
Towards Real-Time, Many Task
Applications on Large Distributed Systems

- focusing on the implementation of RT-BOINC

Sangho Yi (sangho.yi@inria.fr)

Content
  Motivation and Background

  RT-BOINC in a nutshell
  Internal structures

  Design & implementation

  Conclusions and future work

Motivation
 Demands for computing large-scale real-time(RT) tasks

increased in distributed computing environment

 Chess, Game of Go

 Real-time Forensic Analysis

 Ultra HD-level Real-time Multimedia Processing

 …

 Lack of support for RT in existing Desktop Grids, and Volunteer
Computing environment

About BOINC
  BOINC is tailored for maximizing task throughput, not

minimizing latency on the order of seconds.

 XtreemWeb and Condor have similar characteristics.

  A BOINC project has

 A BOINC server (web, storage, database, ...)

 Multiple BOINC clients

 Network connection between server - clients

BOINC Projects
  Normally perform a few transactions in 1 sec with host

clients.

  1~50 transactions in 1 sec (ref. http://
boincstats.com)

  Send large chunk of computation to the host clients.

 a couple of hours, or even days of computation

  Does not have RT guarantee

  Because it is tailored for maximizing total amount of
computation.

Significant Gaps here...
 ”I need a 10-second-car.” - in the movie ”Fast & Furious”

Vin diesel –
the main actor in the movie

Significant Gaps here...
 ”We need a 10-second-completion.” - in a ”Chess game”

RT-BOINC in a Nutshell
  RT-BOINC features

  Providing low WCET (worst-case execution
time) for all components

  No database operations at run-time

  O(1) interfaces for data structures

  Reduced complexity for server daemons
 Almost O(1)

Original BOINC Internal
BOINC Server

Host

Host

Host

Host

Host

Scheduler

Work-generator Requests for
work distribution

Transitioner

Feeder

workunits in DB
w w w

w w w
w w

w w

workunit-result ready queue
wr wr wr wr wr

Validator

Assimilator
workunit-results in DB
w

r
w r w

r
r

w r
w r r r w

w r w
r

r
w

r r
w

BOINC Project

File-deleter Results of work ...

: flow of distributing work requests
: flow of reporting work results

BOINC Hosts

RT-BOINC Internal

Data management
 MySQL Database vs. In-memory data structures

BOINC DB

(workunits, results,
hosts, users, apps,
platforms, and …)
- based on MySQL

Complexity for lookup,
insert, and remove: O(log

N) ~ O(N2)

In-Memory Data structures - O(1)

a b c

2a 2b
2c

Multi-level lookup tables
and fixed-size list

Lookup pools

w w
w

w

w w w w
r
r

r

r r
r

r

r
r

Main Database

In-memory data
records with data

format compaction
(workunits, results,

hosts, users, ...)
- based on shm-IPC

(a) BOINC (b) RT-BOINC

Example 1) select from where;

ID of result

 Retrieving RESULT from the O(1) data structure

1 2 3 4

Ex) select * from result where workunitid = ‘0x1234’;
8 bits 4 bits 4 bits

24 = 16 entries

28 = 256 entries

Result table
in main memory

Performance Evaluation
  1) Micro and Macro Benchmarks

  Based on dummy server load

  2) Case Studies
  Game of Go AI, (and Chess AI – soon)

Macro-benchmarks (high load)

Performance Evaluation - #2
  Case Studies

  Game of Go - 9x9 board (currently working)
 FueGo - a monte-carlo-based AI

 GTP protocol (go text protocol)

 KGS Go Server - can play with AI and human

  Chess (developing with Emmanuel Jeannot)
 Distributed depth-first-search-based AI

 UCI protocol (universal chess interface)

Summary
 RT-BOINC provides...

  Faster response time and real-time performance than
BOINC.

  300~1,000 times lower WCET(worst-case execution time)
for each server-side operation.

  less difference between the average and the worst-case
performance.

  less difference between low and high load conditions.

Future work (The rest part)

RT-BOINC
Server

Project manager requests work
T: deadline
Nc: # of computation
Ps: probability for successful execution

request

RT-BOINC server provides the
worst-case number of transactions
processing per second: Nt

Lot of volunteer hosts

 ...

distribution

returning results

T
Nc/Nt

Time for handling
transactions in server

Time for computation in
volunteer hosts

Time for communication
between server and hosts

Checkpointing & Replication is required
in the presence of hosts’ failures.

Red:
What we have done
in the first paper

Future work (The rest part)

RT-BOINC
Server

Project manager requests work
T: deadline
Nc: # of computation
Ps: probability for successful execution

request

RT-BOINC server provides the
worst-case number of transactions
processing per second: Nt

Lot of volunteer hosts

 ...

distribution

returning results

T
Nc/Nt

Time for handling
transactions in server

Time for computation in
volunteer hosts

Time for communication
between server and hosts

Checkpointing & Replication is required
in the presence of hosts’ failures.

