
J. Parallel Distrib. Comput. 72 (2012) 281–296
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Long-term availability prediction for groups of volunteer resources
Daniel Lázaro a,∗, Derrick Kondo b, Joan Manuel Marquès c,d

a Internet Interdisciplinary Institute, Universitat Oberta de Catalunya, Barcelona, Spain
b INRIA Rhone-Alpes, Laboratoire LIG, France
c Computer Science, Multimedia and Telecommunications Studies, Universitat Oberta de Catalunya, Barcelona, Spain
d Department of Computer Architecture, Universitat Politècnica de Catalunya, Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 15 June 2011
Received in revised form
11 October 2011
Accepted 24 October 2011
Available online 30 October 2011

Keywords:
Availability prediction
Reliability
Trace analysis
Volunteer computing
Service deployment

a b s t r a c t

Volunteer computing uses the free resources in Internet and Intranet environments for large-scale
computation and storage. Currently, 70 applications use over 12 PetaFLOPS of computing power from such
platforms. However, these platforms are currently limited to embarrassingly parallel applications. In an
effort to broaden the set of applications that can leverage volunteer computing, we focus on the problem
of predicting if a group of resources will be continuously available for a relatively long time period.
Ensuring the collective availability of volunteer resources is challenging due to their inherent volatility
and autonomy. Collective availability is important for enabling parallel applications and workflows
on volunteer computing platforms. We evaluate our predictive methods using real availability traces
gathered from hundreds of thousands of hosts from the SETI@home volunteer computing project. We
show our prediction methods can guarantee reliably the availability of collections of volunteer resources.
We show that this is particularly useful for service deployments over volunteer computing environments.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Context and motivation. Volunteer distributed computing har-
ness the computing power and storage of hundreds of thousands of
Internet resources. Currently, volunteer systems provide about 10
PetaFLOPS of computing power for scientific projects. Using volun-
teers, these projects have produced breakthrough scientific results
[26] published in over 60 of the world’s most prestigious confer-
ences and journals, such as Science and Nature.

However, the volatility of Internet volunteer resources has lim-
ited the range of applications to those that are high-throughput
and embarrassingly parallel. Other applications, such as communi-
cating parallel jobs or web services, could potentially benefit from
this cost-effective platform, if the volatility of these resources could
be masked or managed.

In volunteer computing, machines are controlled by individual
users, who may not be able or interested in keeping them contin-
uously connected and available for the system. Therefore, these
systems are highly dynamic, and typically offer no guarantees as
to how long a given resource will remain available, or how many
machines will be available at a given time. To ensure availability,

∗ Correspondence to: IN3, Media-TIC Building, c/Roc Boronat, 117, 7th floor,
08018 Barcelona, Spain.

E-mail addresses: dlazaroi@uoc.edu (D. Lázaro), dkondo@imag.fr (D. Kondo),
jmarquesp@uoc.edu (J.M. Marquès).

0743-7315/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.10.007
we focus in this work on availability prediction for a collection of
Internet-distributed non-dedicated resources, like those used in
volunteer computing.

Application availability requirements. One example of an ap-
plication which could benefit from volunteer computing may be
deploying a service over a set of hosts. The service is considered
available when there are at least N hosts offering it. This notion is
called collective availability [3]. The required number of hosts may
be determined by the functionality and internal architecture of the
service (it needs N hosts to perform its tasks), or by the load of the
system (N replicas of the service are required to serve the existing
clients). In such a system, the target is to keep the service available
for an arbitrarily long period of time, while using the minimum
possible amount of resources.

A similar case is that of data storage, where a data object is
stored over distributed hosts and needs to be available for clients
to retrieve it at any time. This kind of application could also benefit
from volunteer computing, as common desktop machines usually
have spare disk space [2]. In order to improve the availability of
the stored object, it may be replicated: it is stored in M hosts out
of which at least one needs to be available at a given moment
so that the object can be retrieved. Another possibility is to use
erasure codes [11], which divide a data object in M fragments.
A client needs to obtain N fragments (N < M) to restore the
whole file. In order for such a system to work, it is important to
minimize the number of replicas or fragments that are stored in
order to make an efficient use of both storage and communication

http://dx.doi.org/10.1016/j.jpdc.2011.10.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:dlazaroi@uoc.edu
mailto:dkondo@imag.fr
mailto:jmarquesp@uoc.edu
http://dx.doi.org/10.1016/j.jpdc.2011.10.007


282 D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296
resources. This case is similar to the service deployment case, as
both require at least N available hosts. The main difference is
that this only requires host availability (i.e., the host is reachable),
while services require CPU availability (i.e., the host’s CPU is free to
execute the service).We discuss these different availability notions
in Section 2.

Previous work. Most of the existing research in availability pre-
diction for volunteer computing [17,3] has focused on predicting
short-term availability, i.e., how long will a current availability or
unavailability stretch last. The prediction interval for continuous
availability for the short-term is typically no greater than 4 h. This
is useful for the deployment of individual tasks, the current focus of
volunteer computing, to predict if a machine will be available long
enough for the task to finish and return its result. For longer tasks,
predicting when a nodewill cease being available may also be use-
ful for scheduling checkpoints or migrations. The only important
thing here is accuracy, and the most recent data can be used to in-
crease prediction quality.

However, in the other cases presented (service deployment
and data storage), the availability requirements of the application
are different, so using the same availability prediction techniques
may not be optimal. One way to adapt short-term prediction for
achieving long-term availability is dividing the service lifetime
(potentially very long) into shorter prediction intervals. Some
techniques can be used to predict if a host will be available during
this interval, and hosts are selected to deploy the service based
on these predictions. After the prediction interval has finished, the
most recent data can be used to predict host availability during the
next interval and modify the deployment as required.

This technique can give good results for relatively short-lived
services [3]. However,most hosts in volunteer environments suffer
transient disconnections. Therefore, this adaptation will require
migrations at a constant rate in the long run, even when no host
permanently leaves the network. This will have a communication
cost that may not be negligible.

Approach and contributions. A different approach would be
to consider a permanent deployment, where once a service is
deployed in a host, the host will execute the service whenever it is
available. This breaks the correspondence between disconnections
and migrations, as we consider that a departing node will later
return (considering permanent departures as a separate case) and
execute the service without requiring another migration process
(file transfers, etc.). This is often the model used in distributed
storage systems [7,19], where data objects can remain in hosts’
disks after they come back from a transient disconnection.

For such models, it would be more useful to try to predict long-
term availability to select a pool of hosts which can provide the
required collective availability over time. This means that out ofM
selected hosts, at least N of them will be available at any moment,
without the need for migrating the service or data. However,
long-term prediction may have lower accuracy than short-term
prediction, where the system uses the most recent information to
predict the immediate future.

One way to perform long-term prediction is to try and detect
cyclical patterns in the behavior of hosts. Some works [14] have
reported the presence of such kinds of hosts in environments com-
posed of non-dedicated resources, such as volunteer computing
systems, enterprise desktop grids and peer-to-peer networks. This
paper studies such hosts using trace data of SETI@home [31], and
presents possible ways of using them to deploy services in vol-
unteer computing systems with high availability, low redundancy
and low number of migrations.

The contributions of this paper are the following:
• We analyze of a large set of trace data extracted from a real

system (SETI@home) to identify the presence of different types
of hosts (always-on, always-off, cyclic, random) and quantify
their presence and contribution to the overall availability of the
system.
• We propose a prediction tool (the bit vector) that summarizes
the availability information for different times in a week, and
assess its quality as a predictor for real hosts in the SETI@home
trace.

• We present a method to apply the bit vector-based availability
prediction to deploy a service, be it a computational service or
a set of data objects (e.g. erasure-coded), and achieve a good
level of collective availability using non-dedicated resources.
We validate this method using real data, and compare it to
random selection and short-term prediction-based methods.
We find that the method provides high availability (up to three
nines) with low redundancy (a factor of 0.2).

The rest of this document is organized as follows. Section 2
discusses some related work about availability analysis and
prediction in distributed systems, with a focus on volunteer
computing systems. Section 3 discusses the trace collection
method. Section 4 presents some analysis of SETI@home traces,
and proves the presence of periodic patterns in host availability.
Section 5 presents the bit vector as a tool to predict host availability
and assesses its quality as a predictor. Section 6 presents a method
which uses the bit vector to deploy services and obtain high
collective availability with low redundancy. Section 7 presents
the validation of the presented mechanism using the SETI@home
traces, and Section 8 concludes.

