
Characterization and Comparison of Cloud versus Grid Workloads

Sheng Di1, Derrick Kondo1, Walfredo Cirne2
1INRIA, France, 2Google Inc., USA

{sheng.di,derrick.kondo}@inria.fr, walfredo@google.com

Abstract—A new era of Cloud Computing has emerged, but
the characteristics of Cloud load in data centers is not perfectly
clear. Yet this characterization is critical for the design of novel
Cloud job and resource management systems. In this paper, we
comprehensively characterize the job/task load and host load
in a real-world production data center at Google Inc. We use
a detailed trace of over 25 million tasks across over 12,500
hosts. We study the differences between a Google data center
and other Grid/HPC systems, from the perspective of both work
load (w.r.t. jobs and tasks) and host load (w.r.t. machines). In
particular, we study the job length, job submission frequency,
and the resource utilization of jobs in the different systems,
and also investigate valuable statistics of machine’s maximum
load, queue state and relative usage levels, with different job
priorities and resource attributes. We find that the Google data
center exhibits finer resource allocation with respect to CPU
and memory than that of Grid/HPC systems. Google jobs are
always submitted with much higher frequency and they are
much shorter than Grid jobs. As such, Google host load exhibits
higher variance and noise.

I. INTRODUCTION

Miron Livny once said, “I’ve been doing research in
Clouds before it was called Grids”. This quote highlights
fundamental questions: what is novel in Clouds, and what
are the real differences between Clouds and Grids? Potential
differences can arise in many areas, including but not limited
to software configuration, resource and job management, and
monetary charging models. High-level differences between
Clouds and Grids are easy to identify. For instance, in
Clouds, software configuration and management is eased via
virtual machine images. Resource management is potentially
more dynamic as virtual machines can be booted up and
down over time. Charging models are pay-as-you-go.

While high-level differences may be easy to identify,
the devil is in the details; substantiating such differences
quantitatively and statistically, specifically for work load and
host load, is critical for the design and implementation of
Cloud systems. It is challenging because it requires detailed
traces of production and often proprietary Clouds. Moreover,
such traces are often enormous, and one requires statistical
techniques for summarizing and understanding the data.

At a high-level, one could hypothesize fundamental dif-
ferences in the time dynamics of load due to differences
in the types of users and applications. In Grids and HPC
systems, users often submit large scientific applications or
experimental research applications. In Cloud data centers,
users and applications are more commercial and interactive.

Typical jobs come from web services (for meeting search
queries, and online document editing and translations, for
instance), and map-reduce applications (for building inverted
indices of web documents or email, for instance).

Given those hypotheses, we characterize quantitatively
and statistically host and work load in commercial data
centers, and compare and contrast properties of Cloud versus
Grid load. By work load, we refer to load due to incoming
jobs and their corresponding tasks submitted by users. By
host load, we refer to load on a particular machine due
to executing tasks. We use the sole term load to refer
generically to both work load and host load.

A detailed characterization of a system’s load is critical
for optimizing its performance. In the context of data centers,
host and work load characterization is essential for job and
resource management including but not limited to capacity
planning, virtual machine consolidation, load balancing, and
task scheduling. For instance, by characterizing common
modes of host load within a data center, a job scheduler
can use this information for task allocation and improve uti-
lization. Alternatively, the resource management system can
proactively shift and consolidate load via (VM) migration to
improve host utilization, using fewer machines and shutting
off unneeded hosts.

So, we investigate the following questions. First, what
are the characteristics and statistical properties of work and
host load in Cloud data centers? Second, what are the key
similarities or differences of work and host load between
Clouds and Grids, and the implications for job/resource
management?

To answer those questions, we study a workload trace of
a production data center at Google [1]. Google offers several
Cloud services, such as web search, interactive documents,
email, where users (indirectly) submit jobs without having
to specify the details of their execution. As such, we believe
this trace is representative of real-world Cloud workloads.
The trace contains detailed measurements reported every 5
minutes of the states and events concerning users, jobs, tasks,
and hosts. In total, the trace contains details about over 25
million tasks executed over 12,500 hosts during 1-month
time period.

For comparison, we also characterize the work load and
host load from different Grid systems, including AuverGrid
[2], NorduGrid [3], sharcnet [4], as well as other HPC clus-
ters, from Argonne National Laboratory (ANL) [5], RIKEN

Integrated Cluster of Clusters (RICC) [6], METACENTRUM
cluster [7] and Lawrence Livermore National Laboratory
(LLNL) [8]. Grid applications are mainly oriented for si-
centific problems with heavy computation workloads.

We characterize the workload for Google’s jobs, based on
Google’s trace data with over 670,000 jobs. By comparing
to the real-world trace of many other Grid systems and HPC
systems, we find that Google jobs usually have much shorter
length are submitted at higher frequency. Each Google job
takes relatively a small share of resources, leading to a much
finer resource allocation granularity. Moreover, each Google
job usually consists of only a single task; a typical user
job, such as keyword search, is relatively compact and self-
contained. In Grids, each job can consist of several processes
running simultaneously over multiple cores.

With respect to host load, we give qualitative and quan-
titative descriptions of static metrics, such as machine’s
maximum host load. We also describe dynamic metrics,
such as queue state, and relative usage levels compared to
capacities. Interestingly, we find that host load in data centers
has higher variance than in Grids. This is due to the fact that
the Google workload consists of a large number of short
tasks that complete within a few minutes.

