
Predictive models for bandwidth sharing in high
performance clusters

Vienne Jérôme #∗1, Martinasso Maxime #∗1, Vincent Jean-Marc #1, Méhaut Jean-François #1

Laboratoire LIG equipe MESCAL, ZIRST 51 avenue Jean Kuntzmann
38330 Montbonnot Saint-Martin, France

∗ BULL SA, 1 rue de Provence,
BP 208 38432 Echirolles Cedex, France

1 firstname.lastname@imag.fr

Abstract—Using MPI as communication interface, one or sev-
eral applications may introduce complex communication behav-
iors over the network cluster. This effect is increased when nodes
of the cluster are multi-processors, and where communications
can income or outgo from the same node with a common interval
time. Our goal is to understand those behaviors to build a class
of predictive models of bandwidth sharing, knowing, on the one
hand the flow control mechanisms and, on the other hand, a
set of experimental results. This paper present experiences that
show how is shared the bandwidth on Gigabit Ethernet, Myrinet
2000 and Infiniband network before to introduce the models for
Gigabit Ethernet and Myrinet 2000 networks.

I. INTRODUCTION

Improving processor capabilities by increasing the number
of cores produces sharing affects over computer components
among core requests. Furthermore, understanding resource-
sharing phenomenon becomes one most issues for actual
parallel architectures.
These new behaviors of resource sharing are difficult to ana-
lyze and to predict. Simultaneously executions of application
tasks create concurrent access over network. Their effects
lead to performance leaks of bandwidth network segmentation
among communications
In this article, we present an analysis of concurrent behaviors
for Gigabit Ethernet, Myrinet 2000 and Infiniband using mes-
sage passing library MPI. This analysis aim)s to the definition
of predictive models based on the concept of bandwidth
sharing.
The definition of predictive models has many objectives.
On the one hand, it leads to a better understanding of concur-
rency phenomenons, and, if we apply models on a scientific
application, it allows us to identify periods of application
performance loss. On the other hand, the definition for each
network of one model allows us to easily compare the perfor-
mances of an application.
Those 2 points can be important elements to help an HPC
integrator to propose a network solution for a set of applica-
tions.
After a quick overview of network communication models,
section III will describe the flow control mechanism of each
interconnect. Section IV will be devoted to our approach,
which will lead to our models in section V. Finally, we will
present the evaluation of our models in section VI using

synthetic benchmarks and the application Linpack[1] before
to conclude.

II. NETWORK COMMUNICATION MODELS

Network communication can use MPI primitives to send or
receive messages. MPI performance was investigated in [2]
for high performance networks such as Myrinet or Infiniband.
The authors showed the impact of buffer reuse, intra-node
communication latency, and memory usage against the com-
munication performance of several MPI primitives. If we focus
on cluster of SMP nodes, more MPI performance studies were
presented in [3], for different kind of platform.
A popular communication model developed is the LogP model
[4] and is version LogGP model [5] for long messages. Both
models use a linear model characterized by 4 parameters: L (as
delay), o (as overhead), g (as bandwidth) and P (as number
of processors) LogGP model introduce a new parameters G
(as gap per byte). Impacts of each parameters was analyzed
in [6], with methods to measure model parameters. Like these
two models, and if we focus on wormhole model, a basic
approach to predict communication delays is to a linear model
featured by an overhead cost and a communication rate factor
(applied to message length and path network). In network
based on wormhole communications, this kind of models is
sufficient in case of each communication is independent and
does not share any network resource. Although, as one or
several MPI applications, composed by several MPI tasks,
can spread messages through overlapped communication time,
these linear models poorly predict communication delays.
A first approach of communication sharing effects was intro-
duced by [7]. The authors predict communication delay with
a linear model taking into account the path sharing over a
Myrinet network of workstation. Their study was based on the
protocols GM[8] and BIP[9] but without MPI as user interface.
Their model gives a first approach of sharing network resource.
Communications are modeling by a piece-wise linear equation,
and in case of sharing path, this equation is multiplied by
the maximum number of communications within the sharing
conflict. They evaluate their model against two communication
schemes with synchronous sends. Their models gives good
results for some communications of their schemes, but the
authors do not provide more insight about communication

influences and so for communication delays predicted with
low accuracy.