2. Related work

Availability prediction requires obtaining and analyzing trace
data of real systems. Many efforts have been devoted to this
task in a wide variety of computing environments. Specifically,
this work focuses on CPU availability in volunteer computing
platforms. CPU availability is different than host availability, which
is the focus of previous P2P availability studies [6,24,29,9,14,8].
CPU availability refers to the fact that a host’s CPU is available to
perform computations in behalf of the distributed systems. This
distinctionmakes sense in cases like volunteer computing systems,
where machines are used locally by their owners, and only surplus
resources are contributed to the community or to a third party. CPU
availability supersedes host availability, as network connectivity is
a required but not sufficient condition.

Some studies have analyzed CPU availability by obtaining
information about host load [34,8,12,4,13,33]. However, this may
not include different causes for CPU unavailability for the desktop,
like user interactive activity (mouse or keyboard activity) or OS
idiosyncrasies [21] like internal scheduling.

A different way to obtain data about CPU availability in a
desktop grid is to submit measurement data that is seen by
the workers as a real task. This way, the time assigned to the
measurement task, and therefore counted as CPU availability, is the
same that it would be to a real task. This method of measurement
has been used for some works on different systems. However, the
first availability studies of desktop grids only obtained information
from a limited number (hundreds) of hosts located in enterprises
or universities during a relatively short time period [21].

More recently, some bigger data sets have been published, like
the SETI@home trace published in the Failure Trace Archive [22],
which contains data about more than 200,000 hosts. This data
set has been analyzed for characterizing the behavior of purely
randomhosts [18].Weuse this trace for the analysis and evaluation
in this work, and describe it in detail in Section 3.

An important conclusion about availability came fromaworkby
Douceur [14] which studied the distribution of host availability in
a few sets of Internet-distributed and enterprise hosts, considering
the percentage of time each host is available. He identified this
as the graduated mix of two uniform distributions. This could
be caused by the existence of two types of hosts, identified by



D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296 283
(a) CPU interval lengths. (b) Fraction of time CPU is available.

Fig. 1. CPU availability.
Douceur as one group of hosts with cyclical behavior, and another
of hosts which are left on at all times. This supports our approach
of investigating the existence and possible use of hosts with
periodical availability patterns.

Prediction is an established technique in the management
of computer systems [32,12,16]. Many works have focused on
online availability prediction [28,25,3], using up to date data to
predict availability in the immediate future. The different approach
of capturing long-term availability patterns has also been used
in [27], which proposed a summary of the availability of hosts
during a week. This is similar to our approach, detailed in the
following sections, but it differs in that they used it to select hosts
with high expected availability during a period of time to execute
a task, whereas we will apply availability prediction for service
deployment. Another important difference is that they only tried
their mechanisms with a small number of hosts (75) in three
labs, while we validate ours with the SETI@home trace, which
contains hundreds of thousands of hosts, most of them in home
environments.

As stated earlier, service deploymentwith collective availability
is similar to distributed data storage. A possible approach to
providing availability guarantees in storage is to compute the
required number of replicas (or fragments) of a data object,
according to the average availability of hosts in the system
[7,19]. One problem of this approach is that it requires knowledge
of the average host availability, which may require expensive
procedures to be estimated. However, even more important is
the fact that these works only consider average availability, as
if all hosts’ behaviors are identical and independent. According
to [5], using average availability without considering correlation,
i.e., assuming host independence, highly overestimates the actual
availability obtained by a deployment. Similar conclusions about
the important contribution of failure correlation to unavailability
were found at Google storage systems [10].

In our own previous works, we focused exclusively on either
random availability patterns [17,18] or short-term predictions [3].
In contrast, in this work, we focus on predicting deterministic or
semi-deterministic patterns of availability over relatively long time
scales (days versus hours).

3. Trace collection

In order to detect periodical availability patterns, we have
used a set of real CPU availability traces from SETI@home, which
are part of the Failure Trace Archive [22], publicly available
at http://fta.inria.fr. The traces were collected using the BOINC
middleware [1] for volunteer computing. BOINC serves as the
basis for projects such as SETI@home, EINSTEIN@home, and
climateprediction.net. These traces were recorded at the BOINC
server for SETI@home, thanks to an instrumented BOINC client.
They contain information taken from 226,208 hosts over the
Internet, mainly at home locations, which is an important
difference with older data sets. The trace period goes from April
1, 2007 to January 1, 2009. In total, the traces capture about
57,800 years of CPU time and 102,416,434 continuous intervals of
CPU availability. The traces do not show host availability, but CPU
availability, as explained in Section 2. The traces record the exact
times when the CPU is available for computation as defined by the
BOINC user preferences.

4. Trace analysis

4.1. General characterization

We present a general characterization to quantify the variation
in availability among resources and validate our hypothesis that
services could be kept available by leveraging hosts with medium
availability levels.

Fig. 1(a) reflects the temporal structure of availability in term
of interval lengths. It shows the distribution of the mean interval
length of uninterrupted availability calculated per host in terms
of a complementary cumulative distribution function (cCDF). The
point (x, y) in Fig. 1(a) means that y fraction of the clients have
mean CPU interval lengths greater than x hours.

The mean and median interval lengths are 33 h and 6.5 h
respectively. The mean availability lengths are more than 5
times greater than in enterprise environments [23]. About 70%
of the mean interval lengths are less than 24 h, indicating the
need for fault-tolerance for long-running applications. It is clear
that, in order to deploy a service using this set of resources,
continuous availability cannot be achieved by relying on a single
host’s availability intervals, since migrations would be frequently
needed.

Fig. 1(b) reflects the volatility of the resources in terms of the
fraction of time they are available. It shows the fraction of time
the CPU is available in terms of a cCDF. The point (x, y) in Fig. 1(b)
means that y fraction of the clients are available more than x of the
time.

We observe moderate skew. About 35% of the hosts are
available 80% ormore of the time. The remaining 60% of hosts have
almost a uniform distribution over [0, 0.80), making it possible to
model the trend using a least-squares fit. The mean and median

http://fta.inria.fr


284 D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296
Fig. 2. Cumulative CPU time multiplied by host speed over all hosts.

fractions of time available are 56% and 58% respectively. The mean
is more than 1.3 times lower than that observed in enterprise
desktop grids [23]. The standard deviation at 34% is quite high, and
is about 50% of the mean. We conclude that residential machines
are powered-on for less time (by more than a factor of 1.3)
than those in enterprise environments, but when powered-on,
residential machines are more idle (by more than a factor of 5.25
on average).

These results show that many hosts have a relatively low
availability. The next question that arises is how significant is the
contribution of these hosts. To investigate this issue, we show in
Fig. 2 the fraction of compute power (CPU timemultiplied by FPOPS
per host)1contributedbyhosts according to their availability levels.
The data point (x, y) means that the hosts with CPU availability
of x or less contributed y of the total compute power. The plot
corresponding to Uniform is used as a reference.

We find significant skew. Hosts that are available 90% or more
contribute 30% of the total CPU time. Nevertheless, hosts with
lesser availability contribute significantly. For example, hosts with
intermediate availability between 55% and 90% contribute about
45% of the platform’s CPU time. Hosts available 55% of the time or
less contribute only 25%.

In conclusion, we have seen that there is a significant amount of
hosts with relatively short availability intervals (a few hours) and
with moderate availability levels. Nevertheless, they contribute
a significant fraction of the total CPU availability. This makes it
advisable to find ways to use these resources to attain levels
of collective availability well above the individual availability of
each host. Our approach consists of trying to find patterns in host
availability.

4.2. Availability patterns

Our first step to detect patterns in host behavior is to inspect
the traces using a visualization software called Pajé [30]. Fig. 3
shows a small random subsample of the trace visualized with
Pajé, where each horizontal line represents a host’s availability
and unavailability periods, i.e., the host is available when a thick
line is visible, and unavailable when there is no line. The numbers
on top show the days in the trace. The figure shows that there
are hosts with clearly periodic patterns (e.g. availability intervals
every day during office hours), but at the same time there are

1 Note that when we did not multiply by FPOPS, this did not change the shape
of the plot. This supports the conclusion that CPU speed is not correlated with the
fraction of time a host is available.
others with long availability or unavailability stretches, or with no
distinguishable patterns.