For the remainder of the paper, we use the terms data
center and cloud server interchangeably. In Section II, we
describe our modeling approaches in processing the Google
trace data. In Section III, we comprehensively analyze the
characteristics of the workload for Google jobs and tasks
as compared to those of Grid jobs. We characterize the
host load of Google data center in Section IV, by taking
into account the variance of priorities, resources, and time
periods. Finally, we discuss related work in Section V and
conclude with future work in Section VI.

II. SYSTEM MODEL BASED ON GOOGLE’S TRACE DATA

In this section, we first briefly describe Google cluster’s
task scheduling mechanism, and data contained in the trace.

A Google cluster consists of many machines that are
connected via a high-speed network. One or more schedulers
receive and process a large number of user requests (a.k.a.
jobs), each of which is comprised of one or more tasks.
For instance, a map-reduce program will be handled as a
job with multiple reducer tasks and mapper tasks. Each task
(actually represented as a Linux program possibly consisting
of multiple processes) is always generated with a set of user-
customized requirements (such as the minimum CPU rate
and memory size). Each job corresponds to one user, and
it may contain one or more tasks, which are the smallest
units of resource consumption. In addition, different tasks
have different scheduling priorities, and there are currently
12 priorities in total.

According to Google’s usage trace format [1], each task
can only be one of the following four states, unsubmitted,
pending, running and dead, as shown in Figure 1 (excerpted

from [1]). Any newly submitted task will be first put in
the pending queue, waiting for the resource allocation (the
step (1) as shown in the figure). As long as some available
resources meet the task’s constraints, it will be scheduled
onto the qualified resource for execution (step (2)). Users are
allowed to tune their tasks’ constraints at runtime, adapting
to users’ needs and the environment (step (3)). For example,
a user can expand the upper bound of CPU rate and memory
size for the task in the course of its execution. Any task may
be evicted by system, killed or lost during its execution.
After its execution, it will enter into the dead state (step (4)
and (5)), and it can be resubmitted by users later (step (6))
to wait for further resource allocation.

Figure 1. State Transitions of Google Tasks

Basically, the Google scheduler processes high-priority
tasks before low-priority ones, and performs the first-come-
first-serve (FCFS) policy on the ones with the same priority.
The “best” resources will be used first, in order to optimally
balance the resource demands across machines and minimize
peak demands within the power distribution infrastructure,
reaching approximately optimal resource utilization. Such
a model will use the resources according to their abilities,
leading to an approximate load balancing situation.

Based on the above task processing model, Google traced
over 25 million tasks that were scheduled/executed across
over 12500 heterogeneous machines within one month. All
the tasks are submitted with a set of customized constraints
and priorities, which will be discussed later. More than
10 metrics are collected during the one month of task-
event monitoring, including CPU usage, assigned memory,
observed real memory usage, page-cache memory usage,
disk I/O time, and disk space.

When releasing the trace, Google normalized almost all
floating-point values by its theoretical maximum value.
These values were transformed in a linear manner. So, rela-
tive information about host load, for example, is preserved.

III. ANALYSIS OF GOOGLE WORKLOAD

In this section, we characterize the workload of jobs on
a Google data center, by comparing it to that on other Grid
or HPC systems. Based on our characterization, we find that
Google jobs behave quite differently from the traditional
Grid jobs, especially with respect to job length, frequency
of submission, and resource utilization.

Based on Google’s trace, we first group the all 25 million
tasks in terms of their job IDs, and then compute the

statistics (such as mean CPU usage and memory usage)
for each job. The Grid/HPC jobs to be compared are also
from real-world trace data, available from the Grid Workload
Archive (GWA) [9] and Parallel Workload Archive (PWA)
[10] respectively. Their corresponding applications are usu-
ally for scientific reseach, which would probably cost a
heavy workload on computation.

1) Job/Task Priority: In a Google data center, each task
is submitted with a particular priority, which is selected from
12 levels. Any tasks with high priorities are able to preempt
other tasks with lower priorities. All of the tasks that belong
to the same job have the same priority. According to the
histogram shown in Figure 2, there are three clusters of
priorities, low priority (1∼4), middle priority(5∼8), and high
priority (9∼12), for both jobs and tasks.

 0

 2x104

 4x104

 6x104

 8x104

 10x104

12x104

 14x104

 16x104

 18x104

1 2 3 4 5 6 7 8 9 10 11 12

Th
e

N
um

be
r o

f J
ob

Job Priority

 16x104

 11.3x104

 17x104

 13x104

0.9x104

4x104 4.7x104

(a) The Number of Jobs

6

6

6

6

6

6

6

6

6

6

6

6
6

(b) The Number of Tasks

Figure 2. Statistics based on Different Priorities

Also, we can observe that most of the jobs/tasks are
assigned with relatively low priorities (from 1 to 5). So
we study later the usage load level or idleness state of the
system from the perspective of different task priorities. For
example, if a machine’s resource utilization is very full but
over 90% of execution time is attributed to the tasks with
low priorities, the machine can still be considered quite idle
w.r.t the tasks that have relatively high priorities (e.g., the
values are greater than 4).

2) Job/Task Length: The length of a Google job or a Grid
job is defined as the duration between its submission time
and its completion time. Its value could be affected by many
factors, such as the work to be processed, the priority of the
job, the system state (idle or busy) when it is submitted,
and so on. We compare the cumulative distribution function
(CDF) of the job length between Google and other Grid
systems in Figure 3. We observe that Google jobs are quite
shorter than Grid jobs: over 80% Google jobs’ lengths are
shorter than 1000 seconds, while most of Grid jobs are
longer than 2000 seconds. This difference is mainly due
to the fact that Grid jobs are usually based on complex
scientific problems, while Google jobs, such as keyword
search, are often real-time.

