Characterizing and Evaluating Desktop Grids: An Empirical Study

Derrick Kondo†, Michela Taufer†§, Charles Brooks III§, Henri Casanova†‡, Andrew A. Chien†
† University of California at San Diego
‡ San Diego Supercomputer Center
§ The Scripps Research Institute

Desktop Grid Background

- Set of (shared) network-connected resources
- High computational power at low cost
 - Reuse existing infrastructure of resources
- Successful deployment of compute-intensive applications
 - E.g. SETI@home, folding@home, fightaids@home
- Computing platform
 - Internet
 - Enterprise

Desktop Grid Resources

- Resources are extremely heterogeneous
 - E.g. in terms of CPU, memory, disk space, network connectivity, OS
- Resources are volatile

Goal & Approach

- Determine the utility of desktop grids for high throughput, task parallel applications
 - Develop performance model
 - Quantify utility in terms of cluster equivalence
- Measurements of resource availability
Related Work

- Monitored CPU availability [Wolski99, Wolski99+, Dinda98, Bolosky00, Arpaci95]
 - Difficult to determine effect on desktop grid behavior
 - OS idiosyncrasies
 - Ignores keyboard/mouse activity
 - E.g. hard to infer task failures

Method

- **Intrusive** measurements on *Entropia* desktop grid system
 - Fixed time-length tasks
 - Every 10 seconds the program writes the number operations completed to file
 - Output files assembled to produce a CPU availability trace
 - Interpolated gaps due to system overhead
 - ~220 machines at SDSC
 - Cumulative measurement period: 1 month

CPU Availability

![CPU Availability Graph]

Task Failure Rate

![Task Failure Rate Graph]
Performance Model

- N: number of hosts
- s: operations per task
- $f(s)$: failure rate
- r: average ops per sec for a host
- g: average system overhead per task
- $W(s)$: aggregate ops per sec

Optimal Task Size

$W(s) = N \times \frac{r(1-f(s))}{1+(r/s)g}$

Cluster Equivalence

- Compare utility of desktop grid with that of a dedicated cluster
 - High throughput, task parallel applications
- Determine M/N cluster equivalence ratio
 - Given N-host desktop grid, what is equivalent M-node dedicated cluster

Cluster Equivalence

Measurement data
 - Captures temporal structure of resource availability
- Model of desktop grid work rate
- Quantify desktop grid utility for high throughput, task parallel applications using cluster equivalence metric

Contributions
Current and Future Work

- Traces of other desktop grids
 - Xtremweb, BOINC
- More detailed characterization
 - E.g. at host level
- Resource selection for rapid application turnaround