Following the method in [20], we represent the availability of
each host as a vector of 168 bits (24 × 7). Each bit represents an
hour of the week, and its value is 1 if the host is usually available
during that hour, and 0 otherwise. In more detail, we compute the
percentage of time the host has been available during each hour
in its lifetime (from the beginning of its first availability period in
the trace to the end of the last one), and find the average for each
hour of the week. Then we convert this value to 1 if it is equal or
greater than a certain threshold (binarization threshold), or to 0
if it is lower. For the clustering, we set the threshold to 0.75. By
setting it high, we focus only on patterns that are repetitive over a
relatively long term.

A measure of the difference between the bit vector and the
actual trace is the percentage of false positives. We define it as the
amount of timewhen the host is actually unavailable, but is shown
to be available by the bit vector at that time of the week. Since
our binarization threshold is 0.75, the maximum percentage of
false positives that our bit vectors can show is 25%. This is because
the worst case would be a host which is available at most 75% of
the time during some hours of the week. Such a host would be
considered to be available during those hours, but it would not be
actually available in 25% of these cases. An hour for which the host
has been available less than 75% of the time would have a 0 on the
bit vector. Fig. 4(a) shows that the amount of false positives ismuch
lower than that for most cases, being lower than 1% for about 99%
of the hosts.

Similarly, we define the amount of false negatives as the
percentage of time when the host was available but the bit vector
showed it as unavailable. It is lower than 1% for about 97% of the
hosts (see Fig. 4(b)), much lower than the theoretical maximum of
75%. This proves that the bit vector is a good representation of a
host’s availability.

Our next step is to follow the method in [20], and use
clustering to separate hosts with different patterns. The clustering
is performed using the k-means algorithm [15]. It works by
selecting k randompoints to use as cluster centroids, and assigning
each element to the cluster with the nearest centroid. It does so
iteratively, calculating the cluster centroid from the elements in
the cluster and recomputing the distances between the elements
and the centroids, until no changes occur. It ends when each
element is in the cluster with the closest centroid, as calculated
from the elements of the cluster.

To determine the similarity between hosts and centroids, we
used a Hamming distance metric. Given two binary vectors, this
metric measures the fraction of unequal values in each dimension.

The number of clusters k is an input parameter, and the results
may vary in each execution because of the random selection of
initial centroids. We tried different values of k, from 3 to 30. We
then carefully inspected the quality of each cluster visually by
plotting the centroids, and quantitatively by measuring the inter-
and intra-vector distances from the centroid. We found that the
clustering revealed some dominant clusters that were unmodified
by changing k. We chose to show the results with k = 6 as,
after visual inspection, these are where the patterns were themost
pronounced. However, note that we use this clustering only for
descriptive purposes.

Our trace contains more hosts and a longer period of time than
the one used in [20], but it’s of the same system (SETI@home) and
the results are highly consistent. The largest clusters are the one
with 100% availability (always-on) and the one with 0% availability
(always-off ), as reflected in the cluster centroid. Of course this does
notmean hosts actually have 100 or 0 availability, nor that their bit
vectors say so. It only means that they are close to this behavior.
The rest of the clusters comprise in total about 10% of the hosts and



D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296 285
Fig. 3. Trace visualized with Pajé. Each line represents a host’s availability, and the numbers show the days in the trace.
(a) CDF of the fraction of false positives for all hosts, in log scale. (b) CDF of the percentage of false negatives for all hosts, in log scale.

Fig. 4. Difference between the bit vector summary and the actual trace.
showmore periodical patterns. Choosing higher values of k further
subdivided these cyclical clusters, while leaving the always-on and
always-off clusters unchanged. Fig. 5 shows, for each cluster, with
k = 6, the sum of the bit vectors of all the hosts in the cluster,
together with the centroid of the cluster multiplied by the total
number of hosts in the cluster. We see that the behavior seen in
the cluster centroid closely resembles that seen in the sum of the
hosts’ bit vectors.

We also take a look at the actual behavior of the hosts in each
cluster using Pajé. Fig. 6 shows a small period of time of a random
subsample of the hosts in the always-off cluster. Each horizontal
line represents the availability of a host (a thick line represents an
availability period,while no line represents unavailability), and the
numbers in the x axis show the days of the trace. Hosts do not have
0 availability, but they have sporadic availability intervals that do
not follow identifiable patterns. Fig. 7 showshosts from the always-
on cluster,which have long availability intervals separated by short
periods of unavailability. Fig. 8 shows the behavior of a subsample
of cluster 3, one of the clusters with cyclical availability patterns.
Although not all hosts exhibit an apparent periodical pattern, such
behaviors are clearly present in the cluster.

5. Online availability prediction

Trace analysis presented in Section 4.2 has shown that the bit
vector is a good and accurate summary of the availability of hosts
over time for a large fraction of hosts, detecting existing daily
and weekly patterns. These patterns are usually repeated over
the weeks, with only small punctual variations, or changing over
longer periodswith seasonal effects. For this reason, we can expect
that the patterns detected by the bit vector will also be repeated in
the near future. Therefore, we will consider the usability of the bit
vector as an availability predictor.

To predict the behavior of a host, its first weeks of life are used
as training data to generate a bit vector following the method
explained in Section 4.2. This vector can then be used to predict the
behavior of the host during the next week: the host is expected to
be available during the intervals where the bit vector has a 1, and
unavailable during the rest of the week, when the bit vector has a
0.

Metrics for prediction quality. We use two metrics to assess the
quality of the predictionsmade by the bit vector. The first one is the
rate of false positives: amount of time when the host is unavailable
and predicted to be available, divided by the total time the host
is predicted to be available. This gives a measure of the reliability
of the prediction, i.e., the confidence that a host will be available
when the bit vector predicts it to be available. The second metric
used is the rate of false negatives, which is similarly defined as the
amount of time when the host is available and predicted to be
unavailable, divided by the total time the host is predicted to be
unavailable. This could be considered a measure of the efficiency



286 D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296
Fig. 5. Sum of the bit vectors of the hosts of each cluster, compared to the cluster centroid multiplied by the number of hosts in the cluster.
Fig. 6. Trace of a random subsample of the hosts in cluster 1 (always off).

Fig. 7. Trace of a random subsample of the hosts in cluster 5 (always on).
Fig. 8. Trace of a random subsample of the hosts in cluster 3 (cyclic).

permitted by the predictor. A system relying completely on the
availability prediction would not try to use hosts when they are
not expected to be available, and therefore their unpredicted time
of availability would be wasted.

5.1. Evaluating different parameters for prediction

In this section we will present a variety of prediction
parameters, and also show how they affect prediction quality.

Prediction parameter 1: length of training period.
Short training periods may not be enough to capture the

presence of cyclic patterns. However, requiring very large amounts
of data to make the predictions may be a problem in a real system,
e.g. because of the space required to store it or because of the time
required to obtain it. Fig. 9(a) and (b) show the amount of false
positives and false negatives obtainedwhen creating the bit vector
with different amounts of information, from 1 week to 8 weeks.
The threshold used is 0.75, and the interval length used is one
hour. These plots do not show the hosts with 0 availability for the



D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296 287
(a) CDF of the false positives. (b) CDF of the false negatives.

Fig. 9. Prediction error obtained when using a bit vector (generated with different number of weeks of information and threshold 0.75) to predict the behavior of the next
week.
Fig. 10. Amount of hosts with availability predicted as 0% and 100% with different
number of weeks.

false positives. Although these have naturally no false positives,
the prediction is useless, because a prediction mechanism would
consider them unavailable and therefore unusable. Fig. 10 shows
the amount of hosts with availability predicted as 0 by the bit
vector for different number of weeks. Similarly, we have excluded
hosts with 100% availability predicted by the bit vector from the
false negatives plot.

Between 9% and 18% of hosts, approximately, have no false
positives at all, depending on the training period length (see
Fig. 9(a)). 50% of the hosts, or more, have less than 10% false
positives when using a training period longer than 2 weeks.
However, not all hosts are this predictable, and there is even an
amount almost as large as 10% in the worst case with 100% error
(false positives). There is a large difference between using one
week to generate the bit vector and using more, but when using
more than 2 the improvements obtained by using one more week
are moderate.