We also compare Google task lengths to AuverGrid’s job
lengths. We compare the mass-count disparity of the two
systems in Figure 4. (We use the term task length and task
execution time interchangeably.)

Mass-count [11] is a very important metric used to sum-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

C
D

F

Job Length (second)

Google
AuverGrid
NorduGrid

SHARCNET
ANL

RICC
METACENTRUM

LLNL-Atlas

Figure 3. The CDF of Job Length of Google and Grid Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Task’s Execution Time (Day)

joint ratio=6/94
mmdis.=23.19

Count
Mass

mmdis.
joint ratio

(a) Google’s Task Length

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Task’s Execution Time (day)

joint ratio=24/76
mmdis.=0.82

Count
Mass

mmdis.
joint ratio

(b) AuverGrid’s Task Length

Figure 4. Mass-Count Disparity of Task Lengths (Google v.s AuverGrid)

marize the key features (such as heavy tails) for specific dis-
tributions. It is made up of the “count” distribution and the
“mass” distribution. The “count” distribution simply refers
to the cumulative distribution function (CDF) as it counts
how many items are smaller than certain size. The “mass”
distribution weights each item, specifying the probability
that a unit of mass belongs to an item. Specifically, their
values are calculated based on Formula (1) and (2), where
f(t) is referred to as the probability dense function.

Fc(x) = Pr(X < x) (1)

Fm(x) =

∫ x

0
t · f(t) dt

∫∞
0

t · f(t) dt (2)

By comparing the two curves, we can determine whether
the distribution follows Pareto principle [12], heavy tails, or
other statistical features. In the analysis, joint ratio (a kind
of Gini coefficient [11]) is a critical measure index, defined
as X/Y, meaning that X% of the items account for Y% of the
mass and Y% of the items account for X% of the mass. The
mm-distance (abbreviated as mmdis.) shown in the figure is
defined as the horizontal distance of the two points that are
right in the middle of the CDF of the Count curve and Mass
curve. Longer distance means a larger number of period
lengths each with long duration.

Task lengths are 1.29 times longer on average in Auver-
Grid than in Google. However, AuverGrid’s maximum task
length is 1.61 times smaller than that in the Google cluster.
Statistics shows that the average and maximum values of

task’s execution time among AuverGrid’s 340,000 submitted
tasks are 7.2 hours and 18 days respectively, while those
in Google cluster are 5.6 hours and 29 days respectively.
Through our analysis of task length’s mass-count disparity
(see Figure 4), the distribution of Google’s task lengths
exhibits the Pareto principle much more than that of Grid’s.
Specifically, about 94% of tasks’ execution times in Google’s
data center are less than 3 hours. In contrast, only 70%
of tasks in AuverGrid are smaller than 12 hours. Such a
difference in task length significantly impacts the fluctuation
of host load, which we discuss later.

3) Job Submission Frequency: Job submission frequency
is evaluated via the submission interval length between two
consecutive job submissions. This reflects the interactivity
between users/administrators and the systems. Figure 5
presents the CDF of the submission interval length. We can
clearly observe that the submission interval length of Google
jobs is much shorter than that of Grid jobs, which means
that the frequency of Google job submission is much higher
than that of Grid jobs. This can also be confirmed by Table I,
which shows the minimum/mean/maximum number of jobs
submitted per hour in Google and Grid/HPC systems. It is
observed that the frequency of Google’s job submission is
much higher than that of other Grid systems.

We use the fairness index [13] to demonstrate the stability
of the job submission frequency. The fairness index is
defined in Formula (3), where xi refers to the number of
job submissions within one hour in different periods. The
higher value of the fairness index, the higher stability of
the job submissions. Table I shows that Google jobs are
submitted with higher and more stable frequencies than Grid
jobs, while Grid job submissions exhibit significantly low
fairness because of their strong diurnal periodicity.

f(x) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

(3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

Interval of Job Submission

Google
AuverGrid
NorduGrid

SHARCNET
ANL

RICC
METACENTRUM

LLNL-Atlas

Figure 5. The CDF of Submission Interval of Google and Grid Systems
4) Job Resource Utilization: The last insight about the

jobs is on their resource utilization, such as the CPU usage
and the memory usage per job. We evaluate the CPU usage

Table I
THE NUMBER OF JOBS SUBMITTED PER HOUR

Google AG NG SN ANL RICC MT LLNL
max. # 1421 818 2175 22334 132 4919 2315 240
avg. # 552 45 27 126 10 121 24 8.4
min. # 36 0 0 0 0 0 0 0
fairness 0.94 0.35 0.11 0.04 0.51 0.14 0.04 0.23

by the ratio of the cumulative execution time on one or more
processors and its wall-clock time, as shown in Formula (4).
For comparison, we use the mean memory size used by the
job to evaluate its memory utilization.

CPU Usage =
of CPU · ExeT imePerCPU

WallClockT ime
(4)

We present the CPU usage and memory usage in Figure
6 (a) and (b) respectively. In Figure 6 (a), we can observe
that the CPU used by Google jobs is always smaller than
that of other Grid systems. Specifically, a large majority of
Google jobs just need one processor per job at any time,
though each job may contain multiple tasks submitted in
a sequential order. In contrast, the jobs in AuverGrid and
DAS-2 are likely parallel programs simultineously running
on multiple execution nodes.