III. FLOW CONTROL MECHANISM

Flow control is one of the most important factors for
regulating access (and thus concurrency) to network resources.
In fact, when a sharing conflict occurs over the network path,
it is handled by the flow control of the physical network. Thus
different policies of flow control lead to different behaviors of
communications and thus to different communication perfor-
mances.

A. Gigabit Ethernet

The flow control mechanism of Gigabit Ethernet was de-
fined by the IEEE 802.3x committee for full-duplex Ethernet.
By this standard, when a receiver becomes congested, it can
send a pause frame to the source which therefore stops sending
packets for a specific period of time. The receiver can also
send a frame to inform the source to begin sending data again.
However, using TCP over Gigabit Ethernet, the reliability of
packets will be increased thanks to the concept of window
size and the TCP’s sliding windows mechanism. But such flow
control has an important impact on the communication time.

B. Myrinet

Myrinet flow control is based on cut-through routing of
packets. Such technology blocks packets while the commu-
nication channel is unavailable. It avoids the need for packet
buffering.
Two chips of the Network Interface Card (NIC) perform the
flow control. To achieve cut through routing, Myrinet NIC
is based on a Stop & Go flow control protocol. In case of
concurrency, receiver injects Stop or Go control messages
into the network to inform senders to stop or resume the
communication flow.

C. Infiniband

InfiniBand provides flow control mechanisms at different
levels:
• a static rate control mechanism prevents a high speed

link from overrunning a low speed link.
• a credit-based flow-control mechanism ensures the in-

tegrity of the connection. With InfiniBand, packets will
not be transmitted until a sufficient memory space is
available in the receiving buffer. The destination issues
credits to signal available buffer space, after which the
packets are transmitted. This mechanism is used for
communication between interconnects and switches and
between switches. A switch has a small buffer for each
port or a global buffer.

IV. APPROACH

In this section, we will focus on our methodology to study
the bandwidth sharing. To study this sharing, we had to
defined the different kind of possible conflict that appears
when communications start in the same time on the same node.

Then, we had to develop a communication method to analyze
the network behavior when these conflicts appear. The last part
of this section will be focus on experimental conflict results
obtain on a set of schemes.

A. Notion of Conflict

A conflict represents communications which share resources
through simple pattern. As communications can income or
outgo from clusters nodes, one communication can be seized
by one of the following elementary conflicts:

Network

Node 1Node 0 Node 2

Fig. 1. Concurrent communication schemes

• Outgoing Conflict C←X→ (node 0 in figure 1) where
the communication only outgoes with other outgoing
communications from a node X.

• Income Conflict C→X← (node 1 in figure 1) where
the communication incomes with only other incoming
communications to a node X.

• Income/Outgo Conflict C→X→ or C←X← (node 2 in fig-
ure 1) in which a communication outgoes (resp. incomes)
with other incoming (resp. outgoing) communications.

B. Communication Method and Measurements

Several way of implementing communication between MPI
tasks can lead to different network performance. As con-
sequence, it is interesting to introduce in this section our
communication method of the different benchmarks used to
analyze network behavior.
Sending is done through blocking send defined by the standard
MPI Send primitive. To synchronize MPI tasks between them,
we used a MPI synchronization barrier, we highlight to the
reader that using synchronization barrier gives implicitly an
order for the tasks to continue their executions.
Cache effects can also influence measurements. To avoid cache
effects, we executed several not-measured communication
before each benchmark.
Measured time is done at the source task, starting before the
MPI send and ending when the MPI send method terminates.
Message length corresponds to the length specified in the
MPI Send primitive, and does not correspond to the effective
length send over the network (MPI implementation add a
small envelope to the message). Thus, effective message length
are always greater than specified length and a 0-specified
length is not meaningless. If one MPI task has to receive
two messages from two others tasks, we used the MPI flag
MPI ANY SOURCE in the receive function, to avoid a fixed

order of receive.
To study the bandwidth sharing behavior, we develop a soft-
ware using this method. The parameters of the software are:
• Iteration number of MPI SEND
• Referential time that is given by measuring the time of a

MPI Send of 20 MB from a node 0 to a node 1 without
other communications.

