Mining for Statistical Models of Availability in Large-Scale Distributed Systems: An Empirical Study of SETI@home

Bahman Javadi¹, Derrick Kondo¹, Jean-Marc Vincent^{1,2}, David P. Anderson³

¹Laboratoire d'Informatique de Grenoble, MESCAL team, INRIA, France ²University of Joseph Fourier, France ³UC Berkeley, USA

IEEE/ACM International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2009)

1/34

MASCOTS 2009

Statistical Models of Availability

• P2P, Grid, Cloud, and Volunteer computing systems

Statistical Models of Availability

MASCOTS 2009 2 / 34

- P2P, Grid, Cloud, and Volunteer computing systems
- Main Features:
 - Tens or hundreds of thousands of unreliable and heterogeneous hosts

- P2P, Grid, Cloud, and Volunteer computing systems
- Main Features:
 - Tens or hundreds of thousands of unreliable and heterogeneous hosts
 - Uncertainty of host availability

- P2P, Grid, Cloud, and Volunteer computing systems
- Main Features:
 - Tens or hundreds of thousands of unreliable and heterogeneous hosts
 - Uncertainty of host availability

- P2P, Grid, Cloud, and Volunteer computing systems
- Main Features:
 - Tens or hundreds of thousands of unreliable and heterogeneous hosts
 - Uncertainty of host availability

Main Motivation

Effective Resource Selection for Stochastic Scheduling Algorithms

2/34

MASCOTS 2009

- P2P, Grid, Cloud, and Volunteer computing systems
- Main Features:
 - Tens or hundreds of thousands of unreliable and heterogeneous hosts
 - Uncertainty of host availability

Main Motivation

Effective Resource Selection for Stochastic Scheduling Algorithms

Goal

Model of host availability (i.e., subset of hosts with the same availability distribution)

2/34

MASCOTS 2009

Statistical Models of Availability

Outline

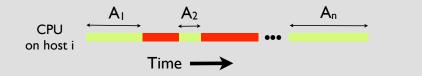
- Introduction and Motivation
- Measurement
 - Remove outliers
- Modelling Process 3
 - Bandomness Tests
 - Clustering
 - Model fitting
- - Discussions
 - Significance of Clustering Criteria
 - Scheduling Implications
- **Related Work** 5
 - Conclusion and Future Work

< 17 ▶ 1

< <p>I I

Define Availability

CPU availability on each host



Length of Availability Intervals: A1, A2, ..., An

B. Javadi (INRIA)

Statistical Models of Availability

MASCOTS 2009 4 / 34

Measurement Method

BOINC

- Middleware for volunteer computing systems
- Underlying software infrastructure for projects such as SETI@home

5/34

MASCOTS 2009

Measurement Method

BOINC

- Middleware for volunteer computing systems
- Underlying software infrastructure for projects such as SETI@home

We instrumented the BOINC client to collect CPU availability traces:

- Total number of host traces: 226,208
- Collection period: April 1, 2007 Jan 1, 2009
- Total CPU time: 57,800 years
- Number of intervals: 102,416,434
- Assume 100% or 0% availability

MASCOTS 2009

5/34

Outline

Measurement

Remove outliers

3 Modelling Process

- Randomness Tests
- Clustering
- Model fitting
- 4 Discussions
 - Significance of Clustering Criteria
 - Scheduling Implications
- Related Work
- Conclusion and Future Work

< 🗆 🕨

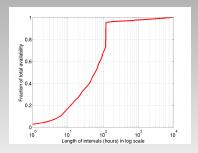
< 17 × <

Statistical Models of Availability

Check for outliers: Artifacts resulted from a benchmark run periodically every five days

Statistical Models of Availability

Check for outliers: Artifacts resulted from a benchmark run periodically every five days



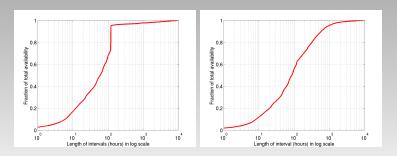
MASCOTS 2009 7 / 34

3 1 4 3

NRIA

San

Check for outliers: Artifacts resulted from a benchmark run periodically every five days