As for memory usage, Google trace does not expose the
exact memory size used by jobs but their scaled values
compared to the maximum memory capacity of each node.
By assuming the maximum memory capacity to be equal
to 32GB and 64GB respectively, we could also compare
Google jobs and Grid jobs with respect to their memory
utilization. In Figure 6 (b), it is observed that the memory
size used by Google jobs is always relatively small as users’
short-term, interactive jobs are dominant and not resource
intensive.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
D

F

CPU Utilization over All Processors

Google
AuverGrid

DAS-2

(a) CPU Usage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Memory Utilization over All Processors

Google (MaxCap=32GB)
Google (MaxCap=64GB)

AuverGrid
SHARCNET

DAS-2

(b) Memory Usage

Figure 6. CPU & Memory Usage of Jobs

IV. ANALYSIS OF GOOGLE’S HOST LOAD

In this section, we first focus on the statistics of Google
clusters’ static metrics, such as machine’s maximum host
load on different attributes. After that, we will analyze
two types of dynamic metrics (queuing state and usage
levels), which change over time. Our analysis is based on
the observation of the Googles’ thousands of machines.

A. Analysis of Static Metrics

In the Google cluster, different machines have different
capacities for various resource types (CPU, memory, page

cache). So it is necessary to characterize the heterogeneity
as well as the maximum loads on different machines. In
the trace, the normalized hosts’ capacities are provided by
dividing by the maximum value w.r.t. different attributes.
According to statistics, we further infer the upper bound
using the maximum resource usage value over the lifetime
of the trace for each host. That is, from the task usage on a
given machine, we calculate the machine resource usage, and
use the maximum resource usage to indicate the machine’s
valid ability. According to our Google co-author, this is a
valuable estimate, since the capacity of usable resource in
user space is often less than the full capacity due to system
overheads (from the kernel, for instance.)

According to the statistics on 12500 machines, Figure
7 shows the probability distribution of the maximum con-
sumed host load during the whole lifetime of the trace,
w.r.t. the four significant attributes, CPU usage, memory
consumed, memory assigned, and page cache used. CPU
usage is measured based on CPU core seconds per sec-
ond, that is, the more cores a machine owns, the higher
computation ability it would have. The consumed memory
indicates the practical value of the memory size consumed
by applications, while the assigned memory means the
memory size allocated to the applications. The page cache
metric records the total amount of Linux page cache (i.e.,
file-backed memory) including both mapped and unmapped
pages. Recall that all the usage values in the Google trace
are normalized based on the corresponding maximum node
capacity, we can only show the relative heterogeneity instead
of the exact amounts. The black dotted line in the figure
indicates the normalized heterogeneous capacities, e.g., for
all machines, CPU’s capacities are 0.25, 0.5 and 1; memory’s
are 0.25, 0.5, 0.75 and 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
D

F

Normalized Maximum Host Load

Cap.=0.25
Cap.=0.5

Cap.1

(a) CPU usage

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.2 0.4 0.6 0.8 1

P
D

F

Normalized Maximum Host Load

Cap.=0.25
Cap.=0.5

Cap.=0.75
Cap.=1

(b) memory usage

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

P
D

F

Normalized Maximum Host Load

Cap.=0.25
Cap.=0.5

Cap.=0.75
Cap.=1

(c) memory assigned

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.2 0.4 0.6 0.8 1

P
D

F

Normalized Maximum Host Load

Cap.=1

(d) page cache memory

Figure 7. Distribution of Maximum Load

Figure 7 (a) shows that most of machines’ maximum host
loads are very close to their capacities. Specifically, for the
machines with relatively low and middle CPU capacities,
and over 80% and 70% of these hosts’ maximum loads
are equal to their capacities respectively. From Figure 7 (b)
and (c), we clearly see that the memory capacity among
all machines can be split into four groups, and the expected
values of the maximum memory size consumed on machines
are kept around 80% of their corresponding capacities,
which implies that the memory overhead of each machine
must be non-negligible. In comparison, the summed assigned
memory size is around 90% of the capacity with high
probability. The page cache capacities on machines are the
same as each other, while the maximum consumed values
shows a clear bimodal distribution.

B. Analysis of Dynamic Metrics

We investigate the characteristics of the dynamic features
of the resource metrics appearing in the Google cluster
trace data. We also compare the load changes between Grid
platform and Cloud platforms, with respect CPU usage and
memory usage.

1) Machine’s Queuing State: A machine’s queuing states
refer to the number of tasks that are kept in different states
(pending, running, finish, or abnormal) respectively. The dis-
tribution of states changes over time as new tasks are submit-
ted/scheduled or old tasks are finished normally/abnormally.
Task’s abnormal termination is due to one of the following
four task events, evicted by higher priority tasks, failed
because of task failure, killed by its user, and lost because
of its missing source data.

