Advanced Topics

Perfect Sampling of Queuing Networks with **Complex Routing**

complexity and computational aspects

Jean-Marc Vincent

MESCAL-INRIA Project Laboratoire d'Informatique de Grenoble Universities of Grenoble. France {Jean-Marc.Vincent}@imag.fr

This work was partially supported by ANR SETIN Checkbound Grenoble

Advanced Topics Syr

Synthesis

Outline

System Simulation

- Application Problems
- Markovian Modelling
- Steady-state Sampling of Markov Models

Perfect Sampling

- General Description
- Coupling Inequalities
- Forward Coupling
- Backward Coupling
- 3

Discrete Time Markov Chain

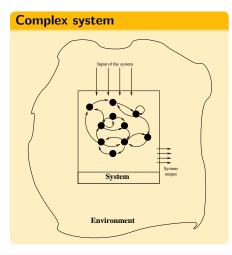
- Transition Function
- Coupling Condition
- Doeblin Matrices
- Binary-Uniform Decomposition
- Examples

- Event Driven Simulation
 - Monotonicity of Events
 - Acyclic Networks Coupling Time
 - Ψ^2 Software
 - Modelling Queuing Systems
- 5 Case Studies
 - Finite Queuing Network
 - Communication Switch
 - Grid Load Balancing
- 6 Advanced Topics
 - Stochastic Automata Networks
 - Non-Monotonic Events
 - Variance Reduction

Case Studies Advanced Topics Synthesis

LIG

Application Problems : Modeling and Analysis of Complex Systems



Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time

Environment : non deterministic

- time homogeneous
- stochastically regular

Problem

Generate "typical" states

- steady-state sampling
- ergodic simulation starting point
- state space exploring techniques

Simulation Case Studies

Advanced Topics Synthesis

Queuing Networks with Finite Capacity

Network model

Finite set of resources :

- servers
- waiting rooms

Routing strategies :

- state dependent
- overflow strategy
- blocking strategy
- ...

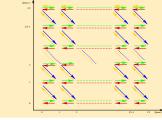
Average performance :

- load of the system
- response time
- loss rate

• ...

Markov model

Poisson arrival, exponential services distribution, probabilistic routing \Rightarrow continuous time Markov chain



Problem

Computation of steady state distribution \Rightarrow state-space explosion

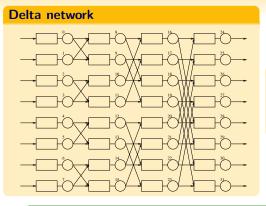
System Simulation

Event Driven Simulation

Case Studies Advanced Topics

Synthesis

Interconnexion Networks



Input rates Service rates Homogeneous routing Overflow strategy

Problem

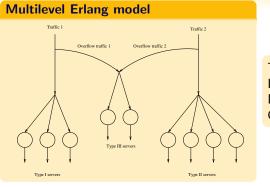
Loss probability at each level Analysis of hot spot

. . .

Advanced Topics

Synthesis

Call centers



Types of requests Input rates Different service rates **Overflow strategy**

Problem

Optimization of resources Quality of service (waiting time, rejection probability,...)

Simulation Case Studies

Advanced Topics

Synthesis

Resource Broker

Grid model 010 Resource Q11 Broker Overflow Q12

Input rates Allocation strategy State dependent allocation Index based routing : destination minimize a criteria

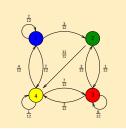
Problem

. . .

Optimization of throughput, response time,... Comparison of policies, analysis of heuristics

Formalization : Markov Chain

Quantification



Stochastic matrix : transition probability

$$P = \frac{1}{12} \begin{bmatrix} 2 & 3 & 0 & 7 \\ 0 & 0 & 1 & 11 \\ 0 & 3 & 6 & 3 \\ 4 & 0 & 7 & 1 \end{bmatrix}$$

Non-negative, if irreducible and aperiodic Unique probability vector π satisfying $\pi = \pi P$, $\pi = \frac{1}{350}$ [46, 47, 142, 115]

Synthesis

Solving methods

Solving $\pi = \pi P$

- Analytical/approximatin methods
- Formal methods N ≤ 50 Maple, Sage,...
- Direct numerical methods N ≤ 1000 Mathematica, Scilab,...
- Iterative methods with preconditioning $N \leqslant 100,000$ Marca,...
- Adapted methods (structured Markov chains) $N \leqslant 1,000,000$ PEPS,...
- Monte-Carlo simulation $N \ge 10^7$

Postprocessing of the stationary distribution

Computation of rewards (expected stationary functions) Utilization, response time,...

Synthesis

Ergodic Sampling(1)

Ergodic sampling algorithm

Representation : transition fonction

$$X_{n+1} = \Phi(X_n, e_{n+1}).$$

```
x \leftarrow x_0
{choice of the initial state at time =0}
n = 0:
```

repeat

```
n \leftarrow n+1;

e \leftarrow Random\_event();

x \leftarrow \Phi(x, e);

Store x

{computation of the next state X_{n+1}}

until some empirical criteria

return the trajectory
```

Problem : Stopping criteria

Ergodic Sampling(2)

Start-up

Convergence to stationary behavior

$$\lim_{n\to+\infty}\mathbb{P}(X_n=x)=\pi_x.$$

Warm-up period : Avoid initial state dependence Estimation error :

 $||\mathbb{P}(X_n = x) - \pi_x|| \leq C\lambda_2^n.$

 λ_2 second greatest eigenvalue of the transition matrix

- bounds on C and λ_2 (spectral gap)
- cut-off phenomena

 λ_2 and *C* non reachable in practice (complexity equivalent to the computation of π) some known results (Birth and Death processes)

Synthesis

Ergodic Sampling(3)

Estimation quality

Ergodic theorem :

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{i=1}^n f(X_i)=\mathbb{E}_{\pi}f.$$

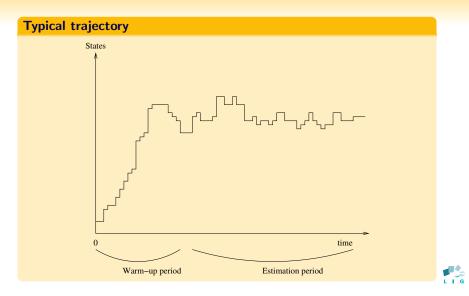
Length of the sampling : Error control (CLT theorem) CLT for additive functionals of Markov chains

Complexity

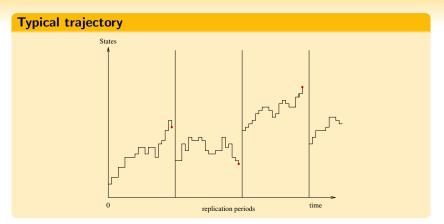
Complexity of the transition function evaluation (computation of $\Phi(x, .)$) Related to the stabilization period + Estimation time

Synthesis

Ergodic sampling(4)



Replication Method

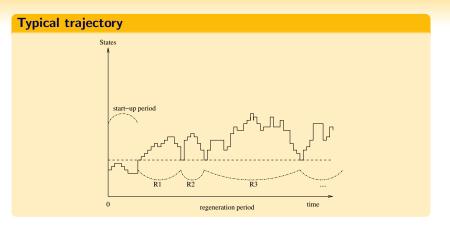


Sample of independent states Drawback : length of the replication period (dependence from initial state)

System Simulation

Synthesis

Regeneration Method



Sample of independent trajectories Drawback : length of the regeneration period (choice of the regenerative state)

Stochastic recursive sequences

Description [Borovkov et al]

- Discrete state space \mathcal{X} (usually lattice, product of intervals,...)
- Innovation state space, and an innovation process
- Dynamic of the system : transition function

$$\begin{array}{rcccc} \Phi : & \mathcal{X} \times \mathcal{E} & \longrightarrow & \mathcal{X} \\ & & (x,\xi) & \longmapsto & y \end{array}$$

• Trajectory given by x_0 and $\{\xi_n\}$ an innovation process

$$X_0 = x_0; X_{n+1} = \Phi(X_n, \xi_n)$$

Discrete event systems

- state space : usually lattice, product of intervals,...
- Innovations : usually a set of events \mathcal{E}
- Independent innovation process : Poisson systems (uniformization)

Case Studies Advanced Topics Sy

Synthesis

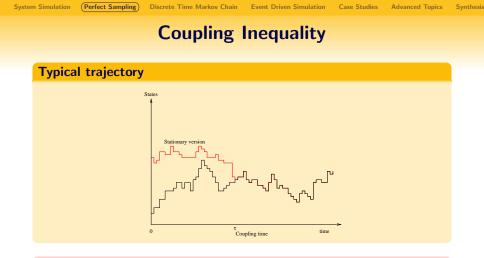
Markovian Modelling

Theorem (Markov process)

If $\{\xi_n\}$ is a sequence of iid random variables , the process $\{X_n\}$ is a homogeneous discrete time Markov chain.