Regarding false negatives (see Fig. 9(b)), however, the biggest
difference is between using 3 and 4 weeks as a training period.
Using 4 or more weeks, 50% of the hosts have less than 30% of false
negatives, but even in the best case, there are more than 10% of
the hosts with 100% false negatives, and the error is higher than
when considering false positives. This is consequent with the fact
that our binarization threshold is relatively high (0.75), therefore
prioritizing reliability over efficiency. Another consequence of the
conservativeness of our method is the fact that a high amount of
hosts (more than 20% for many configurations) have no predicted
availability (see Fig. 10).

Prediction parameter 2: bit vector granularity.
We define the granularity of the bit vector as the length of

the intervals in which the week is divided. A fine granularity may
give more accurate predictions, but it also requires more data in
the bit vector. This may be an issue if the data storage space is
limited, or if the bit vectors are to be sent through a network. We
have considered that one hour is a coarse enough granularity, so
we have not tried intervals longer than that. On the other hand,
we have considered that intervals as short as one minute would
generate a huge amount of data that would make them almost
intractable. The intervals lengths we have tested are 60, 30 and
15 min. Figs. 11(a), (b) and 12 show, however, that there is almost
no difference between these granularities.

Prediction parameter 3: threshold for binarization.
Our purpose is to detect patterns in the behavior of hosts, by

finding the intervals when the host is almost always available, and
those when it is almost never available. In this ideal case, all values
would be near 0 or near 1 before binarization, so the threshold
would not be important. However, because in the real trace there
aremany values in themiddle ground,we need to set the threshold
carefully so that we do not predict availability for intervals when
a host is only sporadically available, but we do predict availability
when it is due. For this purpose, we have tried different thresholds,
ranging from 0.55 to 0.95.

As expected, the higher thresholds cause a lower rate of false
positives, but a higher rate of false negatives (Figs. 13 and 14).
However, there is a larger difference between the thresholds 0.75
and 0.85. This may mean that there are a large number of hosts
with an average availability of near 80% during some hours. These
intervals are considered as available when using thresholds equal
or lower than 0.75, but unavailable when using a threshold of 0.85.
Predicting such intervals as available or unavailable makes a great
difference. Therefore, a threshold of 0.85 will give us pessimistic
predictions, where a 1 in a bit vector positions means almost total
guarantee that the host will be available. A threshold of 0.75, on
the other hand, can be used to make more flexible predictions. We
will take this into account in Section 7.

Prediction parameter 4: length of prediction interval into the
future.

Until now, we have only tried to predict the behavior of
hosts during one week using the availability data of immediately
previous weeks. In a real system, the bit vector could be generated
every week with the latest data and then used to predict the next
week. However, if the results of predicting the next N weeks are



288 D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296
(a) CDF of the false positives. (b) CDF of the false negatives.

Fig. 11. Prediction error obtained when using a bit vector (generated with 4 weeks of information and threshold 0.75) to predict the behavior of the next week, using
different binarization interval length (in seconds).
Fig. 12. Amount of hosts with availability predicted as 0% and 100% with different
binarization interval length (in seconds).

not much worse than predicting the next N − 1, we could say that
the prediction does not degrade excessively over time. If this is the
case, a systemmay not need to generate and apply a new bit vector
every week.

Fig. 15 shows how the quality of predictions degrades when
using the bit vector generated with the first 4 weeks of life of
each host to predict its behavior during the next 1–8 weeks, and
during the rest of the trace. The biggest difference in false positives
is between predicting 1 and 2 weeks, while the difference when
predicting more weeks is smaller. It must be noted that, while the
amount of hosts with low prediction error decreases over time, the
amount of hosts with high prediction error also decreases. This is
probably because these are hostswith ahighly randombehavior, so
when taking more time (more samples) the proportion of extreme
values is lower. The degradation may be explained by the effect of
seasonal variations, e.g. holidays. This may cause the big difference
seen when trying to predict the whole trace, since in such a long
period seasonal effects may be more present.

6. Availability-aware service deployment

In the previous section we have presented the bit vector as
an availability predictor for individual nodes and assessed the
quality of its predictions under different configurations. The next
step in our work is to use this predictor to provide collective
availability to a service while minimizing redundancy. We will do
this through permanently deploying the service in a set of hosts
with (negatively) correlated availability patterns. In other words,
if a service needs N available instances to be considered available,
it will be deployed in M ≥ N hosts which will be executing the
servicewhenever they are available (the definition of availability is
(a) CDF of the false positives. (b) CDF of the false negatives.

Fig. 13. Prediction error obtained when using a bit vector (generated with 4 weeks of information) to predict the behavior of the next week, using different binarization
thresholds.



D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296 289
Fig. 14. Amount of hosts with availability predicted as 0% and 100% with different
binarization thresholds.

when the CPU is available for computation, as defined by the user
preferences). The service is considered to be available at a given
moment if at least N of the totalM hosts are available.

An alternative application would be the storage of files in the
form of erasure codes [11], which requires retrieving N out of M
existing fragments to restore the file. However, in this case the
definition of availabilitywould be different (host availabilitywould
be probably enough, instead of CPU availability).

The remainder of this section will explain how host selection
is performed in order to achieve a certain level of collective
availability using the bit vectors, andhow this deployment could be
improved by considering the different predictability levels of each
host, incorporating an additional redundancy factor or detecting
permanent host departures.

Host selection for collective availability. A process, called the
service deployer, uses the bit vector to decide which hosts to use
for the deployment of the service, as it captures the periodical
availability patterns of each host. This information is obtained
through an independent availabilitymonitor. Each host is expected
to be available during the intervals for which it has a 1 in its bit
vector. Therefore, the sum of the bit vectors of a set of hosts shows
how many of these hosts are expected to be available at each
interval.

The service deployer picks hosts randomly, and keeps only
those that bring the set closer to the target, i.e., a sum vector with
a value equal or greater than N in each position. It picks hosts until
the sum vector of the selected hosts has reached the target. Then
it starts a second round where it checks if each of the hosts in
the selection is contributing to reach the target. It removes hosts
that can be taken out of the selection with the sum vector of the
remaining set still reaching the target.

This is a very simple approach, but it has the advantage that its
simplicity allows it to be used even in decentralized environments
where the deployer has no complete knowledge of the hosts in the
system. It clearly gives preference to availability over efficiency,
since we will tolerate the assignment of more resources than
needed (having values greater than N in some positions). A more
complex approach could involve trying to find the hosts that
optimize the sum vector, to have at each position a value as close
to N as possible.

Predictability. The previous analysis has shown that the bit
vector is a good predictor for some of the hosts, but it is not so good
for some others. Therefore, host pre-selection could improve the
overall performance of the deployment mechanism. This means
restricting the hosts we consider for deployment, picked before
looking at their bit vectors. For example, it would be useful to
prioritize the use of more predictable hosts. The most obvious
metric for predictabilitywould be the accuracy of a prediction done
using the samemodel. In our case, if we have a trace ofW weeks to
generate the bit vector, we could generate a bit vector using the
first W − 1 weeks of the trace and compute the false positives
obtainedwhen comparing it to the lastweek of the trace. This could
give us a measure of how predictable the behavior of the host is.
Other metrics we can use to prioritize host selection are average
availability, or the clustering done in Section 4. We will test the
effect of such pre-selection criteria in Section 7.

Redundancy factor. Another tool that can be used to counter the
possible lack of accuracy in the prediction for some of the hosts is a
redundancy factor. Instead of selecting hosts until reaching a target
ofN in all the positions of the bit vector, the deployer can artificially
add more redundancy by using a redundancy factor R ≥ 1, and
setting the target as R × N . This way the deployment can tolerate
the unexpected availability of some of the hosts in the set.

Detection of host’s system departure. Finally, the proposed
deployment mechanism should be complemented with a method
to detect permanent departures of hosts. When this happens,
one or more new hosts can be selected by the deployer using
the same mechanism. This is necessary because our availability
predictionmethod does not predict permanent departures, so only
relying on it cannot guarantee durability. Some of the selected
hosts may leave the system permanently over time and the service
may become unavailable because of this. A simple method to
provide durability is to re-evaluate the deployment every week
(a) CDF of the false positives. (b) CDF of the false negatives.