Different task events occur with different frequencies,
but different machines exhibit similar distributions on the
different types of events. We present the task event trace of
a particular machine, in Figure 8 (a). We use the black lines
(between start time and end time) to indicate the running
period for each task.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

T
a
s
k
 I
D

Time (Day)

SUBMIT
SCHEDULE

EVICT
FAIL

FINISH
KILL

LOST

(a) Task Events

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

T
h
e
 N

u
m

b
e
r

o
f
T

a
s
k
s

Time (Day)

PENDING
RUNNING

FINISH
ABNORMAL

(b) Queuing State

Figure 8. Task Events and Queuing State on a Particular Host

Based on the different states the tasks are treated over
time, we can imagine them being kept in different queues
(pending-queue, running-queue, dead-queue) on the ma-
chines. For example, we define the running queue state to
be the number of running tasks at some time point. Figure 8
(b) also presents the queuing states over time. Specifically,

the running-queue state increases gradually from zero to
40 and then this number will be kept stable until the end
of the trace. The pending-queue state (i.e., the number of
pending tasks) is always 0 (except for the bootstrap period
of the system), which means that each task is able to be
immediately scheduled as it is submitted. Moreover, the
number of finished tasks increases linearly and many of
them belong to the abnormal-completion state. According to
statistics, for the totally 44 million task-completion events ,
about 59.2% are abnormal ones, among which most of them
belong to the fail state (50%) or the kill state (30.7%).

We show more statistics about running tasks on nodes,
since the system’s dynamic state is mainly attributed to the
running tasks instead of the pending or finished ones. We
split the running-queue state into 6 intervals based on differ-
ent number of running tasks, [0,9], [10,19], [20,29], [30,39],
[40,49], [50,· · ·]. Then, we analyze the mass-count disparity
of the period lengths in which the running-queue state is
unchanged. We observe the distribution of these lengths over
all machines (see Figure 9) exhibits the Pareto principle
especially from the perspective of the joint ratio and mm-
distance metrics. That is, the majority of the unchanged-
state lengths are quite short. In Figure 9, we just show four
major intervals for simplicity. It is obvious that the first three
intervals follows the 10/90 rule, while the last one ([40,49])
follows the 15/85 rule. The distribution is thus skewed as
about 90% of tasks have very short continuous durations
and contain 10% mass. Moreover, the first three intervals
also show a similar mm-distance, while the last one presents
a much smaller mm-distance. This implies that the [40,49]
running-queue state changes much more frequently than the
other ones.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

Time Period (minute)

joint ratio=11/89

mmdis.=972

Count
Mass

mmdis.
joint ratio

(a) # of running tasks = [10,19]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

Time Period (minute)

joint ratio=12/88

mmdis.=845

Count
Mass

mmdis.
joint ratio

(b) # of running tasks = [20,29]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

Time Period (minute)

joint ratio=13/87

mmdis.=820

Count
Mass

mmdis.
joint ratio

(c) # of running tasks = [30,39]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
D

F

Time Period (minute)

joint ratio=16/84

mmdis.=370

Count
Mass

mmdis.
joint ratio

(d) # of running tasks = [40,49]

Figure 9. Mass-Count of Duration in Unchanged Queuing State

By studying the number of running tasks, we realize that
the duration in which the running-queue state is constant on
each machine can be several hours on average. This means

that the running-queue state is relatively stable.
The relative usage of a machine’s resource is most relevant

for load prediction. We define a machine’s resource usage
to be the ratio of the usage of some attribute to its capacity.
The range of resource usage is thus in [0, 1]. We will
also use resource utilization, usage level, and load level
interchangeably. We will characterize in detail CPU and
memory resource usage in the following sections.

2) Machine’s Usage Level: Based on the scaled CPU
capacity information provided by the Google trace, we can
compute the relative usage level (or load level) for the CPU
and memory relative to their capacity on each machine. As
follows, we present a snapshot of the relative CPU/memory
usage on 100 randomly sampled machines, before discussing
aggregate statistics and distributions.

In terms of the distribution of the number of tasks
with different priorities (as shown in Figure 2), we split
all jobs/tasks into three categories, with low-priority (1-4),
middle-priority (5-8) and high-priority (9-12) respectively.
For a particular attribute with a specific priority category
(e.g., CPU usage of the mid+high priority tasks), we further
divide the whole usage range into five equal intervals,
and plot a trace of dynamically changing load levels over
time for 50 randomly sampled machines. This depicts the
system’s idleness level from the perspective of the tasks with
different priorities.

From Figure 10 (a)∼(d), we observe that CPU and
memory usage differ. Specifically, Figure 10 (a) shows
that most of the machines are relatively idle compared to
their capacities in most of time (from the beginning to the
21th day and from 25th day till the end). Such an idle
situation is attributed to the intention by reserving a certain
portion of CPU resources to meet service level objectives
(for instance, a threshold on web request latency) in case
of unexpected load spikes. From the perspective of high-
priority tasks, however, the percentage of host load is not
that heavy, as shown in Figure 10 (b). This means that most
of the CPU resources from the Google computer cluster
are actually consumed by low-priority tasks, especially in
the busy duration (from 21th day to 25th day). Hence, it is
relatively easy to allocate idle CPU resources for the tasks
with high priorities.

Figure 10 (c) and (d) present the snapshot of the load
changes about memory usage. We can see that the majority
of machines’ memory usage is high compared to their
capacities. Moreover, their fluctuations are quite unlike that
of CPU usage. Specifically, some machines’ memory usage
are always relatively lightly-loaded (the green lines shown
in the figure); some are often heavily loaded (the black and
red lines); some memory usage always alternate between
two load levels; and there also exist a few machines that
demonstrate completely irregular changing memory usage.