Random Iterated system of functions

The trajectory X_n is the successive application of random functions taken in the set $\{\Phi(.,\xi), \xi \in \mathcal{E}\}$ according a probability measure on \mathcal{E} [Diaconis and Friedman 98]



After τ the two processes are not distinguishable, then stationary Scheme used to prove Markov convergence (coupling inequality)

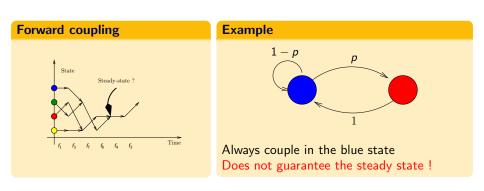
$$|\mathbb{P}(X_n \in A) - \pi_A| \leq \mathbb{P}(\tau \geq n)$$

Event Driven Simulation Case Studies

Advanced Topics

Synthesis

Forward Sampling : avoid initial state dependence



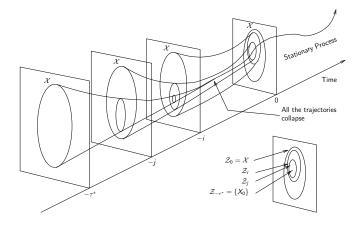
Perfect Sampling : Backward Idea

Set dynamic

In what state could I be at time n = 0?

$$\begin{array}{rcl} \mathcal{X}_{0} & \in & \mathcal{X} = \mathcal{Z}_{0} \\ & \in & \Phi(\mathcal{X}, e_{-1}) = \mathcal{Z}_{1} \\ & \in & \Phi(\Phi(\mathcal{X}, e_{-2}), e_{-1}) = \mathcal{Z}_{2} \\ \vdots & & \vdots \\ & \in & \Phi(\Phi(\cdots \Phi(\mathcal{X}, e_{-n}), \cdots), e_{-2}), e_{-1}) = \mathcal{Z}_{n} \end{array}$$

Perfect sampling : Backward Idea



Synthesis

Perfect Sampling : Convergence Theorem

Theorem

Provided some condition on the events the sequence of sets

 $\{\mathcal{Z}_n\}_{n \in \mathbb{N}}$

is decreasing to a single state, stationary distributed.

 $\tau^* = \inf\{n \in \mathbb{N}; Card(\mathcal{Z}_n) = 1\}.$

backward coupling time

The set of possible states at time 0 is decreasing with regards to n

Perfect Sampling : Coupling Condition

Theorem

Suppose that the set of events is finite. Then the two conditions are equivalent:

- $\tau^* < +\infty$ almost surely:
- There exist a finite sequence of events with positive probability $S = \{e_1, \cdots, e_M\}$ such that

 $|\Phi(\mathcal{X}, e_{1 \to M})| = 1.$

The sequence S is called a **synchronizing pattern** (synchronizing word, renovating event,...)

Synthesis

Synthesis

Perfect sampling : Coupling Condition (proof)

Proof

- \Rightarrow If $\tau^* < +\infty$ almost surely there is a trajectory that couples in a finite time. This finite trajectory is a synchronizing pattern.
- \leftarrow Suppose there is a synchronizing pattern with length M. Because the sequence of events is iid, it occurs almost surely on every trajectory. Applying Borel-Cantelli lemma gives the result.

The forward and backward coupling time have the same distribution τ^* has an exponentially dominated distribution tail

 $\mathbb{P}(\tau^* > M.n) \leq (1 - \mathbb{P}(e_{1 \to M}))^n.$

Practically efficient

Advanced Topics

Synthesis

Perfect sampling : convergence theorem (proof 1)

Proof based on the shift property

First, because $\tau < +\infty$ and the ergodicity of the chain there exists N_0 s.t.

$$|\mathbb{P}(\Phi(\mathcal{X}, e_{1 \to n}) = \{x\}) - \pi_x| \leq \epsilon.$$

But the sequence of events is iid (stationary) then

$$\mathbb{P}(\Phi(\mathcal{X}, e_{1 \to n}) = \{x\}) = \mathbb{P}(\Phi(\mathcal{X}, e_{-n+1 \to 0}) = \{x\})$$

 $\tau^* < +\infty$ then there exists N_1 such that $\mathbb{P}(\tau^* \ge N_1) \leqslant \epsilon$; then

$$\begin{split} \mathbb{P}(\Phi(\mathcal{X}, e_{-n+1\to 0}) &= \{x\}) \\ &= \mathbb{P}(\Phi(\mathcal{X}, e_{-n+1\to 0}) = \{x\}, \tau^* < N_1) + \mathbb{P}(\Phi(\mathcal{X}, e_{-n+1\to 0}) = \{x\}, \tau^* \ge N_1) \\ &= \mathbb{P}(\Phi(\mathcal{X}, e_{-\tau^*\to 0}) = \{x\}, \tau^* < N_1) + \epsilon', \\ &= \mathbb{P}(X_0 = x, \tau^* < N_1) + \epsilon' = \mathbb{P}(X_0 = x) + \epsilon''. \end{split}$$

Case Studies

Advanced Topics

Perfect Sampling : Convergence Theorem (proof 2)

Proof based on the coupling property [Haggstrom]

Consider N such that $\mathbb{P}(\tau^* \ge N) \le \epsilon$ then consider a process $\{\overline{X}_n\}$ with the same events $e_{-N+1\to 0}$ but with \overline{X}_{-N+1} generated according π . The process $\{\overline{X}_n\}$ is stationary. On the event $(\tau^* < N)$ we have $X_0 = \overline{X}_0$ and

 $\mathbb{P}(X_0 \neq \overline{X}_0) \leq \mathbb{P}(\tau^* \geq N) \leq \epsilon$ (coupling inequality).

Finally

$$\mathbb{P}(X_0 = x) - \pi_x = \mathbb{P}(X_0 = x) - \mathbb{P}(\overline{X}_0 = x) \leqslant \mathbb{P}(X_0 \neq \overline{X}_0) \leqslant \epsilon;$$

$$\pi_x - \mathbb{P}(X_0 = x) = \mathbb{P}(\overline{X}_0 = x) - \mathbb{P}(X_0 = x) \leqslant \mathbb{P}(\overline{X}_0 \neq X_0) \leqslant \epsilon;$$

and the result follows.

Synthesis

Perfect Sampling : Algorithm

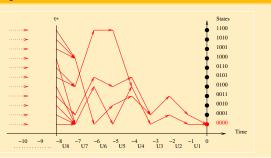
Backward algorithm

Representation : transition fonction

 $X_{n+1} = \Phi(X_n, e_{n+1}).$

for all $x \in \mathcal{X}$ do $v(x) \leftarrow x$ end for repeat e ← Random_event(); for all $x \in \mathcal{X}$ do $z(x) \leftarrow y(\Phi(x, e));$ end for $y \leftarrow z$ until All y(x) are equal return y(x)Convergence : If the algorithm stops, the returned value is steady state distributed Coupling time: $\tau < +\infty$, properties of Φ

Trajectories



Mean time complexity

 c_{Φ} mean computation cost of $\Phi(x, e)$

 $C \leq Card(\mathcal{X}).\mathbb{E}\tau.c_{\Phi}.$

Perfect Reward Sampling

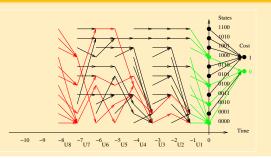
Backward reward

Representation : transition fonction

 $X_{n+1} = \Phi(X_n, e_{n+1}).$

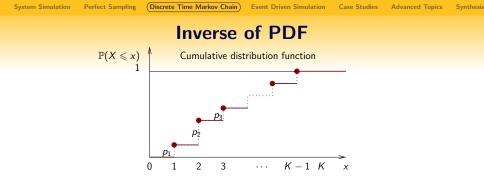
Arbitrary reward function for all $x \in \mathcal{X}$ do $y(x) \leftarrow x$ end for repeat $e \leftarrow Random_event();$ for all $x \in \mathcal{X}$ do $y(x) \leftarrow y(\Phi(x, e));$ end for until All Reward(y(x)) are equal return Reward(y(x)) Convergence : If the algorithm stops, the returned value is steady state reward distributed Coupling time: $\tau^{-1} \leqslant \tau < +\infty$

Trajectories



Mean time complexity

 $C_{Reward} \leq Card(\mathcal{X}).\mathbb{E}\tau.c_{\Phi}$ Depends on the reward function.