B. Javadi (INRIA)

MASCOTS 2009 7 / 34

3

ヘロア ヘロア ヘビア・

NRIA

Sac

Outline

Introduction and motivation

3

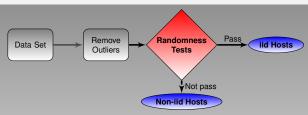
leasurement
Remove outlie

Modelling Process

- Randomness Tests
- Clustering
- Model fitting
- Discussions
 - Significance of Clustering Criteria
 - Scheduling Implications
- Related Work
- Conclusion and Future Work

8/34

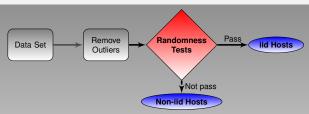
MASCOTS 2009



To determine which hosts have truly random availability intervals

9/34

MASCOTS 2009

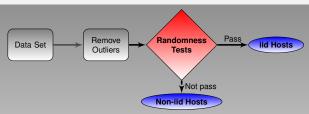


To determine which hosts have truly random availability intervals Four well-known non-parametric tests:

- Runs test
- Runs up/down test
- Mann-Kendall test
- Autocorrelation function test (ACF)

MASCOTS 2009 9 / 34

RIA



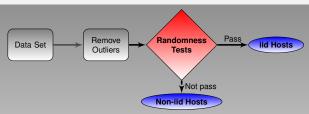
To determine which hosts have truly random availability intervals Four well-known non-parametric tests:

- Runs test
- Runs up/down test
- Mann-Kendall test
- Autocorrelation function test (ACF)

	Test	Runs std	Runs up/down	ACF	Kendall	All
Erection 0.602 0.957 0.647 0.601 0.2	# of hosts	101649	144656	109138	101462	57757
Fraction 0.802 0.837 0.847 0.801 0.3	Fraction	0.602	0.857	0.647	0.601	0.342

• • • • • • • • • • • •

NRIA



To determine which hosts have truly random availability intervals Four well-known non-parametric tests:

- Runs test
- Runs up/down test
- Mann-Kendall test
- Autocorrelation function test (ACF)

Test	Runs std	Runs up/down	ACF	Kendall	All
# of hosts	101649	144656	109138	101462	57757
Fraction	0.602	0.857	0.647	0.601	0.342

Result: 34% are i.i.d. hosts (2.2 PetaFLOPS)

MASCOTS 2009 9 / 34

RIA

Outline

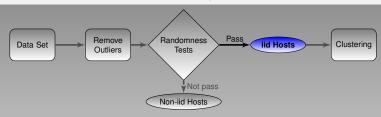
THE OCICEROTE AND INVESTIGATION OF THE PROPERTY AND THE P

leasurement

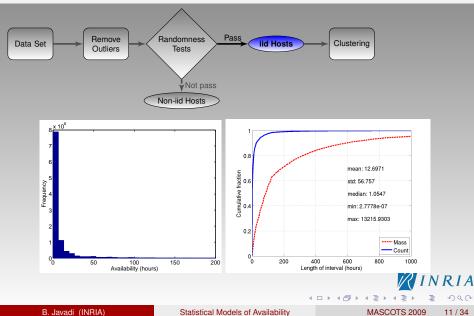
Modelling Process

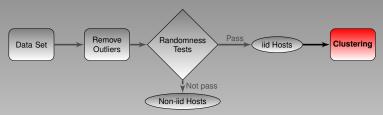
- Randomness Tests
- Clustering
- Model fitting
- Discussions
 - Significance of Clustering Criteria
 - Scheduling Implications
- Related Work
- Onclusion and Future Work

Distribution of Availability Intervals

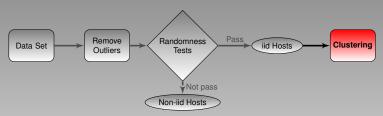


Distribution of Availability Intervals



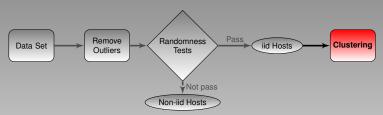


Generate a few clusters based on availability distribution function



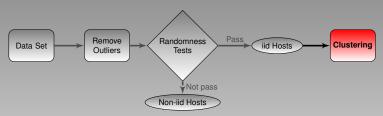
Generate a few clusters based on availability distribution function Method:

• Hierarchical



Generate a few clusters based on availability distribution function Method:

- Hierarchical
 - Compute all permutations

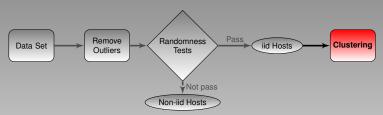


Generate a few clusters based on availability distribution function Method:

- Hierarchical
 - Compute all permutations
 - Memory intensive

12/34

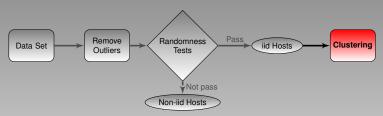
MASCOTS 2009



Generate a few clusters based on availability distribution function Method:

- Hierarchical
 - Compute all permutations
 - Memory intensive
- K-means (fast K-means)

NRIA



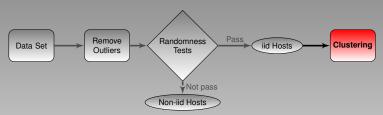
Generate a few clusters based on availability distribution function Method:

- Hierarchical
 - Compute all permutations
 - Memory intensive
- K-means (fast K-means)
 - Fast convergence

RIA

12/34

MASCOTS 2009



Generate a few clusters based on availability distribution function Method:

- Hierarchical
 - Compute all permutations
 - Memory intensive
- K-means (fast K-means)
 - Fast convergence
 - Dependent on initial centroids

3 MASCOTS 2009 12/34

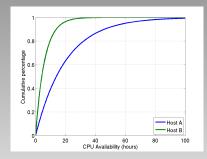
< 17 ▶

< □ ▶

• = • •

RIA

Distance between CDF of two hosts



Statistical Models of Availability

MASCOTS 2009 13 / 34

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

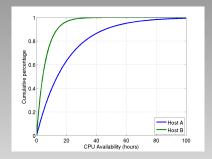
RINRIA

Sac

э

B. Javadi (INRIA)

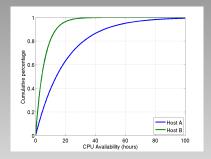
Distance between CDF of two hosts



Kolmogorov-Smirnov: Maximum difference between two CDFs

Statistical Models of Availability

Distance between CDF of two hosts



- Kolmogorov-Smirnov: Maximum difference between two CDFs
- Kuiper: Maximum deviation above and below of two CDFs

B. Javadi (INRIA)

Statistical Models of Availability

MASCOTS 2009 13 / 34

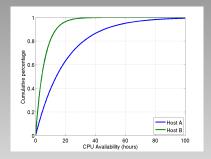
• = • •

Image: A marked and A marked

NRIA

San

Distance between CDF of two hosts



- Kolmogorov-Smirnov: Maximum difference between two CDFs
- Kuiper: Maximum deviation above and below of two CDFs
- Cramer-von Mises: Area between two CDFs

B. Javadi (INRIA)

Statistical Models of Availability

MASCOTS 2009 13 / 34

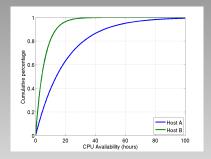
A D > A A P >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• = • •

NRIA

San

Distance between CDF of two hosts



- Kolmogorov-Smirnov: Maximum difference between two CDFs
- Kuiper: Maximum deviation above and below of two CDFs
- Cramer-von Mises: Area between two CDFs
- Anderson-Darling: Area between two CDFs, more weight on the tail

Statistical Models of Availability

MASCOTS 2009 13 / 34

Distance Metrics

Important Challenge:

Number of samples in each CDF

• Few samples -> not enough confidence on the result

14/34

Distance Metrics

Important Challenge:

Number of samples in each CDF

- Few samples -> not enough confidence on the result
- Too much samples -> the metric will be too sensitive

14/34

Distance Metrics

Important Challenge:

Number of samples in each CDF

- Few samples -> not enough confidence on the result
- Too much samples -> the metric will be too sensitive

• Data Set: different hosts have different number of samples

14/34

Distance Metrics

Important Challenge:

Number of samples in each CDF

- Few samples -> not enough confidence on the result
- Too much samples -> the metric will be too sensitive
- Data Set: different hosts have different number of samples
- Our solution: randomly select a fixed number of intervals from each host (i.e., 30 samples)

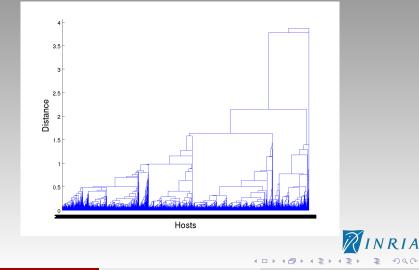
• • • • • • • • • • • •

MASCOTS 2009

14/34

Clustering Results

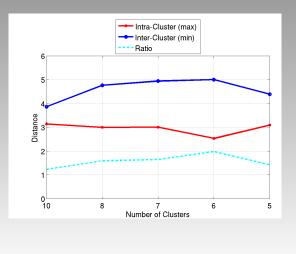
Dendrogram of hierarchical clustering: 5-10 distinct groups (bootstrap)



MASCOTS 2009 15 / 34

Clustering Results

Comparison of distances in clusters (k-means for all iid hosts):



Statistical Models of Availability

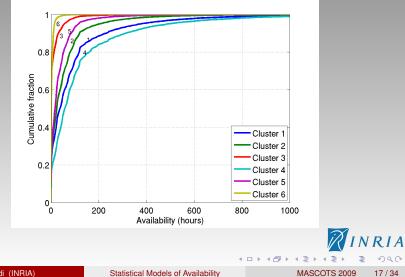
MASCOTS 2009 16 / 34

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

NRIA

590

EDF of clusters



B. Javadi (INRIA)

Outline

Measurement

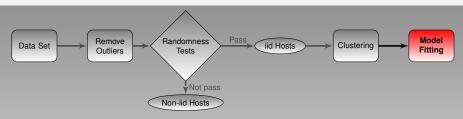
Remove outliers

Modelling Process

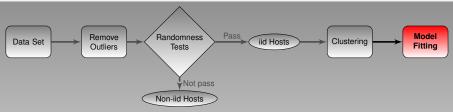
- Randomness Tests
- Clustering
- Model fitting
- Discussion
 - Significance of Clustering Criteria
 - Scheduling Implications
- Related Work
- Oonclusion and Future Work

MASCOTS 2009 18 / 34

Methods



Methods



Method:

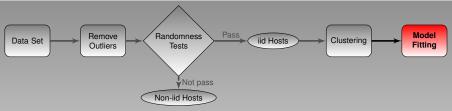
- Maximum Likelihood Estimation (MLE)
- Moment Matching (MM)

NRIA

Sac

19/34

Methods



Method:

- Maximum Likelihood Estimation (MLE)
- Moment Matching (MM)
- Target Distributions:
 - Exponential
 - Pareto
 - Weibull
 - Log-normal
 - Gamma

B. Javadi (INRIA)

NRIA

nac

19/34

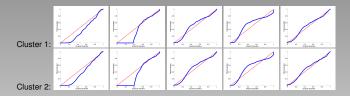
Graphical Test

PP-plots: Exponential, Pareto, Weibull, Log-normal, Gamma

20/34

Graphical Test

PP-plots: Exponential, Pareto, Weibull, Log-normal, Gamma

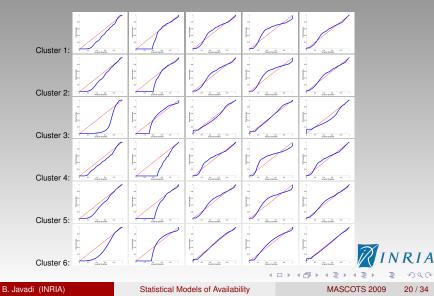


< □ ▶

< 17 ▶

Graphical Test

PP-plots: Exponential, Pareto, Weibull, Log-normal, Gamma



Goodness Of Fit Tests

Generate p-values by two GOF tests (average over 1000 runs):

- Kolmogorov-Smirnov (KS) test
- Anderson-Darling (AD) test

Goodness Of Fit Tests

Generate p-values by two GOF tests (average over 1000 runs):