We use Table II and Table III to show the statistics the
durations where CPU or memory usage are constant. The

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

M
a

c
h

in
e

 I
D

Time (Day)

[0,0.2]
[0.2,0.4]

[0.4,0.6]
[0.6,0.8]

[0.8,1]

(a) CPU Usage with All Tasks

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

M
a

c
h

in
e

 I
D

Time (Day)

[0,0.2]
[0.2,0.4]

[0.4,0.6]
[0.6,0.8]

[0.8,1]

(b) CPU Usage with Hi.Pr. Tasks

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

M
a

c
h

in
e

 I
D

Time (Day)

[0,0.2]
[0.2,0.4]

[0.4,0.6]
[0.6,0.8]

[0.8,1]

(c) MEM Usage with All Tasks

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

M
a

c
h

in
e

 I
D

Time (Day)

[0,0.2]
[0.2,0.4]

[0.4,0.6]
[0.6,0.8]

[0.8,1]

(d) MEM Usage with Hi.Pr. Tasks

Figure 10. Snapshot of Resource Usage Load

statistics are computed using all the tasks (including all
priorities) running on all of machines. It is obvious that the
continuous duration of CPU load approximately conforms
to 30/70 rule, while memory’s conforms to 20/80 rule.
Moreover, the frequency of the CPU load changes is very
high, in that the average duration is only about 6 minutes
and the mm-distance is also small (18∼49 minutes).

Due to the limited space, we cannot show the complete
statistics from the perspective of middle/high-priority tasks,
but just present a few as follows: As for CPU usage, the
uninterrupted load duration is 7∼8 minutes on average,
and the joint ratio is always about 30/70, in the situation
where only middle/high-priority tasks or high-priority tasks
are taken into account; as for memory usage, the joint
ratios are about 20/80 and 15/85 for the middle/high-priority
tasks and high-priority tasks respectively. In particular for
high-priority tasks, CPU’s mm-distance mainly appears in
14∼40, except for [0,0.2] whose mm-distance is 371, while
memory’s is in [560,1700], which clearly indicates that the
CPU usage changes much more frequently than that of
memory usage over time.

Table II
CONTINUOUS DURATION OF UNCHANGED CPU USAGE LEVEL

[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,1]
avg value (minute) 6 6 6 6 5
max value (minute) 41269 40302 3590 1452 2575
joint ratio 26/74 28/72 30/70 30/70 27/73
mm-distance (minute) 49 25 18 19 24

Table III
CONTINUOUS DURATION OF UNCHANGED MEMORY USAGE LEVEL

[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,1]
avg value (minute) 6 9 10 10 10
max value (minute) 31556 40302 10996 16736 16826
joint ratio 20/80 23/77 26/74 23/77 18/82
mm-distance (minute) 119 83 63 95 351

Now, we focus on the distribution of the mass-count dis-
parity of the relative resource utilization whose values range
from 0% to 100%. Figure 11 and Figure 12 present such
statistics about CPU usage and memory usage respectively.
By comparing the two figures, we can further confirm that
the CPU usage is much lower than memory usage, relatively.
Specifically, the percentage load of CPU is about 35% w.r.t.
all the tasks and about 20% for the high-priority tasks, while
memory’s are about 60% and 50% respectively. In addition,

we can also know that the distribution of usage is relatively
uniform because of the small value of mm-distance and large
value of joint ratio.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20% 40% 60% 80% 100%

C
D

F

Percentage of Usage

joint ratio=40/60
mmdis.=13%

Count
Mass

mmdis.
joint ratio

(a) low+mid+high priority tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

C
D

F

joint ratio=38/62
mmdis.=13%

 0 20% 40% 60% 80% 100%
Percentage of Usage

Count
Mass

mmdis.
joint ratio

(b) high priority tasks

Figure 11. Mass-Count Disparity of CPU Usage

 0

 0.2

 0.4

 0.6

 0.8

 1

C
D

F joint ratio=43/57

mmdis.=8%

 0 20% 40% 60% 80% 100%
Percentage of Usage

Count
Mass

mmdis.
joint ratio

(a) low+mid+high priority tasks

 0

 0.2

 0.4

 0.6

 0.8

 1

C
D

F

joint ratio=41/59

mmdis.=13%

 0 20% 40% 60% 80% 100%
Percentage of Usage

Count
Mass

mmdis.
joint ratio

(b) high priority tasks

Figure 12. Mass-Count Disparity of Memory Usage

Finally, we explore the difference of load changes be-
tween Cloud and Grid, by comparing the resource usage of
Google’s compute clusters and those of AuverGrid [2] and
SHARCNET [4], whose trace data can be downloaded from
the Grid Workload Archive (GWA) [9].

In Figure 13, we present the CPU usage load of three
machines, selected from the Google cluster, AuverGrid
and SHARCNET, within one month, 5 days and 1 day
respectively. What is the most interesting is that Grid’s CPU
usage is always higher than memory usage. This because
most Grid jobs are computation-intensive. By contrast, in
the Google cluster, a machine’s CPU usage is usually lower
than memory usage. This implies that Google tasks are not
compute-intensive programs and they use other resources
such as memory more intensively.