Generation

Divide [0, 1[in intervals with length p_k Find the interval in which *Random* falls Returns the index of the interval Computation cost : $\mathcal{O}(\mathbb{E}X)$ steps Memory cost : $\mathcal{O}(1)$

Inverse function algorithm

Searching optimization

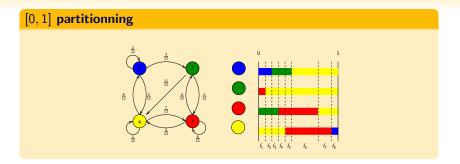
Optimization methods

- pre-compute the pdf in a table
- rank objects by decreasing probability
- use a dichotomy algorithm
- use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually $\mathcal{O}(K)$ could be huge

Generation : Visual representation



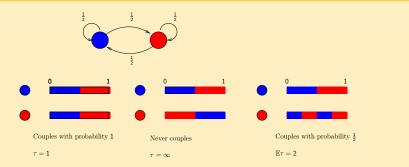
Random iterated system of functions

Function	f_1	f_2	f ₃	f_4	<i>f</i> ₅	f ₆	f ₇	f ₈
Probability	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{4}{12}$	$\frac{2}{12}$	$\frac{1}{12}$

Stochastic matrix $P \implies$ simulation algorithm = RIFS

The coupling problem

τ estimation



Synthesis

General problem

Objective

Given a stochastic matrix $P = ((p_{i,j}))$ build a system of function $(f_{\theta}, \theta \in \Theta)$ and a probability distribution $(p_{\theta}, \theta \in \Theta)$ such that :

- the RIFS implements the transition matrix P,
- ensures coupling in finite time
- achieve the "best" mean coupling time : tradeoff between
 - choice of the transition function according to $((p_{\theta}))$,
 - computation of the transition

Remarks

Usual method

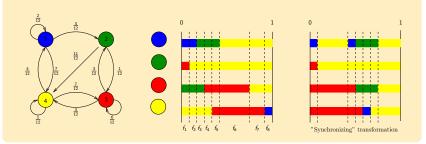
 $|\Theta|$ = number of non-negative elements of $P = O(n^2)$

choice in $\mathcal{O}(\log n)$

tion Case Studies Advanced Topics Synthesis

Non sparse matrices

Rearranging the system



Case Studies Advanced Topics Synthesis

Non sparse matrices

Convergence rate

When at least one column is non-negative \Rightarrow one step coupling. The RIFS ensures coupling and the coupling time τ is upper bounded by a geometric distribution with rate

$$\sum_{j} \min_{i} p_{i,j}$$

number of transition functions : could be more than the number of non-negative elements at most $n^2 \label{eq:non-negative}$

Synthesis

Aliasing technique

Initialization

```
 \begin{array}{l} \mathcal{K} \text{ objects} \\ \text{list } \mathsf{L} = \emptyset, \mathsf{U} = \emptyset; \\ \text{for } \mathsf{k} = 1; \ \mathsf{k} \leqslant \ \mathsf{K}; \ \mathsf{k} + + \ \text{do} \\ \mathsf{P}[\mathsf{k}] = \rho_{\mathsf{k}} \\ \text{if } \mathsf{P}[\mathsf{k}] \geqslant \frac{1}{\mathcal{K}} \ \text{then} \\ \mathsf{U} = \mathsf{U} + \{\mathsf{k}\}; \\ \text{else} \\ \mathsf{L} = \mathsf{L} + \{\mathsf{k}\}; \\ \text{end if} \\ \text{end for} \end{array}
```

Alias and threshold tables

```
while L \neq \emptyset do
   Extract k \in L
   Extract i \in U
   S[k] = P[k]
  A[k] = i
   P[i] = P[i] - (\frac{1}{k} - P[k])
  if P[i] \ge \frac{1}{k} then
      U = U + \{i\};
   else
      L = L + \{i\};
   end if
end while
```

Combine uniform and alias value when rejection

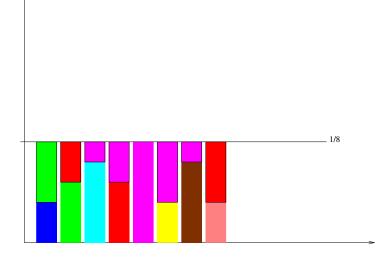
Event Driven Simulation

nulation Case Studies

Advanced Topics

Synthesis

Aliasing technique : generation



Aliasing technique : generation

Generation

 $k=alea(K) \\ if Random . \frac{1}{K} \leqslant S[k] \ then \\ return k \\ else \\ return A[k] \\ end \ if$

Complexity

Computation time :

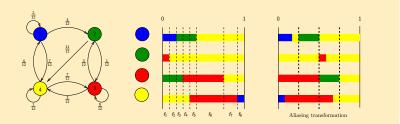
- $\mathcal{O}(K)$ for pre-computation
- $\mathcal{O}(1)$ for generation

Memory :

- threshold $\mathcal{O}(\mathcal{K})$ (real numbers as probability)
- alias $\mathcal{O}(K)$ (integers indexes in a tables)

Sparse matrices

Rearranging the system



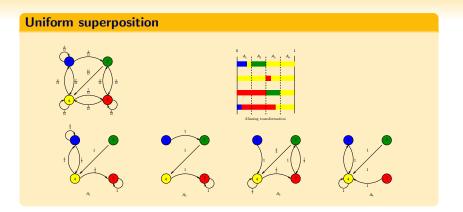
Complexity

 $\begin{array}{l} M = \text{maximum out degree of states} \\ p_{\theta} \mbox{ uniform on } \{1, \cdots, M\}, \mbox{ threshold comparison } \\ \mathcal{O}(1) \mbox{ to compute one transition} \\ \mbox{ Combination with "Synchronizing" techniques} \end{array}$

Event Driven Simulation

Ilation Case Studies Advanced Topics Synthesis

Uniform-binary decomposition



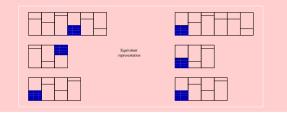
Decomposition

$$P = rac{1}{M}\sum_{i=1}^M P_i, \quad P_i:$$
 stochastic matrix with at most 2 non negative elements per ro

Synthesis

Coupling property

Exchange of columns or thresholds give an equivalent representative



Spanning tree

Irreducibility \implies there is a spanning tree going to a single state where coupling occurs.

$$\mathbb{P}(\tau^* < +\infty) = 1.$$

 τ is geometrically bounded, so τ^* and $\tau^*_{\rm C}.$

Synthesis

Example

Random transition coefficients:

Number of states	10	100	500	1000	3000
Mean coupling time	3.1	4.5	5.3	5.7	6.1
Mean execution time μ s	3	17	170	360	1100

Pentium III 700MHz and 256Mb memory. Sample size 10000. Remarks:

- very small coupling time
- Coefficients : same order of magnitude, aliasing enforces coupling

Comparison with birth and death process :

Number of states	10	100	500	1000	3000
Mean coupling time	41	557	2850	5680	17000
Mean execution time μ s	28	1800	88177	366000	3.5s

Remarks:

- large coupling time
- sparse matrix, large graph diameter

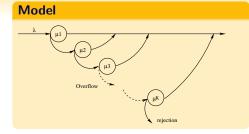
Event Driven Simulation

Case Studies

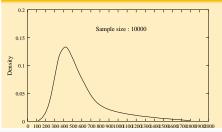
Advanced Topics

Synthesis

Overflow model



Coupling time distribution



Parameters

K servers. priority on overflows input rate λ , different service rate state (x_1, \dots, x_K) , $x_i \in \{0, 1\}$, size ~ 130000 low diameter non product-form structure,

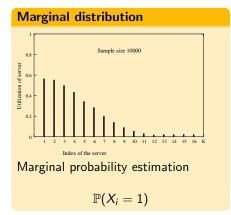
Statistics		
Parameter	Value	
minimum	113	-
maximum	1794	
median	465	
mean	498	
Std	180	

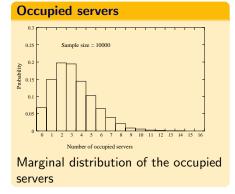
Event Driven Simulation

n Simulation Case Studies Advanc

Advanced Topics Synthesis

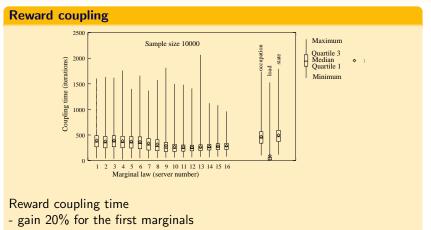
Overflow model (2)





Event Driven Simulation

Overflow model (3)



- utilization : best reduction

Advanced Topics 9

Synthesis

Monotonicity and perfect sampling : idea

 (\mathcal{X},\prec) partially ordered set (lattice)

Typically componentwise ordering on products of intervals

 $min = (0, \dots, 0)$ and $Max = (C_1, \dots, C_n)$.