Blue:
What we will show
in the next paper

Go AI on RT-BOINC
KGS

Go server
GTP

Client
Go AI
Master

RT-BOINC server
Work

generator
Transitioner Feeder Scheduler Validator Assimilator

(aggregator)
File deleter

Ask to move Send
“genmove”
command

Send input file Generate
a workunit
(initiate
deadline timer)

Generates
workunit-
results pairs

Insert pairs
into scheduler
pool

Send works
to clients

RT-BOINC
Clients

(Worker)

Compute
Works

(5~10 secs)

Return results
to scheduler

Store
results

Set need_validate = TRUE

Activate Transitioner

Validate results, and
set ASSIMILATE_READY

Assimilate results into one file and return to Master

Select and
return the
best move

Return
the best move

Set FILE_DELETE_READY, and activate File deleter
Set ASSIMILATE_DONE, and activate Transitioner

Delete the
result files

Response time
= 15~25 secs

Set FILE_DELETE_DONE, and activate Feeder
to clean the in-memory data structures

Delete data
in-memory

Select
the best move

(0~1 secs)

Network Communication Delay
(5~10 secs)

Deadline timer
can activate
Transitioner

Experimental Setup (1)
  We used a little bit fast machine, but used only 2

cores for this experiements.

  We’ll extend the scale of experiments when we
have greater # of volunteers.

Component Description Notes

Processor 2.00 Ghz (Dual-Quad) Intel Xeon E5504

Main Memory 32GB (1,000 Mhz)

Secondary Storage HDD - sorry for lack of info :’)

Operating System Ubuntu 9.10 (karmic) Linux Kernel 2.6.31-19

Experimental Setup (2)
  RT-BOINC

  Up to 50k active wu, result, host, users

  3.9GBs of memory usage on a 64bit machine
 1.9GBs of memory usage for O(1) data structures

(49.5 % of total)

  BOINC
  Recent server-stable version (Jun. 2010)

Minor Things for Experiments
  Apache & MySQL

  Max # of connections (default is 100~256)

  Need 2 identical (physical) servers
  For BOINC vs. RT-BOINC testing

Preliminary Results (Go AI)
  Only preliminary results are available now.

 Two cases: 160, and 480 cores (of volunteers)

Deadline = 30 secs / move

Screen Shot on KGS

Macro-benchmarks
 Difference of worst-case performance between low and high

load condition

Performance Evaluation - #1
 Purpose: to measure real-time performance of BOINC and RT-

BOINC

  Criteria: the worst-case and the average execution time

  Method: micro and macro benchmarks

  Micro-benchmark: for each primary operation related to
server process

  Macro-benchmark: for each server process (including
feeder, scheduler, transitioner, work-generator, assimilator,
validator, and file-deleter)

Experimental Environment
 We used a little bit slow, common-off-the-shelf system. ;-)

  For ease of reproduction of the results

Component Description Notes

Processor 1.60GHz, 3MB L2 cache Intel Core 2 Duo

Main Memory 3GB (800 Mhz) Dual-channel DDR3

Secondary Storage Solid State Drive SLC Type

Operating System Ubuntu 9.10 (karmic) Linux Kernel 2.6.31-19

BOINC version Server stable version Nov. 11, 2009 (from SVN)

Micro-benchmarks
 Average execution time (in seconds)

Micro-benchmarks
 Worst-case execution time (in seconds)

Micro-benchmarks
 Performance improvement ratio (RT-BOINC / BOINC)

Micro-benchmarks
 Performance gap between worst-case and average

Macro-benchmarks (low load)

Source code on the Web
  http://sourceforge.net/projects/rt-boinc

Size of Data Structures
 RT-BOINC uses the ’shared memory segment’ IPC between

server daemon processes to share the data structures.

 For 10,000 entries of hosts, results, workunits, it consumes
totally 1.09GB in main memory.

  Memory overhead for O(1) data structures is 38.6% of the
total usage.

  Using 1GB memory is reasonable on the common-off-the-
shelf 64-bit hardware platforms.

Detailed information on the Web
  http://rt-boinc.sourceforge.net

Future work (Remaining issues)
 Providing ’dynamic shared-memory management’ to reduce

memory usage

 Studying trade-offs between execution time and memory usage

 Studying better data structure management for O(1) response

 Finding better task deployment policy to

 Reduce server-side load and latency

 Improve real-time performance

Thanks! / Questions?

Example 2) insert into values(...);
 Inserting RESULT to the O(1) data structure

Ex) insert into result ... values (...);

Result table
in main memory

Get an available result field’s id from end of list
Then, remove the ‘id’ from end of list

Lookup pool for available results

Insert result to this place

(a) Insertion

Example 3) delete from where;
 Deleting RESULT from the O(1) data structure

Ex) delete from result where id=’1234’;

Result table
in main memory

Insert ‘1234’ to the end of the result lookup list

Lookup pool for available results

Invalidate 1234th result

(b) Deletion

Prototype Implementation
 Additional information

  Compaction of BOINC's data format

  Modification of PHP codes

  Trade-offs between memory usage and WCET
 Statically adjustable with parameters

  Compatibility with BOINC
 The rest parts are still compatible with BOINC.