Fig. 15. Prediction error obtained when using a bit vector (generated with 4 weeks of information and threshold 0.75) to predict the behavior of the following weeks.



290 D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296
using the most recent availability data to generate a bit vector for
each host. Hosts that have permanently left will end up having a
bit vector of all zeros, and therefore they will be removed from
the deployment. This method would also prevent performance
degradation caused by seasonal effects, i.e., variations in the
behavior of hosts. Alternatively, hosts that are offline formore than
a given period (e.g. oneweek) could be removed instantly from any
deployment.

7. Evaluation via trace-driven simulation

In order to validate the resource management mechanism
presented in the previous section, we have used the SETI@home
traces to simulate service deployment on volunteer resources and
evaluate the availability and efficiency obtained by our methods.
We have compared them to other methods which do not use
availability prediction, and found that our method outperforms
them in both provided availability and resource usage efficiency.

In order to evaluate the performance of our mechanism under
different conditions, we have tested it changing parameters
like redundancy factor, required number of available hosts,
deployment length and pre-selection policies.

7.1. Test environment

Simulation method. We validate the presented resource man-
agement mechanism by simulation using the SETI@home traces.
Given a certain point in time to be used as the beginning of the
experiment, we calculate the bit vector of each host using the pre-
vious 4 weeks of traces, as Section 5 showed it to be a long enough
training period. The deployer uses these bit vectors to select a set of
hosts to deploy the service as previously explained. Then we look
at the behavior of the hosts after the starting point and see if the
service achieves the required collective availability during the next
week.

We repeat the simulation with three different starting dates,
one corresponding approximately to one fourth of the trace,
another near half of the trace, and a last one near three fourths of
the trace’s length. The three starting dates are at Monday 00:00,
so we can make predictions for a whole week. Theoretically, there
should be no difference when deploying a service in any other
moment of the week. Since there is a random component in our
deployment mechanism, we repeated the simulation 1000 times
with each starting point. For each configuration tested, we take
the results obtained with the three different starting points (3000
simulations in total) and average the results.

An important parameter of the simulations is the desired
number of hosts N . We have set 50 as the default value, although
we have tried different values to see the effects of this parameter
on the performance of the deployment method, as shown in
Section 7.2.

Reliability metrics. The main metric we use to evaluate the
reliability of the deployment is the achieved availability, which
is the percentage of time the number of available hosts is equal
or higher than required. An additional metric we measure is the
number of required hours of host availability that have not been
provided, or missing host-hours. It is equivalent to the length of
an interval where there are less than N available hosts, multiplied
by the difference between the number of required hosts and the
available hosts. This is put in perspective by dividing it by the
number of required host-hours of availability.We alsomeasure the
success rate, which is the fraction of simulations where the service
is available during the whole week.

Efficiency metrics. We also evaluate the efficiency of our
approach by measuring the number of hours of host availability
that are above the required. Dividing this by the number
of required host-hours of availability gives a measure of the
redundancy provided by the system. Note that this only measures
those periods when the service has more available hosts than
needed. The missing host-hours, on the other hand, measure
only the periods where there are less available hosts than
needed. Therefore, these two metrics are independent and do not
compensate each other, as it would happen if we only computed
the total number of host-hours attained for the service and
compare it to the required number of host-hours (N × h, being N
the required number of available hosts and h the length in hours of
the considered period).

Another more straightforward metric of the performance of
the deployment method is the number of hosts that it selects
for deployment. Although this is not necessarily related to the
provided redundancy (e.g. selecting a number of hosts with low
availability can provide lower redundancy than selecting fewer
hosts with higher availability), each host selected has a cost in the
form of transmitting data to that host. Therefore, selecting a low
number of hosts is also a sign of efficiency.

Different predictive methods compared. We have selected two
different threshold values to generate the bit vectors used in the
simulations: 0.75 and 0.85. The reason is that the results for these
thresholds show the biggest difference, as seen in Section 5. A third
option we have tried is to use the availability vectors without the
binarization step. This gives a vector of 168 positions, showing the
average availability of the host for each hour of the week. We sum
these vectors directly, and stop the deployment when the sum
vector is equal or greater than N for all positions. Finally, we have
also tried two more methods to compare against our prediction-
based deployment. These are last value, which just selects hosts
that are available in the moment of deployment, and random,
which consists of simply picking a number of hosts randomly.

7.2. Evaluation results

Evaluation of redundancy factor. The first step to compare the
performance of these five deployment methods is to determine
the right redundancy factor required for each of them. Note that
this redundancy factor is an input parameter, not to be confused
with the obtained redundancy previously defined as an efficiency
metric. In the methods based on bit vectors, it is the R that we use
to compute the required number R × N in each position of the
sum vector, as explained in Section 6. For last-value and random,
R×N is directly the number of hosts thatwe select. Therefore, these
replication factors are not comparable and must be set separately
for each method.

We have tried each method with different redundancy factors,
and taken the availability and redundancy results obtained with
each configuration. Figs. 16 and 17 show the results obtained by
each method with equivalent redundancy levels, in percentage of
surplus host-hours and in number of selected hosts. The plots do
not show the redundancy factor which was used to obtain each
result, since, as we mentioned, redundancy factors for different
methods are not directly comparable.

Bit vector methods perform consistently better than the rest.
Using threshold = 0.85 gives 100% availability and success rate
in all cases, although the redundancy is higher than required to
obtain the same results with the threshold = 0.75 (because the
redundancy is higher, the line for threshold = 0.85 starts more to
the right of the figure than the rest and is hardly visible). Using
the vectors without binarization gives relatively good results in
redundancy, but requires picking a larger number of hosts. Last
value performs remarkably well, probably because of the starting
dates selected: 00.00 at Mondays may be a time when mostly
highly available hosts tend to be connected. This hypothesis will
be later evaluated. Finally, random performs poorly, requiring the



D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296 291
(a) Availability versus redundancy. (b) Success rate versus redundancy.

Fig. 16. Reliability obtained for different levels of redundancy.
(a) Availability versus number of hosts selected. (b) Success rate versus number of hosts selected.

Fig. 17. Reliability obtained for different number of hosts selected.
highest number of hosts and having a higher redundancy for
comparable availability.

Looking at these results, we select a default value for R for each
method. This value should give good results for the method, but
it should not be so good (nor so bad) that it masks the effects of
changing other parameters. With this in mind, we select R = 1.1
for the methods based on the bit vectors, R = 1.5 for last value and
R = 2.5 for random.

Evaluation using different host pre-selection policies. As said
before, host pre-selection may have a great impact on the
performance of service deployment. Moreover, it would also be
interesting to check if our predictionmethods could leverage hosts
with mid/low availability. Specifically, hosts with cyclic patterns
should be useful for our bit vector-based methods. Therefore, we
tested the five previously explained deployment methods with
different subsets of the hosts that appear in the SETI@home trace.
One division is using the predictability, as explained in Section 6,
to divide the hosts in two subsets: those with high predictability
and thosewith low predictability. In order to perform this division,
we sort the complete set of hosts by predictability and divide the
list in half. Similarly, we have divided hosts in subsets of high and
low availability, using the availability reflected in their bit vectors.
Finally, we have used the results of the clustering in Section 4 to
separate hosts in always-on and cyclic hosts.

Fig. 18(a) shows that the bit vector-based methods perform
well with any subset of hosts, offering an availability very close to
100%, while last value and random are very sensitive to host pre-
selection and perform very poorly in some cases. The use of bit
vectors allows a lower redundancy when using threshold = 0.75,
usually lower than with the non-predictive methods in the cases
where availability values are similar (with the exception of the
random method with the cyclic hosts subset, which offers slightly
lower availability than threshold = 0.75with a lower redundancy).
The use of threshold = 0.85 provides 100% availability and success
rate in all cases, but at the cost of a higher redundancy, specially
when using hosts with lower availability or predictability.