An event *e* is **monotone** if $\Phi(., e)$ is monotone on \mathcal{X} If all events are monotone then

$$X_0 \in \mathcal{Z}_n \subset [\Phi(\mathit{min}, e_{-n
ightarrow 0}), \Phi(\mathit{Max}, e_{-n
ightarrow 0})]$$

 \Rightarrow 2 trajectories

Synthesis

The Doubling Scheme

Complexity

- Need to store the backward sequence of events
- Consider 2 trajectories issued from {min, Max} at time -n and test if coupling

One step backward \Rightarrow

$$2.(1+2+\cdots+\tau^*)=\tau^*(\tau^*+1)=\mathcal{O}(\tau^{*2})$$

calls to the transition function.

● Consider 2 trajectories issued from {min, Max} at time -2^k and test if coupling

Doubling step backward \Rightarrow

$$2.(1+2+\cdots+2^k)=2^{k+2}-2$$

calls to the transition function, with k such that $2^{k-1} < \tau^* \leq 2^k$, Number of calls : $\mathcal{O}(\tau^*)$

Monotone PS

n=1;R[1]=Random_event;

 $v(Max) \leftarrow Max$ for i=n downto n/2+1 do R[i]=Random_event;

until y(min) = y(Max)return y(min)

Doubling scheme

end for for i=n downto 1 do

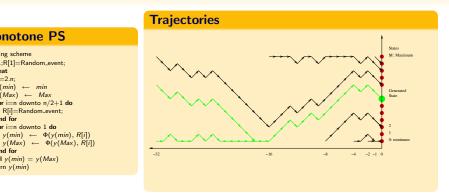
end for

repeat n=2.n: $v(min) \leftarrow min$ Discrete Time Markov Chain

Event Driven Simulation

Case Studies Advanced Topics Synthesis

Monotonicity and Perfect Sampling



Mean time complexity

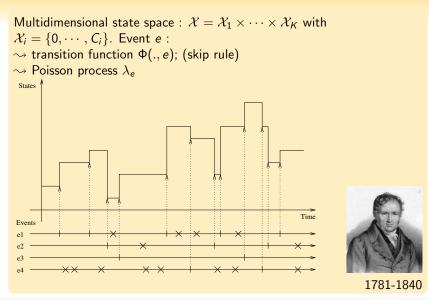
 $C_m \leq 2.(2.\mathbb{E}\tau).c_{\Phi}$. Reduction factor : $\frac{4}{Card(\mathcal{X})}$.

Case Studies Advanced Topics

Synthesis

LIG

Event Modelling



Case Studies Advanced Topics

Synthesis

Event modelling

Uniformization

$$\Lambda = \sum_e \lambda_e$$
 and $\mathbb{P}(event \; e) = rac{\lambda_e}{\Lambda};$

Trajectory : $\{e_n\}_{n \in \mathbb{Z}}$ i.i.d. sequence. \Rightarrow Homogeneous Discrete Time Markov Chain [Bremaud 99] $X_{n+1} = \Phi(X_n, e_{n+1}).$

Generation among a small finite space \mathcal{E} : $\mathcal{O}(1)$

Event Driven Simulation

Case Studies Advanced Topics

Synthesis

Index Routing in Queuing Networks

Index functions for event e

For queue $i \quad I_i^e : \{0, \cdots, C_i\} \longrightarrow \mathcal{O}$ (totally ordered set).

Property : $\forall x_i, x_j \ I_i^e(x_i) \neq I_j^e(x_j)$.

ex: inverse of a priority,...

Routing algorithm:

if x_{origin} >0 then
{ a client is available in the origin queue}
 x_{origin} = x_{origin} - 1; { the client is removed from the origin queue}
 j = argmin; l^e_i(x_i); { computation of the destination}
 if j \neq -1 then
 x_j = x_j+1; { arrival of the client in queue j }
 { in the other case, the client goes out of the network}
 end if
end if

on Case Studies Adv

Advanced Topics Synthesis

Monotonicity of Index Routing Policies

Proposition

If all index functions I_i^e are monotone then event e is monotone.

Proof:

Let $x \prec y$ two states and let be an index routing event. Let *i* be the origin queue for the event.

$$j_x = \operatorname{argmin}_j l_j^e(x_j) \text{ and } j_y = \operatorname{argmin}_j l_j^e(y_j)$$
Case 1 $x_i = y_i = 0$ nothing happens and
 $\Phi(x, e) = x \prec y = \Phi(y, e)$
Case 2 $x_i = 0, y_i > 0$ then $\Phi(x, e) = x \prec y - e_i + e_{j_y} = \Phi(y, e)$
Case 3 $x_i > 0, y_i > 0$ then
 $l_{j_x}^e(x_{j_x}) < l_{j_y}^e(x_{j_y}) \leq l_{j_y}^e(y_{j_y}) < l_{j_x}^e(y_{j_x});$
then $x_{j_x} < y_{j_x}$ and
 $\Phi(x, e) = x - e_i + e_{j_x} \leq y - e_i \leq y - e_i + e_{j_y} = \Phi(y, e)$

Monotonicity of Routing

Examples [Glasserman and Yao]

All of these events could be expressed as index based routing policies :

- external arrival with overflow and rejection
- routing with overflow and rejection or blocking
- routing to the shortest available queue
- routing to the shortest mean available response time
- general index policies [Palmer-Mitrani]
- rerouting inside queues

Event Driven Simulation

Monotonicity of Routing : Examples

Stateless routing

Overflow routing

$$I_j^e(x_{j)} = \begin{cases} prio(j) & \text{if } x_j < C_j \\ +\infty & \text{elsewhere} \end{cases}$$
$$I_{-1}^e = \max_j C_j.$$

Routing with blocking

$$I_j^e(x_{j}) = \begin{cases} prio(j) & \text{if } x_j < C_j; \\ +\infty & \text{elsewhere} \end{cases}$$
$$I_i^e = \max_j C_j.$$

State dependent routing

Join the shortest queue

$$I_j^e(x_{j}) = \begin{cases} x_j & \text{if } x_j < C_j; \\ +\infty & \text{elsewhere;} \end{cases}$$

 $I_{-1}^e = \max_j C_j.$

× C:.

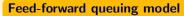
Join the shortest response time

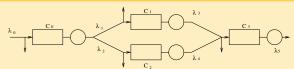
$$I_j^e(x_{j)} = \begin{cases} rac{x_j+1}{\mu_j} & ext{if } x_j < C_j; \\ +\infty & ext{elsewhere}; \end{cases}$$

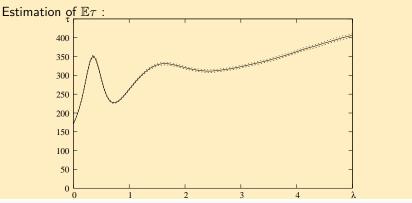
$$I_{-1}^e = \max_i C_i.$$

G

Coupling Experiment







Main Result

Bound on coupling time

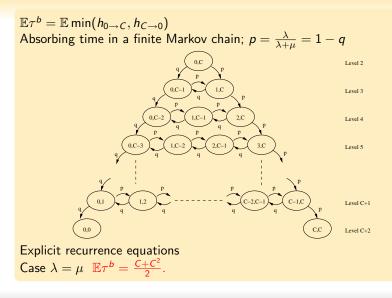
$$\mathbb{E}\tau \leqslant \sum_{i=1}^{K} \frac{\Lambda}{\Lambda_i} \frac{C_i + C_i^2}{2},$$

- Λ : global event rate in the network,
- Λ_i the rate of events affecting Q_i
- C_i is the capacity of Queue i.

Sketch of the proof

- Explicit computation for the M/M/1/C
- Computable bounds for the M/M/1/C
- Bound with isolated queues

Explicit Computation for the M/M/1/C



Synthesis

Computable bounds for M/M/1/C

If the stationary distribution is concentrated on 0 ($\lambda < \mu$),

 $\mathbb{E}\tau^{b} \leq \mathbb{E}h_{0 \to C}$ is an accurate bound.

