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Motivation 
 Demands for computing large-scale real-time(RT) tasks 

increased in distributed computing environment 

 Chess, Game of Go 

 Real-time Forensic Analysis 

 Ultra HD-level Real-time Multimedia Processing 

 … 

 Lack of support for RT in existing Desktop Grids, and Volunteer 
Computing environment 



About BOINC 
  BOINC is tailored for maximizing task throughput, not 

minimizing latency on the order of seconds. 

 XtreemWeb and Condor have similar characteristics.  

  A BOINC project has 

 A BOINC server (web, storage, database, ...) 

 Multiple BOINC clients 

 Network connection between server - clients 



BOINC Projects 
  Normally perform a few transactions in 1 sec with host 

clients. 

  1~50 transactions in 1 sec (ref. http://
boincstats.com) 

  Send large chunk of computation to the host clients. 

 a couple of hours, or even days of computation 

  Does not have RT guarantee 

  Because it is tailored for maximizing total amount of 
computation. 



Significant Gaps here... 
 ”I need a 10-second-car.” - in the movie ”Fast & Furious” 

Vin diesel –  
the main actor in the movie 



Significant Gaps here... 
 ”We need a 10-second-completion.” - in a ”Chess game” 



RT-BOINC in a Nutshell 
  RT-BOINC features 

  Providing low WCET (worst-case execution 
time) for all components 

  No database operations at run-time 

  O(1) interfaces for data structures 

  Reduced complexity for server daemons 
 Almost O(1) 
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Data management 
 MySQL Database vs. In-memory data structures 
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Example 1) select from where; 

ID of result 

 Retrieving RESULT from the O(1) data structure 

1 2 3              4 

Ex) select * from result where workunitid = ‘0x1234’; 
8 bits 4 bits 4 bits 

24 = 16 entries 

28 = 256 entries 

Result table 
in main memory 



Performance Evaluation 
  1) Micro and Macro Benchmarks 

  Based on dummy server load 

  2) Case Studies 
  Game of Go AI, (and Chess AI – soon) 



Macro-benchmarks (high load) 



Performance Evaluation - #2 
  Case Studies 

  Game of Go - 9x9 board (currently working) 
 FueGo - a monte-carlo-based AI 

 GTP protocol (go text protocol) 

 KGS Go Server - can play with AI and human 

  Chess (developing with Emmanuel Jeannot) 
 Distributed depth-first-search-based AI 

 UCI protocol (universal chess interface) 



Summary 
 RT-BOINC provides... 

  Faster response time and real-time performance than 
BOINC. 

  300~1,000 times lower WCET(worst-case execution time) 
for each server-side operation. 

  less difference between the average and the worst-case 
performance. 

  less difference between low and high load conditions. 



Future work (The rest part) 

RT-BOINC 
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Red:  
What we have done  
in the first paper 



Future work (The rest part) 

RT-BOINC 
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Project manager requests work 
T: deadline 
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Ps: probability for successful execution 

request 
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worst-case number of transactions 
processing per second: Nt 

Lot of volunteer hosts 

   ... 

distribution 

returning results 

T 
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Time for handling  
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Time for communication 
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Checkpointing & Replication is required 
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in the next paper 



Go AI on RT-BOINC 
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Experimental Setup (1) 
  We used a little bit fast machine, but used only 2 

cores for this experiements.  

  We’ll extend the scale of experiments when we 
have greater # of volunteers.  

Component Description Notes 

Processor 2.00 Ghz (Dual-Quad) Intel Xeon E5504 

Main Memory 32GB  (1,000 Mhz) 

Secondary Storage HDD - sorry for lack of info :’) 

Operating System Ubuntu 9.10 (karmic) Linux Kernel 2.6.31-19 



Experimental Setup (2) 
  RT-BOINC 

  Up to 50k active wu, result, host, users 

  3.9GBs of memory usage on a 64bit machine 
 1.9GBs of memory usage for O(1) data structures 

(49.5 % of total) 

  BOINC 
  Recent server-stable version (Jun. 2010) 



Minor Things for Experiments 
  Apache & MySQL 

  Max # of connections (default is 100~256) 

  Need 2 identical (physical) servers 
  For BOINC vs. RT-BOINC testing 



Preliminary Results (Go AI) 
  Only preliminary results are available now.  

 Two cases: 160, and 480 cores (of volunteers) 

Deadline = 30 secs / move 



Screen Shot on KGS 



Macro-benchmarks 
 Difference of worst-case performance between low and high 

load condition 



Performance Evaluation - #1 
 Purpose: to measure real-time performance of BOINC and RT-

BOINC 

  Criteria: the worst-case and the average execution time 

  Method: micro and macro benchmarks 

  Micro-benchmark: for each primary operation related to 
server process 

  Macro-benchmark: for each server process (including 
feeder, scheduler,  transitioner, work-generator, assimilator, 
validator, and file-deleter) 



Experimental Environment 
 We used a little bit slow, common-off-the-shelf system. ;-) 

  For ease of reproduction of the results 

Component Description Notes 

Processor 1.60GHz, 3MB L2 cache Intel Core 2 Duo 

Main Memory 3GB (800 Mhz) Dual-channel DDR3 

Secondary Storage Solid State Drive SLC Type 

Operating System Ubuntu 9.10 (karmic) Linux Kernel 2.6.31-19 

BOINC version Server stable version Nov. 11, 2009 (from SVN) 



Micro-benchmarks 
 Average execution time (in seconds) 



Micro-benchmarks 
 Worst-case execution time (in seconds) 



Micro-benchmarks 
 Performance improvement ratio (RT-BOINC / BOINC) 



Micro-benchmarks 
 Performance gap between worst-case and average 



Macro-benchmarks (low load) 



Source code on the Web 
  http://sourceforge.net/projects/rt-boinc 



Size of Data Structures 
 RT-BOINC uses the ’shared memory segment’ IPC between 

server daemon processes to share the data structures.  

 For 10,000 entries of hosts, results, workunits, it consumes 
totally 1.09GB in main memory. 

  Memory overhead for O(1) data structures is 38.6% of the 
total usage. 

  Using 1GB memory is reasonable on the common-off-the-
shelf 64-bit hardware platforms. 



Detailed information on the Web 
  http://rt-boinc.sourceforge.net 



Future work (Remaining issues) 
 Providing ’dynamic shared-memory management’ to reduce 

memory usage 

 Studying trade-offs between execution time and memory usage 

 Studying better data structure management for O(1) response 

 Finding better task deployment policy to  

 Reduce server-side load and latency 

 Improve real-time performance 



Thanks! / Questions? 



Example 2) insert into values(...); 
 Inserting RESULT to the O(1) data structure 

Ex) insert into result ... values (...); 

Result table 
in main memory 

Get an available result field’s id from end of list 
Then, remove the ‘id’ from end of list 

Lookup pool for available results 

Insert result to this place 

(a) Insertion 



Example 3) delete from where; 
 Deleting RESULT from the O(1) data structure 

Ex) delete from result where id=’1234’; 

Result table 
in main memory 

Insert ‘1234’ to the end of the result lookup list 

Lookup pool for available results 

Invalidate 1234th result 

(b) Deletion 



Prototype Implementation 
 Additional information 

  Compaction of BOINC's data format 

  Modification of PHP codes 

  Trade-offs between memory usage and WCET 
 Statically adjustable with parameters  

  Compatibility with BOINC 
 The rest parts are still compatible with BOINC. 