This is caused by the fact that the number of hosts selected is
automatically decided based on their availability when using the
bit vectors. Last value and random, on the other hand, pick a fixed
number of hosts, and therefore it is natural that their performance
heavily depends on the qualities of the pre-selected hosts. While
these non-predictive methods could be benefited by a careful host
pre-selection, the bit vector-basedmethods donot need to perform
this step. Moreover, they can obtain good results when using sets
of hosts with widely different characteristics, i.e., hosts with either
high or low availability or predictability.

Surprisingly, however, with threshold = 0.75 the success
rate is lower for the ‘always on’ cluster and for hosts with
high predictability and high availability (see Fig. 18(b)). This
is nevertheless consistent with the fact that these are the
configurations where a lower redundancy is obtained (see
Fig. 18(c)) and where a lower number of hosts is selected (see



292 D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296
(a) Availability versus host pre-selection. (b) Success rate versus host pre-selection.

(c) Redundancy versus host pre-selection. (d) Average availability of selected hosts versus hosts pre-selected.

Fig. 18. Reliability and efficiency metrics for different host pre-selection policies.
Fig. 19). That is because all these pre-selections favor hosts with
higher availability (as seen in the bars of Fig. 18(d) that belong to
the random configuration, which only takes a random subset of
hosts and is therefore representative of each host set). This allows
the bit vector-based methods to make a deployment with low
redundancy, as many hosts have 1 in all or most of the positions of
their bit vectors, and therefore a number of hosts close to R × N
causes the sum vector to have R × N or more in all positions.
On the contrary, using cyclic hosts or hosts with low availability
requires more complex combinations of hosts, and causes a higher
redundancy.

On another note, Fig. 18(d) confirms the hypothesis that last
value tends to select hosts with higher availability, as reflected in
the difference between the average availability of hosts selected by
last value and random, especially when no pre-selection is used.

Evaluation for different numbers of required available hosts.
Fig. 20(a) shows availability obtained for different numbers of
required available hosts (N). The availability is high (over 0.9) in
every case, but it is better with higher values of N (over 0.999
for all methods with N = 1000). However, the bit vector-based
methods have very good results even with N = 10 (availability
higher than 0.999 with threshold = 0.85, and higher than 0.98
with threshold = 0.75), while the non-predictive methods do not
perform so well.

The success rate, however, is much lowerwith smaller values of
N (see Fig. 20(b)), and in general all methods perform better with
higher values of N , having less missing capacity (see Fig. 20(c)),
Fig. 19. Number of hosts selected versus host pre-selection.

and also less redundancy (see Fig. 20(d)) in the case of vector-
based methods. This may be caused by random perturbations in
the behavior of hosts, that affect more the smaller deployments
as stated by the Law of Large Numbers. To counter this effect, a
higher redundancy factor should be set for small deployments in
a real system. In any case, we see once again that threshold =

0.75 provides either a higher availability than non-predictive



D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296 293
(a) Availability obtained for different numbers of required hosts. (b) Success rate for different numbers of required hosts.

(c) Fraction of missing host-hours for different numbers of required
hosts.

(d) Fraction of surplus host-hours for different numbers of required
hosts.

Fig. 20. Reliability and efficiency metrics for different numbers of required hosts.
methodswith similar redundancy or similar availabilitywith lower
redundancy, being in most cases better in both aspects.

Evaluation for different lengths of predicted intervals. The
predictions made by the bit vector degrade over time, as seen
in Section 6. It would be therefore advisable to re-evaluate a
deployment periodically using the most recent availability data
to generate a new bit vector for each host. To see how frequent
such a process should be, we have tested deployments over longer
periods, up to 4 weeks.

Average availability (see Fig. 21(a)) decreases very slightly over
the weeks with the vector-based methods (except for threshold =

0.85, which maintains a total availability), while it does degrade
more for the last value method, falling below 99% after 4 weeks.
Redundancy is decreased accordingly (see Fig. 21(d)), while
remaining higher for non-predictive methods than for threshold =

0.75 or no binarization. Success rate, however, suffers a deeper
degradation (see Fig. 21(b)). Considering the whole picture, we
must note that success rate is the number of times when the
service is available during the whole simulation (of a total of 3000
executions for each configuration) and therefore a single second of
failure during the simulation can drastically affect its value. Low
success rates may therefore be simply caused by the higher failure
probability over a higher period of time,more than the degradation
of predictions. This is consequent with the fact that the amount
of missing host-hours is extremely low in all cases (Fig. 21(c)).
Surprisingly, though, random suffers the smallest degradation,
with only a slight decrease in success rate, and actually increasing
its availability, although very slightly. The cause may be the high
redundancy of random deployment, only second to threshold =

0.85 (see Fig. 21(d)).
Comparison with dynamic deployment and short-term prediction

methods. The purpose of our deployment method is to leverage
knowledge of cyclical patterns and general long-term behavior of
hosts to provide high levels of collective availability while mini-
mizing redundancy and communication costs (which is partially
determined by the number ofmigrations). Until now,we have con-
sidered that the system only performs the initial deployment, and
works with the availability that it provides. However, it could use
temporal assignments to increase availability: when the number
of hosts becomes n < N , the deployer could select N −n hosts that
are available at the moment and temporarily deploy the service in
them. When the number of hosts available in the permanent de-
ployment set is again equal or greater than N , the hosts that were
used for temporary deployment stop executing the service. Note
that in some cases, if the unavailability period is short, itmaynot be
efficient, or even useful, to performa temporary deployment. How-
ever, we will consider that the deployer always performs tempo-
rary deployments when required, and estimate the total required
number of deployments (initial + temporary).

We perform an optimistic estimation. First we count the
number of violation intervals, i.e., the time between the point
when a host disconnects and the point when that or another host
comes back and returns the total number of available hosts to the
previous level. There can be different levels of embedded violation



294 D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296
(a) Availability obtained during different number of weeks after
service deployment.

(b) Success rate in different number of weeks after service
deployment.

(c) Fraction of missing host-hours in different number of weeks
after service deployment.

(d) Fraction of surplus host-hours in different number of weeks after
service deployment.

Fig. 21. Reliability and efficiency metrics measured in different number of weeks after service deployment.
intervals, e.g. a host disconnects starting an interval with N − 1
hosts; then another one leaves and starts an embedded interval
with N − 2 hosts; one host becomes available again and ends
the period of N − 2 hosts; finally, another host arrives and ends
the interval with N − 1 hosts. We consider that each of these
intervals requires looking for a host outside of the set assigned to
the service and perform a temporary assignment, which will end
when the interval, as originally computed, ends. This estimation
is optimistic because it does not consider the possibility that the
host selected for temporary deployment may disconnect before
the interval ends. However, since unavailability intervals are often
short in our tests, we consider that this is a reasonable assumption.

We perform this estimation with all the previously used
methods, and compare it to a simple dynamic deployment
approach. It consists of randomly choosing a set of N hosts to
deploy the service. It does not use permanent assignments, and
therefore whenever a host of the set becomes unavailable, a
migration is required. When that happens, another host is chosen
randomly among those available at the moment. Its availability
could be improved by adding a replication factor. However, for
simplicity we will consider that it only deploys the service in
N hosts and assume that even in this situation it can provide
a sufficiently good availability. Since adding replication would
increase the number of migrations, we will compare the bit
vector-based methods to the best possible results of the dynamic
deployment method in number of deployments.
We also compared our approach to [3], where a short-term
prediction is used to achieve collective availability for a service
during a given prediction interval, with a typical length of a few
hours. The obtained turn-over rate, i.e., the amount of hosts that
need to be migrated from one prediction interval to the next
one to keep guaranteeing the required availability, is about 2% of
the total assignment in average, when using high predictability
hosts, with a prediction interval length of 4 h. Note that this total
assignment may include a certain redundancy factor R (from 0,
i.e., no redundancy, to 0.5 of the required number of hosts) to
increase the probability of providing the required availability. This
means that the total number of deployments (counting both initial
deployment and migrations), with zero redundancy, normalized
to the required number of available hosts, would be 1 + t × i, t
being the turn-over rate and i the number of prediction intervals.
We have taken the case of R = 0 to compare our method to the
best results of short-term prediction in number of deployments.
However, note that in order to guarantee availability, it would be
advisable to add a redundancy factor R > 0, therefore increasing
the number of deployments.