Theorem

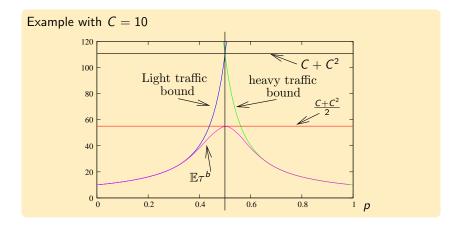
The mean coupling time $\mathbb{E}\tau^{b}$ of a M/M/1/C queue with arrival rate λ and service rate μ is bounded using $p = \lambda/(\lambda + \mu) = 1 - q$.

 $\begin{array}{ll} \text{Critical bound:} & \forall p \in [0,1], \quad \mathbb{E}\tau^b \leqslant \frac{C^2 + C}{2}. \\ \text{Heavy traffic Bound:} & \text{if } p > \frac{1}{2}, \quad \mathbb{E}\tau^b \leqslant \frac{C}{p-q} - \frac{q(1 - \left(\frac{q}{p}\right)^C)}{(p-q)^2}. \\ \text{Light traffic bound:} & \text{if } p < \frac{1}{2}, \quad \mathbb{E}\tau^b \leqslant \frac{C}{q-p} - \frac{p(1 - \left(\frac{p}{q}\right)^C)}{(q-p)^2}. \end{array}$

Event Driven Simulation

Synthesis

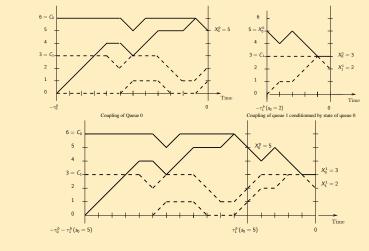
Computable Bounds for M/M/1/C



Case Studies Adv

Advanced Topics Synthesis

Example for tandem queues



Then $\tau^b \leq_{st} \quad {}^{\infty}\tau^b_1 + \tau^b_0$, normalized

Synthesis

Bound with Isolated Queues

Theorem

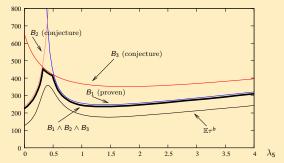
In an acyclic stable network of K $M/M/1/C_i$ queues with Bernoulli routing and loss if overflow, the coupling time from the past satisfies in expectation,

$$\begin{split} \mathbb{E}[\tau^b] &\leqslant \quad \sum_{i=0}^{K-1} \frac{\Lambda}{\ell_i + \mu_i} \left(\frac{C_i}{q_i - p_i} - \frac{p_i (1 - \left(\frac{p_i}{q_i}\right)^{C_i})}{(q_i - p_i)^2} \right) \\ &\leqslant \quad \sum_{i=0}^{K-1} \frac{\Lambda}{\ell_i + \mu_i} (C_i + C_i^2). \end{split}$$

Case Studies Advanced Topics

Synthesis

Conjecture for General Networks



Extension to cyclic networks, Generalization to several types of events Application : Grid and call centers

Case Studies Advanced Topics

Synthesis

Software architecture

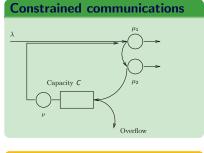
Aim of the software

- finite capacity queuing network simulator
- rare events estimation (rejection, blocking,...)
- statistical guarantees (independence of samples)
- \Rightarrow Simulation kernel
 - open source (C, GPL licence)
 - extensible library of events
 - multiplatforms (Linux (Debian), mac OSX,...)

General architecture

Synthesis

Queueing Network Description



Events types

type	action		#	ta	able
1	Server departure		#	id	l tv
2	External arrival to the first empty room in the list DQ		π	TC	L UY
3	Multi-server departure to DQ		0	2	0.8
4	Join the shortest queue in DQ				
5	Index routing according an index table		1	1	0.6
6	Routing to the first empty room in the list DQ and ov	erfl	2	1	0.4
7	Routing to the first empty room in the list DQ and		_	_	
	blocking in the origin queue		3	7	2.0

Description file

```
# Number of queues
3
  Queues capacities
 1 50
 queues minimal initial state
0
  0 0
 queues maximal initial state
  1 50
 Number of events
4
 Index file - N for No index file
File: N
      e of events
      ype rate nbq origin d1 d2 d3 d4
      35-1:012-1
       20:-1
      4 2 1 : -1
      0.52:012-1
```

Perfect Sampling Discrete Time Markov Chain

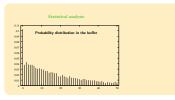
Event Driven Simulation

Case Studies Advanced Topics Synthesis

Simulation control and output

Control parameters

```
# Sample number
10000
# Number of Antithetic variable
1
# Size of maximal trajectory
3000000
 Random generator seed
#
5
# Coupling file name
File:
       No file
```



Output

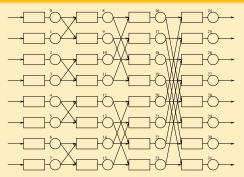
- # P.S.I.2 version 4.4.4
- # Data Network model
- # Number of queues
- . . .
- Parameters
- # Sample number
- # 10000
- Number of Antithetic variates

```
______
   [0110]]
    1 1 13 ] ]
   [112]]
   [1133]]
9999 [[112]]
# Size 10000 Sampling time :
3809.202000 micro-seconds
# Seed Value 5
```

Synthesis

Example

Delta interconnection network, $C = 10 \rho = 0.9$



9999 [[0 2 5 7 2 8 7 4 0 7 10 3 3 2 1 5 0 0 6 3 3 6 0 3 91243136]] # Size 10000 Sampling time : 4302.413600 micro-seconds

Case Studies Advanced Topics

Synthesis

Monotonous reward sample

First server analysis
92 [[0]]
93 [[1]]
94 [[1]]
95 [[1]]
96 [[1]]
97 [[1]]
98 [[1]]
99 [[1]]
Size 100 Sampling time : 36.230000 micro-seconds

Time reduction

```
99 [ [ 1 1 1 ] ]
# Size 100 Sampling time :
                           308.100000 micro-seconds
```


Event Driven Simulation

Case Studies Advanced Topics

Synthesis

Coupling time study (doubling scheme)

Coupling time for each queue

```
Perfect Simulation (with doubling period) started

0 6 2 1 6 [ 1 0 9 ]

1 7 5 1 7 [ 1 0 8 ]

2 8 2 6 8 [ 1 1 7 ]

3 8 1 2 8 [ 1 0 8 ]

4 8 1 1 8 [ 1 1 9 ]

5 7 7 4 7 [ 0 1 0 ]

6 6 1 2 6 [ 1 0 10 ]

7 8 1 1 8 [ 1 1 1 ]

Carefull : number of steps to couple ( τ = 2<sup>nb steps</sup>)
```

Last queue have the largest coupling time.

Case Studies Advanced Topics

Synthesis

Coupling Time Study (one step scheme)

Coupling time for each queue

```
Perfect Simulation started 0 26 1 1 26 [ 1 0 10 ]
1 58 1 1 58 [ 0 0 10 ]
2 100 2 1 100 [ 1 0 8 ]
3 91 1 51 91 [ 1 1 2 ]
4 114 1 1 114 [ 1 1 6 ]
5 210 1 1 210 [ 1 1 9 ]
```

Distribution of the rewards coupling time

Case Studies

G

Download : http://gforge.inria.fr/projects/psi

DENIF Marmitor		ts/psi/	Gforge: Perfect Simulator: Informat in Monotographies Apple France	© R	SS ^ Q+ Google Yahoo! Informations *	r Apple v
		rojet entier 🛟	(Rechercher) Roche	rche avancée	Quick	Se déconnecter Mon compte Jump To
Accue		Ma page	Arbre des projets	Demande d'aide		Perfect Simulator
En bref	Administration	Suivi	Listes Tâch	es Annonces	Sources	Fichiers
 Intended Au Kind: Softw License: G Natural Lan Operating S Programmii Research c Topic: Scie Enregistré le : 24. Faux d'activité: 3. 	a past". Judience: End Users/Desk are VI General Public Licens guage: English, French tystem: MacOS, Linux ng Language: C enter: Montbonnot httlic/Engineering /11/2005 17:37	top, Other Audience e (GPL)	e space. It samples steady state	distribution in finite time by th	Jerôme Vi Jean-Marc Thais Wet Vincent Dr Développe Armaud Le Florentine Noémie Si Vandy BE	enne Vincent boer anjean surs : grand Dubois idaner RTEN
			Derniers fichiers public	is		11
Paquet	Version	Date	Remarq	ues / Surveillance	Télée	chargement
psi	4.4.3	May 10, 2007		-B	Téléo	chargement
			[Voir tous les fichiers du pr	ojetj		
Zones publiques			∆vailabilit		s annonces	

The psi2_unix command

- USAGE : psi2_unix [-ipo] argument [-hdtv]
- input file in ext directory -i :
- -p : parameter file in ext directory
- -0 : output file in ext directory

By default, output file has outputtest.txt name in ext directory

- -h : help.
- -d : With details on output file
- -t : Without doubling period, show coupling time of each queue
- -v : version

Enjoy !

