4 0.153 4.550-4 2.33e-4 4.38e-6
Pareto 3.04e-6 1.96e-7 3.16e-8 7.98e-5 1.01e-8 1.36e-6 5.21e-11
Logn 0.333 0.466 0.0496 0.372 0.0148 0.104 6.34e-4

Gamma 0.0995 0.437 0.0021 0.0579 3.49e-4 3.04e-5 1.67e-7

Table 11. Failure Group Size: P-values for AD goodness of fit tests. Values

in bold denote p-values above the test threshold for the significance level

0.5. Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 0.28 0.439 0.14 0.508 0.449 0.398 0.333

Weibull 0.502 0.498 0.597 0.516 0.639 0.408 0.734

Pareto 0.122 0.244 4.86e-5 0.079 4.83e-4 0.115 0.0049
Logn 0.575 0.684 0.711 0.647 0.708 0.622 0.765

Gamma 0.393 0.595 0.699 0.469 0.687 0.392 0.772
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Table 12. Failure Group Size: P-values for KS goodness of fit tests. Values

in bold denote p-values above the test threshold for the significance level

0.5.
Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 0.0232 1.49e-7 0.0011 0.0072 0.119 0.0026 3.41e-4
Weibull 0.0485 1.40e-6 0.257 0.008 0.418 8.32e-4 0.206

Pareto 1.19e-5 6.24e-14 9.14e-11 2.18e-11 2.09e-6 1.88e-8 4.74e-14
Logn 0.144 2.69e-4 0.37 0.0651 0.421 0.0267 0.174

Gamma 0.0578 2.16e-4 0.376 0.024 0.44 0.0073 0.191

Table 13. Failure Group Duration, Dmax: P-values for AD goodness of fit

tests. Values in bold denote p-values above the test threshold for the sig-

nificance level 0.5.
Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 1.18e-6 0.0364 0.563 0.0643 0.047 0.0151 0.565

Weibull 0.235 0.278 0.556 0.606 0.513 0.23 0.578

Pareto 0.0118 5.99e-4 3.84e-5 0.0593 0.0061 2.74e-4 1.34e-5
Logn 0.368 0.356 0.61 0.609 0.548 0.534 0.618

Gamma 0.0528 0.143 0.558 0.493 0.428 0.0962 0.571

Table 14. Failure Group Duration, Dmax: P-values for KS goodness of fit

tests. Values in bold denote p-values above the test threshold for the sig-

nificance level 0.5.
Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 5.41e-11 0.0083 0.004 0.0076 0.0085 0.0021 0.465

Weibull 0.107 0.0733 0.303 0.292 0.348 0.111 0.477

Pareto 0.0019 1.46e-5 0.0017 0.0035 0.0011 6.10e-5 5.27e-7
Logn 0.223 0.223 0.263 0.253 0.347 0.383 0.481

Gamma 0.023 0.0709 0.251 0.236 0.301 0.0291 0.464

Table 15. Failure Group Duration, DΣ: P-values for AD goodness of fit tests.

Values in bold denote p-values above the test threshold for the significance

level 0.5.
Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 4.85e-5 0.0903 0.396 0.135 0.0189 0.0632 0.405

Weibull 0.26 0.222 0.592 0.627 0.455 0.243 0.59

Pareto 0.0086 3.17e-4 1.23e-6 0.0599 0.0017 9.12e-5 5.02e-6
Logn 0.393 0.342 0.602 0.583 0.576 0.535 0.626

Gamma 0.0775 0.158 0.606 0.547 0.23 0.139 0.602

Table 16. Failure Group Duration, DΣ: P-values for KS goodness of fit tests.

Values in bold denote p-values above the test threshold for the significance

level 0.5.
Grid’5000 Websites LDNS LRI Deug SDSC UCB

Exp 1.67e-7 0.0299 0.233 0.0209 0.004 0.0149 0.276

Weibull 0.138 0.0304 0.48 0.325 0.37 0.136 0.485

Pareto 0.0014 5.06e-6 1.92e-7 0.0033 1.78e-4 1.64e-5 1.13e-7
Logn 0.24 0.183 0.471 0.235 0.414 0.373 0.494

Gamma 0.0372 0.0569 0.492 0.293 0.177 0.0527 0.473