The second key difference observed is that Google clus-
ter’s CPU load has higher noise than the other two Grid
systems. We measure noise by processing the trace with
a mean filter [14], and then computing statistics on the

transformed trace. The minimum/mean/maximum noise of
AuverGrid’s CPU load are 0.00008, 0.0011, 0.0026 respec-
tively, while those for the Google cluster’s CPU load are
0.00024, 0.028, 0.081 respectively. It is clear that the noise
of Google cluster’s usage load is about 20 times as large as
that of Grid’s on average.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

R
e
la

ti
v
e
 U

s
a
g
e

Time (Day)

cpu_usage
mem_usage

(a) Google [0,30]

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 11 12 13 14 15

R
e
la

ti
v
e
 U

s
a
g
e

Time (Day)

cpu_usage
mem_usage

(b) Google [10,15]

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 10.2 10.4 10.6 10.8 11

R
e
la

ti
v
e
 U

s
a
g
e

Time (Day)

cpu_usage
mem_usage

(c) Google [10,11]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

R
e
la

ti
v
e
 U

s
a
g
e

Time (Day)

cpu_usage
mem_usage

(d) AuverGrid [0,30]

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 11 12 13 14 15

R
e
la

ti
v
e
 U

s
a
g
e

Time (Day)

cpu_usage
mem_usage

(e) AuverGrid [10,15]

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 10.2 10.4 10.6 10.8 11

R
e
la

ti
v
e
 U

s
a
g
e

Time (Day)

cpu_usage
mem_usage

(f) AuverGrid [10,11]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

R
e
la

ti
v
e
 U

s
a
g
e

Time (Day)

cpu_usage
mem_usage

(g) sharcnet [0,30]

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 11 12 13 14 15

R
e
la

ti
v
e
 U

s
a
g
e

Time (Day)

cpu_usage
mem_usage

(h) sharcnet [10,15]

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 10.2 10.4 10.6 10.8 11

R
e
la

ti
v
e
 U

s
a
g
e

Time (Day)

cpu_usage
mem_usage

(i) sharcnet [10,11]
Figure 13. Host load Comparison between Google cluster & Grid Systems

Lastly, Figure 13 also shows that the host load of Au-
verGrid and HARCNET is more stable during relatively
long periods (e.g., a few hours), while Google cluster’s load
changes rather frequently even in quite short periods, tens of
minutes in length. Over all hosts, the mean autocorrelation of
CPU usage load is about −8×10−6, which is much smaller
than AuverGrid’s CPU autocorrelation (=1.006×10−8). This
is mainly due to the fact that Google cluster has to process
millions of tasks, a large majority of which are smaller than
in Grids, as shown in Figure 8 (a) and Figure 4. The fact that
majority of Google’s tasks are smaller will definitely lead
to much finer resource usage and introduce more instability
in terms of host load fluctuation. Moreover, as described in
[15], Cloud tasks’ placement constraints may also be tuned
by users frequently over time, which may further impact
the resource utilization significantly. All in all, it is more
challenging to predict Google cluster’s host load because of
its higher noise and more unstable state.

V. RELATED WORK

There is much related work on the characterization of
workload and host load for Grid systems. H. Li [16] studied
the workload dynamics on clusters and Grids, based on the
real-world trace provided by Grid Workload Archive (GWA)
[9]. His work revealed many features about Grid load, which
can be leveraged to improve the system performance. Specif-

ically, the Grid host load exhibits clear periodic or diurnal
patterns, which can be used for host load prediction for
the task scheduling [17]. E. Afgan et al. [18] exploited the
performance characteristics of the NIBC BLAST application
on a cluster environment. In our research, we comprehen-
sively compare the workload between Cloud (Google) and
other Grid systems, showing much shorter job length and
much higher submission frequency in Cloud systems. D.
Kondo [19] analyzed the resource availability of Desktop
Grid systems based on the traces collected from different
Grid softwares, including the Entropia DCGrid desktop grid
[20], XtremWeb desktop grid [21] and so on. Our key
contribution is to exploit the key insights about the workload
and host load between Cloud and Grid systems, serving as a
fundamental basis for the system performance improvement
over Cloud systems.

Despite some works [15], [22], [23] also characterizing
workload features for Cloud systems, they mainly focus on
modeling running tasks such as tasks’ placement constraints
[15] or usage shapes [22]. Specifically, B. Sharma et al. [15]
carefully studied the performance impact of task placement
constraints based on the resource utilization from the view
of tasks. Q. Zhang et al. [22] designed a model that can
characterize task usage shapes in Google’s compute clusters.
In comparison to these two works, we intensively compare
the load characteristics between Cloud and Grid systems,
and summarize many new insights about Cloud load.

A. Khan et al. [24] designed a model to capture the CPU
load auto-correlations in the Cloud data centers by leverag-
ing the Hidden Markov Model (HMM). B.J. Barnes et al.
[23] introduced a regression-based approach for predicting
parallel application’s workload, and the prediction errors can
be limited between 6.2% and 17.3%. In comparison, by
using Google cluster’s large-scale one-month trace data, we
comprehensively studied the host load changes about mul-
tiple resource attributes (including CPU, memory and page
cache) in Cloud data centers. Specifically, we characterize
the machine capacity, queuing size (the number of running
tasks), the impact of task priority and task events, usage
levels and so on.

VI. CONCLUSION AND FUTURE WORK

We characterize the work load and host load in a Google
data center and compare them to those of Grid systems. We
use a detailed workload trace of a Google data center with
over 25 million tasks executed over 12,000 hosts in a 1-
month time frame, and the trace data from many Grid/HPC
systems. Our key findings are summarized below:

• With respect to Work load of Job or Task:
– Job/Task length: Most jobs finish in tens of minutes

and tasks finish quickly on the order of a few
minutes. Statistics show that about 55% of tasks
finish within 10 minutes and about 90% of tasks’
lengths are shorter than 1 hour. A handful of tasks

last for several days or weeks and likely correspond
to long-running services. Compared to Grid work-
loads, most Cloud task lengths are shorter, and at
the same time the longest task lengths are longer.
We believe this difference is due to the differences
in Cloud users and applications, which include
commercial applications such as web services. This
indicates that load can be sporadic and highly
variable.