Advanced Topics Synthesis

Priority Servers

Erlang model
Arrivals Servers Output
Overflow on next free server
$\mathcal{X}=\{0,1\}^3$
$\mathcal{E} = \{e_0, e_1, e_2, e_3\}$

 $Card(\mathcal{X}) = 2^{K}$

vents							
Event type	Rate	Origin	Destination list				
Arrival	λ	-1	$Q_1 ; Q_2 ; Q_3 ; -1$				
Departure	μ_1	Q_1	-1				
Departure	μ_2	Q_2	-1				
Departure	μ_3	Q_3	-1				

Results

Ε

- Validation χ^2 test
- $K = 30 \ \mu_i$ decreasing
- Saturation probability 0.0579 ± 4.710^{-4}
- Simulation time 0.4ms
- $\overline{\tau} = 577$

Case Studies

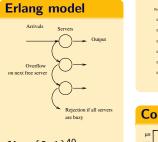
Advanced Topics

Synthesis

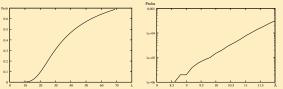
G

Priority servers

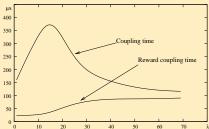
Saturation probability



 $\mathcal{X} = \{0, 1\}^{40}$ $\mu_1 = 1,$ $\mu_2 = 0.8,$ $\mu_3 = 0.5$ Sample size 5.10⁶ $Card(\mathcal{X}) = 2^{K}$



Coupling time



on Case Studies

Advanced Topics

Synthesis

Line of Servers

Tandem queues
$\begin{aligned} \mathcal{X} &= \{0, \cdots, 100\}^5 \\ \mathcal{E} &= \{e_0, \cdots, e_5\} \end{aligned}$
$Card(\mathcal{X}) = C^{K}$

Events

Event type	Rate	Origin	Dest. list
Arrival	λ	-1	Q_1 ; -1
Routing/block	μ_1	Q_1	Q_2 ; Q_1
Routing/block	μ_2	Q_2	$Q_3; Q_2$
Departure	μ_5	Q_5	-1

Results

- $C = 100 \ \lambda = 0.9; \ \mu = 1 \ p = \frac{1}{2}$
- Blocking probability $b_1 = 0.34$, $b_2 = 0.02$, $b_3 = 0.02$, $b_4 = 0.02$.
- Simulation time < 1ms

Ito notice

Event Driven Simulation

Case Studies Advanced Topics

Synthesis

Multistage network

Jeita network					
$-\Box \diamond \Box \diamond X \Box \diamond M \Box \diamond -$					

$$\begin{split} \mathcal{X} &= \{0, \cdots, 100\}^{32} \\ \mathcal{E} &= \{e_0, \cdots, e_{64}\} \end{split}$$

 $Card(\mathcal{X}) = C^{\kappa}$

Events								
Event type	Rate	Origin	Dest. list					
Arrival	λ	-1	$Q_i; -1$					
Routing/rejection	$\frac{1}{2}\mu$	Q_i	Q_j ; -1					
	• • •							
Departure	μ	Q_k	-1					

Results

- $C = 100 \ \lambda = 0.9; \ \mu = 1$
- Loss rate
- Simulation time 135ms
- $\overline{ au} \simeq$ 400000

Multistage network

Delta network 0.001 0.001 0.0008 0.0006 0.0004 0.0000 **Coupling time** $\mathcal{X} = \{0, \cdots, 100\}^{32}$ us $\mathcal{E} = \{e_0, \cdots, e_{64}\}$ 18000 Global coupling 16000 Reward at least 1 queue saturated (3rd level) 14000 12000 $Card(\mathcal{X}) = C^{K}$ Reward queue 31 saturated 10000 Sample size 100000 8000 6000 4000

2000

0.2

Queue length and saturation proba at level 3

Perfect Sampling of Queuing Networks with Complex Routing

0.8

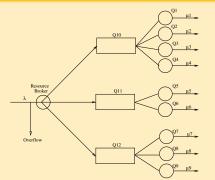
0.6

mulation Case Studies

es) Advanced Topics

Synthesis

Resource Broker



Input rates Allocation strategy State dependent allocation Index based routing : destination minimize a criteria

Problem

. . .

Optimization of throughput, response time,... Comparison of policies, analysis of heuristics

(Case Studies) Advanced Topics

Synthesis

Routing Customers in Parallel Queues

The problem:

- Find a routing policy maximizing the expected (discounted) throughput of the system.
- Several variations on this problem depend on the information available to the controller: current size of all queues (and size of the arriving batch).

The applications:

- improve batch schedulers for cluster and grid infrastructures.
- Assert the value of information in such cases.

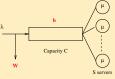
Ilation (Case Studies)

Advanced Topics

Synthesis

Index policies for routing

Optimal routing policy problem is still open for *n* different M/M/1Heuristic : index policy inspired from the Multi-Armed Bandit \Rightarrow free parameter and compute an equilibrium point. [Mitrani 2005] for routing and repair problems.



W is the rejection cost (free parameter).

Theorem

There is an optimal policy of threshold type:

there exists θ such that :Reject if $x \ge \theta$ and accept otherwise.

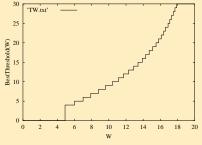
- θ does not depend on C as long as $C > \theta$ (including if C is infinite).
- θ is a non-decreasing function of W.

(Case Studies)

Advanced Topics Synthesis

Index policies for Routing(II)

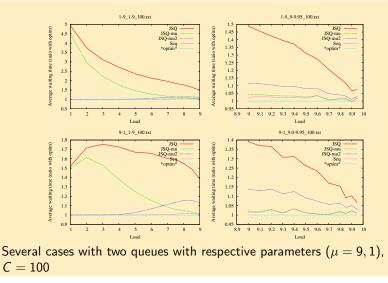
Computation of $\theta(W)$ linear system of corresponding to Bellman's equation, after uniformization.



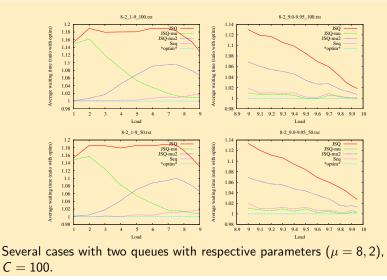
Index function $I(x) = \inf\{W \mid \theta(W) = x\}.$

Indifference case : when queue size is x, rejecting or accepting the next batch are both optimal choices if the rejection cost is I(x).

Some numerical experiments(I)

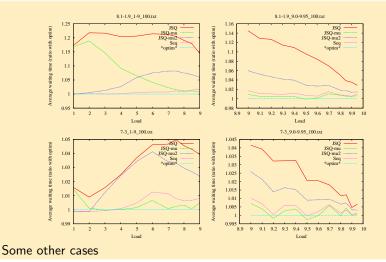


Some numerical experiments(III)

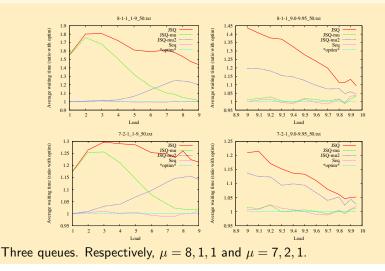


Synthesis

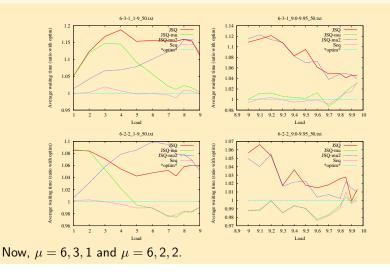
Some numerical experiments(IV)



Some numerical experiments(V)



Numerical experiments(VI)

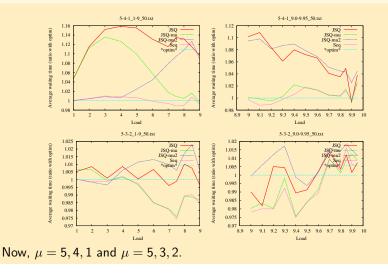


nulation Case Studies

Advanced Topics

Synthesis

Numerical experiments(VII)



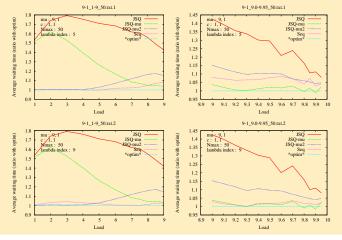
ation Case Studies

Advanced Topics

Synthesis

Robustness of Index policies

The index policy was computed for $\lambda=5$ or 9 and used over the whole range $\lambda=1$ to 10.