Fig. 22 shows that the number of migrations required over
time increases linearly, as expected, for the methods based on
temporary deployments (with and without prediction). After one
week, the short-term prediction-based method has performed
nearly the same number of deployments than the bit vector-based
with threshold 0.85. However, the latter does not perform any



D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296 295
Fig. 22. Average number of migrations in different number of weeks after initial
service deployment.

temporary deployments, so its value is constant over time. After
4weeks, the low turn-over rate of the short-term prediction-based
method ends up causing more deployments than the random
policy.

In conclusion, we see that the use of long-term prediction gen-
erates fewer deployments, and therefore involves less communi-
cation cost, than short-term prediction when deploying long-lived
services over volunteer resources.

8. Conclusion

Host availability prediction is critically important for increasing
system availability and reliability as well as efficiency. This is
especially true in systems based on non-dedicated resources,
like volunteer computing, enterprise desktop grids and peer-to-
peer systems. In such cases, communication costs associated with
migration can be too high given the bandwidth of end hosts.
Availability prediction can help reduce these costs.

We have presented a method for long-term availability
prediction, and put it in practice in an availability-aware service
deployment mechanism for volunteer computing systems. This
mechanism has been inspired by the analysis of host availability in
real system traces, and put to the test using these same real data.

Our simulations have shown that using the bit vectors to deploy
a service by choosing a permanent set of machines to host it can
provide high availability with relatively small redundancy. We
have compared it to the following: (1) a similar method without
the binarization step, (2) a method of choosing hosts available at
the moment of deployment and (3) a method that simply chooses
a random set of hosts for permanent deployment. The bit vector
methods have performed better than all the rest.

Specifically, we have shown that, using 0.75 as a binarization
threshold, the redundancy is lower and the availability higher than
with the other approaches. Moreover, the required computations
are simple and the mechanism only requires local information
(i.e., the availability information of each host of a random subset
of hosts), which makes it fitting for decentralized environments. It
is also able to adapt to different types of hosts behavior, automati-
cally selecting more nodes when their expected availability is low.
Other mechanisms, like last value or random, require that the re-
dundancy factor is manually adapted to the expected availability
of hosts.

Using a threshold of 0.85 causes a higher redundancy, but
gives extremely high availability guarantees. Therefore, in a real
application the threshold and the redundancy factor used may be
fine-tuned to whether increase the availability provided by the
mechanisms or decrease the redundant resource usage.
Moreover, the long-term prediction-based techniques have
also shown that they can obtain similar availability levels than
those achieved using a short-term prediction technique [3], while
requiring a lower number of deployments and migrations over
time. This justifies the use of long-term availability prediction for
deploying long-lived services and data, as opposed to short-term
prediction which is more suited to task scheduling.

Work on long-term availability prediction can be further
extended in some ways. For example, better mechanisms could
be used to optimize the selection of hosts to have values as close
to N as possible in every position of the sum vector. This could
be done to minimize redundancy, and at the same time make
good use of hosts with medium or low availability, contrary to the
simple method presented which tends to favor hosts with high
availability. Alternative ways to detect highly predictable hosts
could also be used. However, these alternative mechanisms would
probably require a larger amount of information, which is costly to
obtain in a distributed system.

An unsolved problem is how to predict seasonal variations
in host behavior. The presented mechanism could react to them
by periodically re-evaluating deployments. A proactive solution,
however, would require a lot of trace data, because seasonal
effects use to appear over long periods of time (e.g. holidays).
The main questions are how would a real system store and
summarize this information, and how would this information be
used, e.g. determining the initial deployment or rather detecting
seasonal variations with short anticipation and then performing
corrective actions.

Another related problem is prediction of permanent failures
that can undermine durability of a deployment. This may be
solved by simple methods like just removing a host from the pool
whenever it has been disconnected for a long time. However, trace
analysis could be used to validate this assumption or to propose
other methods to guarantee durability.

Finally, we would like to test our prediction and deployment
methodology using trace data of different systems. This is needed
to see if our findings can be applied to other environments, or
they are only valid with volunteer computing communities like
SETI@home or systems with similar characteristics. This could be
complemented with a real implementation and deployment over
volunteer hosts.

Acknowledgments

We thank Lucas Schnorr for his invaluable aid in trace visual-
ization. We thank David P. Anderson for making the SETI@home
traces available.

This work has been partially supported by the ‘‘Comissionat per
a Universitats i Recerca del Departament d’Innovació, Universitats
i Empresa de la Generalitat de Catalunya’’ and by the ‘‘Fons
Social Europeu’’ under grants FI and BE, and also by the HAROSA
Knowledge Community of the Internet Interdisciplinary Institute
(IN32009-AKC91). This work has also been carried out in part
under the ANR project Clouds@home (ANR-09-JCJC-0056-01).

References

[1] D. Anderson, Boinc: a system for public-resource computing and storage,
in: Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, Pittsburgh, USA, 2004.

[2] D. Anderson, G. Fedak, The computational and storage potential of volunteer
computing, in: Proceedings of the IEEE International Symposium on Cluster
Computing and the Grid, CCGRID’06, 2006.

[3] A. Andrzejak, D. Kondo, D.P. Anderson, Ensuring collective availability in
volatile resource pools via forecasting, in: DSOM, 2008, pp. 149–161.

[4] R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T. Anderson, D. Patterson, The
interaction of parallel and sequential workloads on a network of workstations,
in: Proceedings of SIGMETRICS’95, 1995, pp. 267–278.



296 D. Lázaro et al. / J. Parallel Distrib. Comput. 72 (2012) 281–296
[5] M. Bakkaloglu, J.J. Wylie, C. Wang, G.R. Ganger, On correlated failures in
survivable storage systems, Technical Report MU-CS-02-129, Carnegie Mellon
University, May 2002.

[6] R. Bhagwan, S. Savage, G. Voelker, Understanding availability, in: Proceedings
of IPTPS’03, 2003.

[7] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, G.M. Voelker, Total recall: system
support for automated availability management, in: NSDI, 2004, pp. 337–350.

[8] W. Bolosky, J. Douceur, D. Ely,M. Theimer, Feasibility of a serverless distributed
file system deployed on an existing set of desktop PCs, in: Proceedings of
SIGMETRICS, 2000.

[9] J. Chu, K. Labonte, B. Levine, Availability and locality measurements of peer-
to-peer file systems, in: Proceedings of ITCom: Scalability and Traffic Control
in IP Networks, 2003.

[10] F.L. Daniel Ford, F. Popovici, M. Stokely, V.-A. Truong, L. Barroso, C.
Grimes, S. Quinlan, Availability in globally distributed storage systems, in:
Proceedings of the 9th USENIX Symposium on Operating Systems Design and
Implementation, 2010.

[11] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, K. Ramchandran, Network
coding for distributed storage systems, IEEE Transactions on Information
Theory 56 (9) (2010) 4539–4551. doi:10.1109/TIT.2010.2054295.

[12] P. Dinda, Online prediction of the running time of tasks, Cluster Computing 5
(3) (2002) 225–236.

[13] P. Domingues, P. Marques, L. Silva, Resource usage of windows computer
laboratories, in: Parallel Processing, 2005, ICPP 2005Workshops, International
Conference Workshops on, 2005, pp. 469–476. doi:10.1109/ICPPW.2005.77.

[14] J.R. Douceur, Is remote host availability governed by a universal law?
SIGMETRICS Performance Evaluation Review 31 (3) (2003) 25–29.

[15] C. Elkan, Using the triangle inequality to accelerate k-means, in: ICML, 2003,
pp. 147–153.

[16] T. Estrada, M. Taufer, K. Reed, Modeling job lifespan delays in volun-
teer computing projects, in: Cluster Computing and the Grid, 2009, CC-
GRID’09, 9th IEEE/ACM International Symposium on, 2009, pp. 331–338.
doi:10.1109/CCGRID.2009.69.

[17] B. Javadi, D. Kondo, J. Vincent, D. Anderson, Mining for statistical availability
models in large-scale distributed systems: an empirical study of seti@home,
in: 17th IEEE/ACM International Symposium on Modelling, Analysis and Sim-
ulation of Computer and Telecommunication Systems, MASCOTS, 2009. URL:
http://mescal.imag.fr/membres/derrick.kondo/pubs/javadi_mascots09.pdf.