- Kolmogorov-Smirnov (KS) test
- Anderson-Darling (AD) test

	Exponential		Pareto		Weibull		Log-Normal		Gamma	
Data sets	AD	KS	AD	KS	AD	KS	AD	KS	AD	KS
All iid hosts	0.004	0.000	0.061	0.013	0.581	0.494	0.568	0.397	0.431	0.359
Cluster 1	0.155	0.071	0.029	0.008	0.466	0.243	0.275	0.116	0.548	0.336
Cluster 2	0.188	0.091	0.020	0.004	0.471	0.259	0.299	0.128	0.565	0.384
Cluster 3	0.002	0.000	0.068	0.023	0.485	0.380	0.556	0.409	0.372	0.241
Cluster 4	0.264	0.163	0.002	0.000	0.484	0.242	0.224	0.075	0.514	0.276
Cluster 5	0.204	0.098	0.013	0.002	0.498	0.296	0.314	0.153	0.563	0.389
Cluster 6	0.059	0.016	0.033	0.009	0.570	0.439	0.485	0.328	0.538	0.467

Some properties of clusters

Clusters	# of hosts	% of total avail.	mean (hrs)	Best fit	Parameters	
					shape	scale
All iid hosts	57757	1.0	12.697	Weibull	0.3787	3.0932
Cluster 1	3606	0.16	90.780	Gamma	0.3131	289.9017
Cluster 2	9321	0.35	54.563	Gamma	0.3372	161.8350
Cluster 3	13256	0.22	11.168	Log-Normal	-0.8937	3.2098
Cluster 4	275	0.01	123.263	Gamma	0.3739	329.6922
Cluster 5	1753	0.05	34.676	Gamma	0.3624	95.6827
Cluster 6	29546	0.20	4.138	Weibull	0.4651	1.8461

• Cluster sizes are different and often significant

22/34

Some properties of clusters

Clusters	# of hosts	% of total avail.	mean (hrs)	Best fit	Para	meters
					shape	scale
All iid hosts	57757	1.0	12.697	Weibull	0.3787	3.0932
Cluster 1	3606	0.16	90.780	Gamma	0.3131	289.9017
Cluster 2	9321	0.35	54.563	Gamma	0.3372	161.8350
Cluster 3	13256	0.22	11.168	Log-Normal	-0.8937	3.2098
Cluster 4	275	0.01	123.263	Gamma	0.3739	329.6922
Cluster 5	1753	0.05	34.676	Gamma	0.3624	95.6827
Cluster 6	29546	0.20	4.138	Weibull	0.4651	1.8461

- Cluster sizes are different and often significant
- Heterogeneity in distribution parameters (different scale parameters)

Some properties of clusters

Clusters	# of hosts	% of total avail.	mean (hrs)	Best fit	Para	meters
					shape	scale
All iid hosts	57757	1.0	12.697	Weibull	0.3787	3.0932
Cluster 1	3606	0.16	90.780	Gamma	0.3131	289.9017
Cluster 2	9321	0.35	54.563	Gamma	0.3372	161.8350
Cluster 3	13256	0.22	11.168	Log-Normal	-0.8937	3.2098
Cluster 4	275	0.01	123.263	Gamma	0.3739	329.6922
Cluster 5	1753	0.05	34.676	Gamma	0.3624	95.6827
Cluster 6	29546	0.20	4.138	Weibull	0.4651	1.8461

- Cluster sizes are different and often significant
- Heterogeneity in distribution parameters (different scale parameters)
- Decreasing hazard rate

RIA

22/34

Outline

Introduction and motivation

Measurement

Remove outliers

3 Modelling Process

- Randomness Tests
- Clustering
- Model fitting

Discussions

- Significance of Clustering Criteria
- Scheduling Implications
- Related Work
- Onclusion and Future Work

23/34

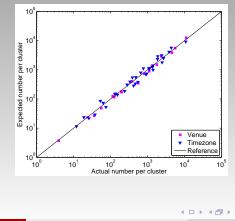
Could the same clusters have been found using some other static criteria?

Could the same clusters have been found using some other static criteria?