Case Studies

Synthesis

Adaptation to Structured Models

Model Parameters

- set of uniformized events $E = \{e_1, .., e_p\}$
- global states are tuples of local states $\tilde{s} = (s_1, \dots, s_K)$
- transition function: $\Phi(\tilde{s}, e_i) = \tilde{r}$
- * each $\tilde{s} \in \mathcal{X}$ has a set of enabled events and its firing conditions and consequences

Constraints

- Well-formed SAN models needed
- * exploring the subset $\mathcal{X}^{\mathcal{R}}$ (Reachable state space)
- State space explosion still a problem

Case Studies Advanced Topics

Synthesis

Analysis of Complex Discrete Systems

GRAPHICAL MODEL		$\left[\begin{array}{c} a \\ a \end{array}\right] $		$\xi \in \xi$			
	(STATES + TRANSITIONS) $\mathcal{A}^{(1)}$ $\mathcal{A}^{(2)}$ -		3 CA	$\Phi(\tilde{s}, e_1)$	$\Phi(\tilde{s}, e_2)$	$\Phi(\tilde{s}, e_3)$	$\Phi(\tilde{s}, e_4)$
			{0;0}	{ 1;0 }	{0;0}	{0;0}	<mark>{0</mark> ;0}
		{0;1}	{ 1;1 }	{0;1}	{ 0;2 }	<mark>{0</mark> ;1}	
		{0;2}	{ 1;2 }	{0;2}	{0;2}	<mark>{0</mark> ;0}	
			{1;0}	{1;0}	{ 0,2 }	{1;0}	<mark>{1</mark> ;0}
			{1;1}	{1;1}	{1;1}	{ 1;2 }	<mark>{1</mark> ;1}
	$\begin{pmatrix} 1^{(1)} \\ 2^{(2)} \\ 1^{(2)} \end{pmatrix}$			{1;2}	{1;2}	{1;2}	{1;0 }
$e_p \in \xi$	Rates	e ₃ Uniformized	l Rates				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
e ₂	λ_2	$\lambda_2/(\lambda_1+\lambda_2+\lambda_3)$	$_3 + \lambda_4 + \lambda_5$	5)			
e ₃	λ_3	$\lambda_3/(\lambda_1+\lambda_2+\lambda_3+\lambda_4+\lambda_5)$					
e4	λ_4	$\lambda_4/(\lambda_1+\lambda_2+\lambda_3)$	5)				
e ₅	λ_5	$\lambda_5/(\lambda_1+\lambda_2+\lambda_3+\lambda_4+\lambda_5)$					

Case Studies

Advanced Topics

Synthesis

New solutions for huge SAN models

Monotonicity and Perfect Simulation Idea

- Monotonicity property for SAN related to the analysis of structural conditions
- * component-wise state space formation

Families of SAN models

- SAN models with a natural partial order (canonical)
- * e.g. derived from Queueing systems models [Vincent 2005]
- SAN models with a given component-wise partial order (non-lattice)

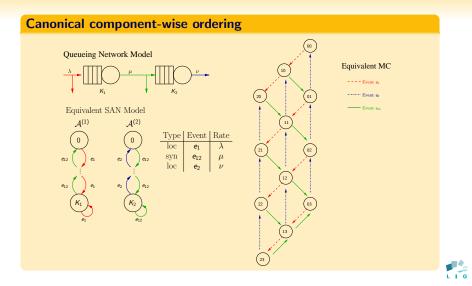
Discrete Time Markov Chain

Event Driven Simulation

Case Studies Advanced Topics

Synthesis

Partially Ordered State Spaces



Advanced Topics

Case Studies

Synthesis

Partially Ordered State Spaces

Non-lattice component-wise ordering

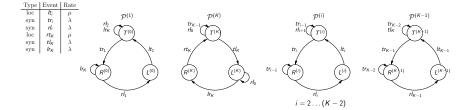
- Find a partial order of \mathcal{X} demands a high c.c.
- Possible to find extremal global states in the underlying chain
- * $|\mathcal{X}^{\mathcal{M}}|$ states: more than two extremal states
- Complexity: related to τ , but also $|\mathcal{X}^{\mathcal{M}}|$

Extremal states

- Component-wise formation has ordered state indexes
- * consider an initial state composing $\mathcal{X}^{\mathcal{M}}$
- * add to $\mathcal{X}^{\mathcal{M}}$ the states without transitions to states with greater indexes

Non-lattice component-wise ordering

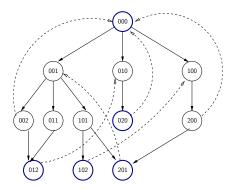
• Resource sharing model with reservation (Dining Philosophers)



Synthesis

Non-lattice component-wise ordering

• e.g. three philosophers with resources reservation, graphical model of the underlying transition chain, extremal states identification



Synthesis

SAN Perfect Simulation

Resource sharing model with reservation- K Philosophers

K	X	$\mathcal{X}^{\mathcal{R}}$	$\mathcal{X}^{\mathcal{M}}$	PEPS* (iteration)	Perfect PEPS* (sample)
8	6,561	985	43	0.003185 sec.	0.032354 sec.
10	59,049	5,741	111	0.038100 sec.	0.111365 sec.
12	531,441	33,461	289	0.551290 sec.	0.689674 sec.
14	4,782,969	195,025	755	5.712210 sec.	2.686925 sec.
16	43,046,721	1,136,689	1,975	68.704325 sec.	15.793501 sec.
18	387,420,489	6,625,109	5,169	—-	83.287321 sec.

Numerical results

- 3.2 GHz Intel Xeon processor under Linux, 1 GByte RAM
- times: for one iteration on PEPS and for one sample generation on Perfect PEPS
- Remarks: \mathcal{X} contraction in $|\mathcal{X}^{\mathcal{M}}|$
- \mathcal{X} limitation 6×10^7 on PEPS overcame

Advanced Topics

Case Studies

Synthesis

Non Monotonic Systems

Classic non monotonous events

- Batch arrivals
- Batch services
- Join procedures
- Negative customers
- • •

Almost monotonous events

Monotonicity is not verified at the frontier

- Batch arrivals : batch rejection (queue full)
- Batch services : system almost empty
- Join procedures : system almost empty
- Negative customers : system almost empty

Case Studies Adv

Advanced Topics

ynthesis

Envelopes

Aim : Build a monotonous upper and lower process Hypothesis : X is lattice, $T = \max X$ and $B = \min X$

$$\mathcal{U}(M,m,e) = \sup_{m \leqslant s \leqslant M} \Phi(s,e);$$

$$\mathcal{L}(M, m, e) = \inf_{m \leqslant s \leqslant M} \Phi(s, e).$$

Remark : if e is monotonous $\mathcal{U}(M, m, e) = \Phi(M, e)$ and $\mathcal{L}(M, m, e) = \Phi(m, e)$ Bounding process :

$$Y_0 = T$$
 and $Z_0 = B$;

 $Y_n = \mathcal{U}(Y_{n-1}, Z_{n-1}, e_{1 \to n}) \text{ and } Z_n = \mathcal{L}(Y_{n-1}, Z_{n-1}, e_{1 \to n}).$

Remark : Y_n and Z_n are not Markov chains but the couple is Markov.

$$Y_n \geqslant X_n \geqslant Z_n$$

Simulation Case Studies

Advanced Topics

Synthesis

Envelopes (2)

Theorem (Convergence)

Either the process (Y_n, Z_n) hits the diagonal in finite time with probability 1 or nether hits the diagonal. When the process hits the diagonal the value is stationary distributed.