– Job Priority: We find that task priorities can be
clustered into 3 groups, namely, low, medium,
and high. As high priority task can preempt low
priority task, load prediction thus can and should
be tailored and evaluated for each of these groups.

– Job Submission Frequency: Google jobs are sub-
mitted with much higher and more stable fre-
quency than that of Grid jobs. The average number
of jobs submitted per hour and its fairness index
in Google are 552 and 0.94 respectively, compared
to 8.4∼126 and 0.04∼0.51 in Grids.

– Job Resource Utilization: Google jobs usually have
lower resource demand for CPU and memory than
Grid jobs, because Google jobs (such as keyword
search) are more interactive and real-time in con-
strast to scientific batch jobs.

• With respect to Host load:

– Maximum load: We find that Google host’s maxi-
mum CPU load is often close to the CPU capacity,
and the maximum memory usage is about 80%
of the memory capacity. The maximum load is
actually controlled in the Google system for guar-
anteeing the service level of requests in case of
unexpected load spikes. In contrast, Grid resources
can be highly utilized without having a high risk
of losing users or customers.

– Machine usage level: CPU and memory usage
changes every 6 minutes, indicating again the
volatility of load. CPUs are often idle, but memory
usage is relatively high. CPU usage in Grids is
higher and more stable. Noise of CPU load in the
Google cluster is 20 times as high as that in Grids.

In the future, we will try to exploit the best-fit load
prediction method based on our characterization work, and
analyze and improve the job scheduling in Google data
centers.

ACKNOWLEDGMENTS

We thank Google Inc, in particular Charles Reiss and John
Wilkes, for making their invaluable trace data available. This
work was made possible by a Google Research Award and
by the ANR project Clouds@home (ANR-09-JCJC-0056-
01).

REFERENCES

[1] Google cluster-usage traces: online at
http://code.google.com/p/googleclusterdata.

[2] Auvergrid: online at http://www.auvergrid.fr/.
[3] Nordugrid: online at http://www.nordugrid.org/.
[4] Sharcnet grid project: online at https://www.sharcnet.ca.
[5] Anl cluster: online at http://www.anl.gov/.
[6] Ricc cluster: online at http://accc.riken.jp/ricc e.html.
[7] Metacentrum cluster: online at

http://www.metacentrum.cz/cs/.
[8] Llnl: online at https://www.llnl.gov/.
[9] Grid workloads archive (gwa): online at

http://gwa.ewi.tudelft.nl/pmwiki/.
[10] Parallel workload archive (pwa): online at

http://www.cs.huji.ac.il/labs/parallel/workload/.
[11] D. G. Feitelson, Workload Modeling for Computer

Systems Performance Evaluation, 2011. [Online]. Available:
http://www.cs.huji.ac.il/˜feit/wlmod/

[12] R. Koch, The 80/20 principle: the secret of achieving more
with less. Nicholas Brealey, 1997.

[13] R. K. Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measurement,
Simulation and Modelling. John Wiley & Sons, April 1991.

[14] P. S. R. Diniz, Adaptive Filtering: Algorithms and Practi-
cal Implementation, softcover reprint of hardcover 3rd ed.
2008 ed. Springer, Oct. 2010.

[15] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat,
and C. R. Das, “Modeling and synthesizing task placement
constraints in google compute clusters,” in Proceedings of the
2nd ACM Symposium on Cloud Computing (SOCC’11). New
York, USA: ACM, 2011, pp. 3:1–3:14.

[16] H. Li, “Workload dynamics on clusters and grids,” The
Journal of Supercomputing, vol. 47, no. 1, pp. 1–20, Jan.
2009.

[17] H. Li, R. Heusdens, M. Muskulus, and L. Wolters, “Anal-
ysis and synchesis of pseudo-periodic job arrivals in grids:
A matching pursuit approach,” in 7th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid07),
2007, pp. 183–196.

[18] E. Afgan and P. Bangalore, “Exploiting performance charac-
terization of BLAST in the grid,” Cluster Computing, Feb.
2010.

[19] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and
H. Casanova, “Characterizing resource availability in enter-
prise desktop grids,” Future Gener. Comput. Syst., vol. 23(7),
pp. 888–903, 2006.

[20] B. Calder, A. A. Chien, J. Wang, and D. Yang, “The entropia
virtual machine for desktop grids,” in VEE, 2005, pp. 186–
196.

[21] C. Germain, V. Néri, G. Fedak, and F. Cappello, “Xtremweb:
Building an experimental platform for global computing,” in
1st ACM/IEEE International Conference on Grid Computing
(Grid’00), 2000, pp. 91–101.

[22] Q. Zhang, , J. L. Hellerstein, and R. Boutaba, “Characterizing
task usage shapes in google compute clusters,” in Large Scale
Distributed Systems and Middleware Workshop (LADIS’11),
2011.

[23] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves,
B. de Supinski, and M. Schulz, “A regression-based approach
to scalability prediction,” in Proceedings of the 22nd annual
international conference on Supercomputing (ICS’08). New
York, NY, USA: ACM, 2008, pp. 368–377.

[24] A. Khan, X. Yan, , S. Tao, and N. Anerousis, “Workload
characterization and prediction in the cloud: A multiple time
series approach,” in 3rd IEEE/IFIP International Workshop
on Cloud Management (Cloudman’12), 2012.