- Cluster by venue: Work, Home, School
- Cluster by Time zone: 6 different time zones

Could the same clusters have been found using some other static criteria?

- Cluster by venue: Work, Home, School
- Cluster by Time zone: 6 different time zones

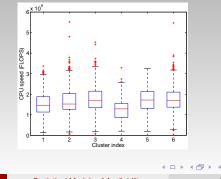


MASCOTS 2009 24 / 34

RIA

Could the same clusters have been found using some other static criteria?

- Cluster by venue: Work, Home, School
- Cluster by Time zone: 6 different time zones
- Cluster by CPU speed



B. Javadi (INRIA)

Statistical Models of Availability

MASCOTS 2009 24

24/34

Outline

Introduction and motivation

Measurement

Remove outliers

3 Modelling Process

- Randomness Tests
- Clustering
- Model fitting

Discussions

- Significance of Clustering Criteria
- Scheduling Implications
- Related Work
- Conclusion and Future Work

Scheduling accuracy Global model vs. Individual cluster model

MASCOTS 2009 26 / 34

Scheduling accuracy Global model vs. Individual cluster model Ex: Completion probability of a 24-hour task:

26/34

- Scheduling accuracy
- Global model vs. Individual cluster model
- Ex: Completion probability of a 24-hour task:
 - Global model: <20%</p>
 - Cluster 4: 70%

26/34

- Scheduling accuracy
- Global model vs. Individual cluster model
- Ex: Completion probability of a 24-hour task:
 - Global model: <20%</p>
 - Cluster 4: 70%
- **Resource Selection/Replication**

MASCOTS 2009 26 / 34

- Scheduling accuracy
- Global model vs. Individual cluster model
- Ex: Completion probability of a 24-hour task:
 - Global model: <20%</p>
 - Cluster 4: 70%
- **Resource Selection/Replication**
 - Single job: Prediction of task failure

MASCOTS 2009 26 / 34

Image: A marked and A marked

- Scheduling accuracy
- Global model vs. Individual cluster model
- Ex: Completion probability of a 24-hour task:
 - Global model: <20%</p>
 - Cluster 4: 70%
- **Resource Selection/Replication**
 - Single job: Prediction of task failure
 - Multi-job: How the task size distribution follows the availability distribution

26/34

MASCOTS 2009

4 A 1

< <p>I I

Different from other research

Measurement

B. Javadi (INRIA)

Statistical Models of Availability

MASCOTS 2009 27 / 34

Different from other research

- Measurement
 - Resource type: home, work, and school

27/34

Different from other research

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts

27/34

Different from other research

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts
 - Duration: 1.5 years

27/34

Different from other research

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts
 - Duration: 1.5 years
 - Availability : CPU availability

27/34

Related Work

Different from other research

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts
 - Duration: 1.5 years
 - Availability : CPU availability
- Modelling

27/34

Related Work

Different from other research

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts
 - Duration: 1.5 years
 - Availability : CPU availability
- Modelling
 - Classification according to randomness tests

27/34

Related Work

Different from other research

- Measurement
 - Resource type: home, work, and school
 - Scale: 200,000 hosts
 - Duration: 1.5 years
 - Availability : CPU availability
- Modelling
 - Classification according to randomness tests
 - Cluster-based Model vs Global Model

27/34

Discovering availability models for host subsets from a distributed system

Discovering availability models for host subsets from a distributed system

Conclusion

Methodology

28/34

Discovering availability models for host subsets from a distributed system

Conclusion

- Methodology
 - Remove outliers

28/34

Discovering availability models for host subsets from a distributed system

Conclusion

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)

28/34

Discovering availability models for host subsets from a distributed system

Conclusion

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution

28/34

Discovering availability models for host subsets from a distributed system

Conclusion

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution
- Modelling (Apply the methodology for the SETI@home)

28/34

Discovering availability models for host subsets from a distributed system

Conclusion

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution
- Modelling (Apply the methodology for the SETI@home)
 - 34% of hosts have truly random availability intervals

28/34

Discovering availability models for host subsets from a distributed system

Conclusion

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution
- Modelling (Apply the methodology for the SETI@home)
 - 34% of hosts have truly random availability intervals
 - Six clusters with three different distributions: Gamma, Weibull, and Log-normal