Problems

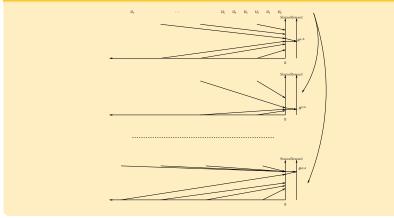
- (P_1) The assumption that S_n hits the diagonal may not be verified.
- (P₂) Even if convergence theorem, the coupling time could become prohibitively large.
- (P_3) The time needed to compute $\mathcal{U}(M, m, e)$ and $\mathcal{L}(M, m, e)$ might depend on the number of states between m and M

Simulation Case Studies

Advanced Topics

Synthesis

Variance Reduction



Coupled samples hope : negatively correlated

lation Case Studies

Advanced Topics

Synthesis

Variance Reduction

3 coupled trajectories

```
Perfect Simulation (with doubling period) -= Antithetic
with 3 variables =- started
 [117]]
0
1
  ГГ
     1 1 10 ] [ 1 1 3 ]
                       [100]
2
 [[109][110
                   ٦
                      [1110]
3
   Γ 1 1
                       1 1 0
         0
          ٦
             Γ11
                  7
         9
4
     1 1
          ٦
             Γ1
                0
                  0
                       013]
        6
                         1
5
     1
       0
              1
                1
                       0
                           2
                  7
6
     1
       1
         4
                       0
                         0 10
      1
     1
         4
             Γ1
                0
                  6
                    ٦
                           6
           8
     1
       0
        8
          ٦
              0 1
                  10
                       Γ 1 1
                            9
9
       1
         0
                           8
              1
                1
                  0
                         1
10
         6
                   6
                            8
      1
        1
           1
                 1
                         1 1
11
      0
       13]
              [116]
                     1
                       [115]]
```

Correlation analysis \Rightarrow variance reduction example $VarX_0 > Var(X_0 + X'_0 + X''_0)/3$

Synthesis

Exact sampling

- Poisson systems (uniformization) independence of events (SRS)
- Reversed process \Rightarrow exact criteria (convergence proof)
- Polynomial coupling time in the size of the models
- Monotonicity and contraction on sets ⇒ RIFS and fractals

\Rightarrow model structure

Perfect samplers

- General DTMC : $\mathcal{O}(\mathbb{E}\tau^*.|\mathcal{X}|)$
- Monotone DTMC : $\mathcal{O}(\mathbb{E}\tau^*.|\mathcal{E}xt|)$
- Monotone DTMC lattice : $\mathcal{O}(\mathbb{E}\tau^*)$

\Rightarrow numerically tractable

Synthesis

Other approaches in perfect sampling

Algorithms

- Forward/backward algorithm [Fill et al]
- Horizontal sampling [Foss et al]
- Read once samplers
- ...

Application contexts

- Interacting particle systems (statistical physics)
- Stochastic geometry
- Networking [Le Boudec et al]
- Samplers of complex distributions
- ...

Synthesis

Open problems

Method

- Optimal coupling problem (general case : event decomposition)
- Infinite state space : coupling condition
- Non-monotone systems
- Transformation of generators

Models

- Structured models : partial order construction
- Structured models : from description to efficient event decomposition
- (*Max*, +) dynamical systems (Petri nets)
- ...

Software

Integration in general modeling framework

Bibliography

Books

- P. Brémaud Markov chains: Gibbs fields, Monte Carlo Simulation and Queues. Springer-Verlag, 1999
- O. Haggstrom. Finite Markov Chains and algorithmic applications. 2001. Matematisk Statistik, Chalmers teknisk hogshola och Goteborgs universitet.
- P. Glasserman and D. Yao. Monotone Structure in Discrete-Event Systems. John Wiley and Sons, 1994.
- T. Lindvall Lectures on the Coupling Method John Wiley and Sons 1992

Websites

• David Wilson's web site http://dimacs.rutgers.edu/~dbwilson/exact

Synthesis

Basic references and application papers

Fundamental papers among (in my opinion)

- D. Propp, J.and Wilson. Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms, 9(1&2):223-252, 1996.
- A. Boroykov and S. Foss. Two ergodicity criteria for stochastically recursive sequences. Acta Appl. Math., 34, 1994.
- P. Diaconis and D. Freedman. Iterated random functions. SIAM Review, 41(1):45-76, 1999.
- V. Craiu and X.-L. Meng. Multiprocess parallel antithetic coupling for backward and forward Markov chain Monte Carlo. Annals of Statistics, 33(2):661-697, 2005.
- J.A. Fill. An interruptible algorithm for perfect sampling via Markov chains. Annals of Applied Probability. 8:131–162,1998.
- O. Stenflo. Ergodic theorems for markov chains represented by iterated function systems. Bull. Polish Acad. Sci. Math, 2001.
- A. Walker. An efficient method for generating discrete random variables with general distributions. ACM Trans. Math. Software, 3:253-256, 1974.

Some application papers in computer science

- B. Gaujal and F. Perronnin, Perfect simulation of stochastic hybrid systems with an application to peer to peer systems". Journal of Discrete Event Dynamic Systems, 2007. Special issue on hybrid systems.
- F. Baccelli, B. Blaszczyszyn, and F. Tournois. Spatial averages of coverage characteristics in large cdma networks. Wirel. Netw., 8(6):569-586, 2002.
- V. Berten and B. Gaujal. Brokering strategies in computational grids using stochastic prediction models. Parallel Computing, 2007. Special Issue on Large Scale Grids.
- J.-Y. Le Boudec and M. Voinovic, The Random Trip Model: Stability, Stationary Regime, and Perfect Simulation The Random Trip Model: Stability, Stationary Regime, and Perfect Simulation. IEEE/ACM Transactions on Networking, 14(6):1153-1166, 2006.
- A. Bouillard and B. Gaujal. Backward coupling for perfect simulation of free-choice nets. Journal of Discrete Event Dynamics Systems, theory and applications, 2006. Special issue of selected papers from the Valuetools conference.

Synthesis

Some references

Discrete time Markov chains

- J.-M. Vincent and C. Marchand. On the exact simulation of functionals of stationary markov chains. Linear Algebra and its Applications, 386:285-310, 2004.
- J.-M. Vincent. Markov chains, iterated systems of functions and coupling time for perfect simulation. In Transgressive Computing, pages 387-398, Grenada, Apr. 2006.
- I. Y. Kadi, J.-M. Fourneau, N. Pekergin, J. Vienne, and J.-M. Vincent. Perfect simulation and monotone stochastic bounds. In VALUETOOLS, Nantes, France, Oct. 2007

Finite queueing Networks

- J.-M. Vincent. Perfect simulation of queueing networks with blocking and rejection. In Saint IEEE conference, pages 268-271, Trento, 2005.
- J.-M. Vincent and J. Vienne. Perfect simulation of index based routing queueing networks. Performance Evaluation Review, 34(2):24-25, 2006.
- J. Dopper, B. Gaujal, and J.-M. Vincent, Bounds for the coupling time in gueueing networks perfect simulation. In Numerical Solutions for Markov Chain (NSMC06), pages 117-136, Charleston, June 2006.

Low probability events estimation

- J.-M. Vincent. Perfect simulation of monotone systems for rare event probability estimation. In Winter Simulation Conference, Orlando, Dec. 2005.
- J.-M. Vincent and J. Vienne. Perfect simulation of monotone systems with variance reduction. In Proceedings of the 6th Int. Workshop on Rare Event Simulation, pages 275-285, Bamberg, Oct. 2006.

Relaxing monotonicity properties

- P. Fernandes, J.-M. Vincent, and T. Webber, Perfect simulation of stochastic automata networks. In ASMTA Conference. Nicosie, jun 2008.
- A. Busic, B. Gauial and J.-M. Vincent Perfect simulation and non-monotone Markovian systems Valuetools 2008

Software tools

- J.-M. Vincent and J. Vienne. Psi2 a software tool for the perfect simulation of finite queueing networks. In QEST, Edinburgh, Sept. 2007.

Synthesis

Thanks

- Searchers and students
 Vandy Berten, Ana Busic, Jantien Dopper, Florentine Dubois, Paulo Fernandes, Bruno Gaujal, Gaël Gorgo, Imène Kadi, Corine Marchand, Florent Morata, Nihal Pekerhin, Noémie Sidaner, Jérôme Vienne, Thaïs Webber,
- Research groups ANR Checkbound, ACI SurePath, ANR SMS.
- Technical suggestions and software support Vincent Danjean, Guillaume Huard, Arnaud Legrand, Nicolas Maillard, gforge.inria.fr,
- Images

```
http://www.gap-system.org/~history/Biographies/
```