[18] B. Javadi, D. Kondo, J. Vincent, D. Anderson, Discovering statistical models of
availability in large distributed systems: An empirical study of SETI@home,
IEEE Transactions on Parallel and Distributed Systems 22 (11) (2011)
1896–1903. doi:10.1109/TPDS.2011.50.

[19] P. Knežević, A. Wombacher, T. Risse, DHT-based self-adapting replica-
tion protocol for achieving high data availability, in: Advanced Internet
Based Systems and Applications, Springer-Verlag, Berlin, Heidelberg, 2009,
pp. 201–210. doi:http://dx.doi.org/10.1007/978-3-642-01350-8_19 (Chap-
ter). URL: http://dx.doi.org/10.1007/978-3-642-01350-8_19.

[20] D. Kondo, A. Andrzejak, D.P. Anderson, On correlated availability in
Internet distributed systems, in: IEEE/ACM International Conference on Grid
Computing, Grid, Tsukuba, Japan, 2008.

[21] D. Kondo, G. Fedak, F. Cappello, A.A. Chien, H. Casanova, Characterizing
resource availability in enterprise desktop grids, Journal of Future Generation
Computer Systems 23 (7) (2007) 888–903.

[22] D. Kondo, B. Javadi, A. Iosup, D. Epema, The failure trace archive: enabling
comparative analysis of failures in diverse distributed systems, in: Cluster,
Cloud and Grid Computing, CCGrid, 2010 10th IEEE/ACM International
Conference on, 2010, pp. 398–407. doi:10.1109/CCGRID.2010.71.

[23] D. Kondo, M. Taufer, C. Brooks, H. Casanova, A. Chien, Characterizing
and evaluating desktop grids: an empirical study, in: Proceedings of the
International Parallel and Distributed Processing Symposium, IPDPS’04, 2004.

[24] D. Long, A. Muir, R. Golding, A longitudinal survey of Internet host reliability,
in: 14th Symposium on Reliable Distributed Systems, 1995, pp. 2–9.

[25] J.W. Mickens, B.D. Noble, Exploiting availability prediction in distributed
systems, in: Proceedings of the 3rd Conference on Networked Systems Design
& Implementation, 2006.
URL: http://www.eecs.umich.edu/~jmickens/predictors.pdf.

[26] Publications by BOINC projects. http://boinc.berkeley.edu/wiki/Publications_
by_BOINC_projects.

[27] K. Ramachandran, H. Lutfiyya, M. Perry, Decentralized resource availability
prediction for a desktop grid, in: Cluster, Cloud and Grid Computing,
CCGrid, 2010 10th IEEE/ACM International Conference on, 2010, pp. 643–648.
doi:10.1109/CCGRID.2010.54.

[28] F. Salfner, M. Lenk, M. Malek, A survey of online failure prediction methods,
ACM Computing Surveys 42 (2010) 10:1–10:42. doi:http://doi.acm.org/10.
1145/1670679.1670680 URL: http://doi.acm.org/10.1145/1670679.1670680.

[29] S. Saroiu, P. Gummadi, S. Gribble, A measurement study of peer-to-peer file
sharing systems, in: Proceedings of MMCN, 2002.

[30] L.M. Schnorr, A. Legrand, J.-M. Vincent, Visualization and detection of
resource usage anomalies in large scale distributed systems, Tech. Rep. INRIA-
00529569, INRIA, October 2010.

[31] W.T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, G. Gedye, D. Anderson, A
new major SETI project based on project serendip data and 100,000 personal
computers, in: Proc. of the Fifth Intl. Conf. on Bioastronomy, 1997.

[32] R. Vilalta, C.V. Apte, J.L. Hellerstein, S. Ma, S.M. Weiss, Predictive algo-
rithms in the management of computer systems, IBM Systems Jour-
nal 41 (2002) 461–474. doi:http://dx.doi.org/10.1147/sj.413.0461 URL:
http://dx.doi.org/10.1147/sj.413.0461.

[33] D. Vyas, J. Subhlok, Volunteer computing on clusters, in: Proceedings of
the 12th International Conference on Job Scheduling Strategies for Parallel
Processing, JSSPP’06, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 161–175.
URL: http://dl.acm.org/citation.cfm?id=1757044.1757052.

[34] R. Wolski, N. Spring, J. Hayes, The network weather service: a distributed
resource performance forecasting service for metacomputing, Journal of
Future Generation Computer Systems 15 (5–6) (1999) 757–768.

Daniel Lázaro is a researcher at the Universitat Oberta
de Catalunya. He holds a M.S. in Computer Science from
the Universitat Politècnica de Catalunya and a Ph.D.
by the Universitat Oberta de Catalunya. His research
interests include scalable distributed algorithms and
applications, service and task deployment in decentralized
and cooperative environments and peer-to-peer and
volunteer systems.

Derrick Kondo is a tenured research scientist at INRIA,
France. He received his Bachelor’s at Stanford University
in 1999, and his Master’s and Ph.D. at the University
of California at San Diego in 2005, all in computer
science.

His general research interests are in the areas of
reliability, fault-tolerance, statistical analysis, scheduling
and resource management. His current research interests
are in the following areas: (1) failure and availability
modeling of 100,000 + node systems (2) dynamic and
cost-aware fault tolerance in Clouds (3) scheduling and

resource management on unreliable and shared resources.
His research projects are supported bynational, European, and industrial grants.

He is co-founder of the Failure Trace Archive, which serves as a public repository of
failure traces and algorithms for distributed systems.

Joan Manuel Marquès is an Associate Professor of
Distributed Systems in the Computer Science Department
at the Universitat Oberta de Catalunya as well as
Researcher at the Internet Interdisciplinary Institute.
His research interests include design of scalable and
cooperative Internet services and applications, distributed
computing and collaborative learning.Marquès has a Ph.D.
in computer science from the Universitat Politècnica de
Catalunya.

http://dx.doi.org/doi:10.1109/TIT.2010.2054295
http://dx.doi.org/doi:10.1109/ICPPW.2005.77
http://dx.doi.org/doi:10.1109/CCGRID.2009.69
http://mescal.imag.fr/membres/derrick.kondo/pubs/javadi_mascots09.pdf
http://dx.doi.org/doi:10.1109/TPDS.2011.50
http://dx.doi.org/10.1007/978-3-642-01350-8_19
http://dx.doi.org/10.1007/978-3-642-01350-8_19
http://dx.doi.org/doi:10.1109/CCGRID.2010.71
http://www.eecs.umich.edu/~jmickens/predictors.pdf
http://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://boinc.berkeley.edu/wiki/Publications_by_BOINC_projects
http://dx.doi.org/doi:10.1109/CCGRID.2010.54
doi:http://doi.acm.org/10.1145/1670679.1670680
doi:http://doi.acm.org/10.1145/1670679.1670680
doi:http://doi.acm.org/10.1145/1670679.1670680
doi:http://doi.acm.org/10.1145/1670679.1670680
doi:http://doi.acm.org/10.1145/1670679.1670680
doi:http://doi.acm.org/10.1145/1670679.1670680
doi:http://doi.acm.org/10.1145/1670679.1670680
doi:http://doi.acm.org/10.1145/1670679.1670680
doi:http://doi.acm.org/10.1145/1670679.1670680
http://doi.acm.org/10.1145/1670679.1670680
http://doi.acm.org/10.1145/1670679.1670680
http://doi.acm.org/10.1145/1670679.1670680
http://doi.acm.org/10.1145/1670679.1670680
http://doi.acm.org/10.1145/1670679.1670680
http://doi.acm.org/10.1145/1670679.1670680
http://doi.acm.org/10.1145/1670679.1670680
http://doi.acm.org/10.1145/1670679.1670680
http://dx.doi.org/10.1147/sj.413.0461
http://dx.doi.org/10.1147/sj.413.0461
http://dl.acm.org/citation.cfm?id%3D1757044.1757052

	Long-term availability prediction for groups of volunteer resources
	Introduction
	Related work
	Trace collection
	Trace analysis
	General characterization
	Availability patterns

	Online availability prediction
	Evaluating different parameters for prediction

	Availability-aware service deployment
	Evaluation via trace-driven simulation
	Test environment
	Evaluation results

	Conclusion
	Acknowledgments
	References