28/34

Discovering availability models for host subsets from a distributed system

Conclusion

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution
- Modelling (Apply the methodology for the SETI@home)
 - 34% of hosts have truly random availability intervals
 - Six clusters with three different distributions: Gamma, Weibull, and Log-normal

28/34

Discovering availability models for host subsets from a distributed system

Conclusion

- Methodology
 - Remove outliers
 - Classification based on the randomness tests (iid vs non-iid)
 - Partitioning hosts into subsets by their availability distribution
- Modelling (Apply the methodology for the SETI@home)
 - 34% of hosts have truly random availability intervals
 - Six clusters with three different distributions: Gamma, Weibull, and Log-normal

Future Work

- Apply the result for improving makespan of DAG-applications
- Explore ability of clustering dynamically while the system is on-line

Failure Trace Archive

http://fta.inria.fr

- Repository of availability traces of parallel and distributed systems, and tools for analysis
- Facilitate design, validation and comparison of fault-tolerance algorithms and models
- 15 data sets including SETI@home data set

29/34

Failure Trace Archive

http://fta.inria.fr

- Repository of availability traces of parallel and distributed systems, and tools for analysis
- Facilitate design, validation and comparison of fault-tolerance algorithms and models
- 15 data sets including SETI@home data set

More Details

- Poster Session at MASCOTS 2009 (Today 19:00-21:00)
- Website: http://fta.inria.fr

29/34

< ∃ >

Thank You

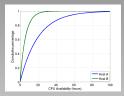
Questions?

B. Javadi (INRIA)

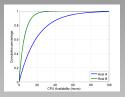
Statistical Models of Availability

MASCOTS 2009 30 / 34

Distance between CDF of two hosts



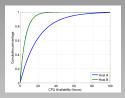
Distance between CDF of two hosts



• Kolmogorov-Smirnov: $D_{n,m} = sup | F_n(x) - G_m(x) |$

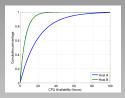
Statistical Models of Availability

Distance between CDF of two hosts



- Kolmogorov-Smirnov: $D_{n,m} = sup | F_n(x) G_m(x) |$
- Kuiper: $V_{n,m} = \sup |F_n(x) G_m(x)| + \sup |G_m(x) F_n(x)|$

Distance between CDF of two hosts



- Kolmogorov-Smirnov: $D_{n,m} = sup | F_n(x) G_m(x) |$
- Kuiper: $V_{n,m} = sup | F_n(x) G_m(x) | + sup | G_m(x) F_n(x) |$
- Cramer-von Mises:

$$T_{n,m} = \frac{nm}{(n+m)^2} \left\{ \sum_{i=1}^{n} [F_n(x_i) - G_m(x_i)]^2 + \sum_{j=1}^{m} [F_n(y_j) - G_m(y_j)]^2 \right\}$$

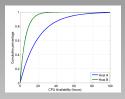
< 🗆 🕨

< 17 ×

• = • •

RIA

Distance between CDF of two hosts



- Kolmogorov-Smirnov: $D_{n,m} = sup | F_n(x) G_m(x) |$
- Kuiper: $V_{n,m} = sup | F_n(x) G_m(x) | + sup | G_m(x) F_n(x) |$
- Cramer-von Mises:

$$T_{n,m} = \frac{nm}{(n+m)^2} \left\{ \sum_{i=1}^{n} [F_n(x_i) - G_m(x_i)]^2 + \sum_{j=1}^{m} [F_n(y_j) - G_m(y_j)]^2 \right\}$$

• Anderson-Darling: $Q_n = \int_{-\infty}^{\infty} [F(x) - F_n(x)]^2 \psi(F(x)) dF$ $\psi(F(x)) = \frac{1}{F(x)(1-F(x))}$

MASCOTS 2009 31 / 34

< 6 k

 RIA

Fitting with Hyper-Exponential

Fitting Method:

- Expectation Maximization (EM) [using EMpht package]
 - Accurate
 - Flexible
 - Slow

Fitting with Hyper-Exponential

Fitting Method:

- Expectation Maximization (EM) [using EMpht package]
 - Accurate
 - Flexible
 - Slow
- Moment Matching (MM)
 - Less accurate
 - Not flexible
 - Very fast

Fitting with Hyper-Exponential

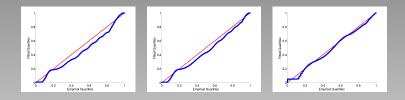
Fitting Method:

- Expectation Maximization (EM) [using EMpht package]
 - Accurate
 - Flexible
 - Slow
- Moment Matching (MM)
 - Less accurate
 - Not flexible
 - Very fast

We used MM for 2-phase hyper-exponential by the first two moments as follows:

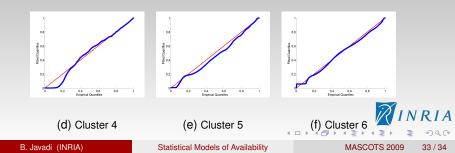
$$p = \frac{1}{2} (1 - \sqrt{\frac{CV^2 - 1}{CV^2 + 1}})$$
$$\lambda_1 = \frac{2p}{\mu}$$
$$\lambda_2 = \frac{2(1 - p)}{\mu}$$

PP-Plots



(a) Cluster 1

(c) Cluster 3



Goodness of Fit Tests

	Hyper-Exponential (MM)			Hyper-Exponential (EM)		
Data sets	Parameters	AD	KS	Parameters	AD	KS
All iid hosts	$p_1 = 0.024 \ \lambda_1 = 0.004 p_2 = 0.976 \ \lambda_2 = 0.154$	0.026	0.005	$\begin{array}{rrrrr} p_1 &=& 0.197 \ \lambda_1 &=& 0.0179 \\ p_2 &=& 0.279 \ \lambda_2 &=& 29.171 \\ p_3 &=& 0.524 \ \lambda_3 &=& 0.316 \end{array}$	0.531	0.375
Cluster 1	$p_1 = 0.115 \lambda_1 = 0.003$ $p_2 = 0.885 \lambda_2 = 0.019$	0.287	0.119	$p_1 = 0.180 \ \lambda_1 = 14.401$ $p_2 = 0.820 \ \lambda_2 = 0.009$	0.450	0.318
Cluster 2	$p_1 = 0.114 \ \lambda_1 = 0.004 p_2 = 0.886 \ \lambda_2 = 0.032$	0.275	0.113	$p_1 = 0.183 \ \lambda_1 = 12.338$ $p_2 = 0.817 \ \lambda_2 = 0.015$	0.512	0.403
Cluster 3	$p_1 = 0.030 \ \lambda_1 = 0.005 p_2 = 0.970 \ \lambda_2 = 0.174$	0.005	0.000	$p_1 = 0.341 \lambda_1 = 0.031 p_2 = 0.261 \lambda_2 = 71.852 p_3 = 0.398 \lambda_3 = 1.923$	0.561	0.434
Cluster 4	$p_1 = 0.136 \lambda_1 = 0.002 p_2 = 0.864 \lambda_2 = 0.014$	0.448	0.273	$p_1 = 0.694 \ \lambda_1 = 0.020 p_2 = 0.306 \ \lambda_2 = 0.003$	0.473	0.274
Cluster 5	$p_1 = 0.105 \ \lambda_1 = 0.006 p_1 = 0.895 \ \lambda_2 = 0.052$	0.295	0.122	$p_1 = 0.173 \ \lambda_1 = 13.374 p_2 = 0.827 \ \lambda_2 = 0.024$	0.523	0.393
Cluster 6	$p_1 = 0.010 \ \lambda_1 = 0.005 p_2 = 0.990 \ \lambda_2 = 0.478$	0.114	0.038	$ \begin{array}{rcl} p_1 &=& 0.516 \ \lambda_1 &=& 0.131 \\ p_2 &=& 0.150 \ \lambda_2 &=& 163.771 \\ p_3 &=& 0.334 \ \lambda_3 &=& 2.411 \end{array} $	0.572	0.470

B. Javadi (INRIA)

MASCOTS 2009 34 / 34

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

RINRIA

æ

DQC