• Description of the communication task scheme using a
specific description language.

At the end, the software give us the penalty for each commu-
nication task. Be Tref the referential time and Ti the time of
the task i to send 20 MB then penalty Pi is:

Pi =
Ti

Tref

More the penalty is important more the time of the commu-
nication task will be important and more the performance of
the cluster will be bad.

C. Experimentations

This section deals with congestion behavior comparison on
three architectures: Gigabit Ethernet, Myrinet 2000, Infiniband
(Infinihost III). For these experimentations, we used 3 different
clusters:
• For Gigabit Ethernet: A cluster IBM eServer 326 com-

posed of 53 nodes with 2 AMD Opteron 248 at 2GHz
inside each node. Each node has 4 GB of memory and
has a BCM 5704 Gigabit ethernet card. The MPI version
is MPICH.

• For Myrinet 2000: A cluster IBM eServer 325 composed
of 72 nodes with 2 AMD Opteron 246 at 2 GHz inside
each node. Each node has 2 GB of memory and has a
Myrinet 2000 card. The MPI version is MPI MX.

• For Infinihost III: A cluster BULL Novascale composed
of 26 nodes with 2 Intel Woodcrest (4 cores/node) at
2,4 GHz inside each node. Each node has 4 GB of
memory and has a Infinihost III card. The MPI version
is MPIBULL2 (based on MVAPICH 1.0).

All clusters use a fat tree topology for the network. Each
network has a different behavior when congestion happens,
depending of the control flow. We will study those different
behaviors on different communication schemes by looking
penalties with our software.

Figure 2 can be describe like this:
• On the left, different communication schemes
• On the right, the penalties compute resulting of the

scheme and of the network architecture for each com-
munication task.

For example, for the second communication scheme, node 0
send in the same time a message of 20 MB to the node 1 (task
a) and the node 2 (task b). For each communication time, the
real time is 1.5 time more long on Gigabit ethernet compare
to a single communication.
We choose these schemes to illustrate the evolution of the

Communication Network
schemes Gigabit Eth. Myrinet Infiniband

InfinihostIII

•0
(a)

// •1 a = 1 a = 1 a =1

•0(a)

yyssssss
(b) %%KKKKKK

•1 •2
a = 1.5 a =1.9 a = 1.725
b = 1.5 b = 1.9 b = 1.725

•0(a)

yyssssss
(b) �� (c) %%KKKKKK

•1 •2 •3

a = 2.25 a = 2.8 a = 2.61
b = 2.25 b = 2.8 b = 2.61
c = 2.25 c = 2.8 c = 2.61

•0(a)

yyssssss
(b) �� (c) %%KKKKKK

•1 •2 •3

•4
(d)
OO

a = 2.15 a = 2.8 a = 2.61
b = 2.15 b = 2.8 b = 2.61
c = 2.15 c = 2.8 c = 2.61
d = 1.15 d = 1.45 d = 1.14

•0(a)

yyssssss
(b) �� (c) %%KKKKKK

•1 •2 •3

•4
(d)
OO

•5

(e)eeKKKKKK

a = 4.4 a = 4.4 a = 3.663
b = 2.6 b = 4.2 b = 3.66
c = 2.6 c = 4.2 c = 3.66
d = 2.6 d = 2.5 d = 2.035
e = 2.6 e= 2.5 e = 2.035

•0(a)

yyssssss
(b) �� (c) %%KKKKKK

•1 •2 •3

•4
(d)
OO

•5

(e)eeKKKKKK
•6

(f)
OO

a = 4.4 a = 4.5 a = 3.935
b = 2.0 b = 4.5 b = 3.935
c = 3.3 c = 4.5 c = 3.935
d = 2.6 d = 2.5 d = 1.995
e = 2.6 e= 2.5 e = 1.995
f = 1.4 f = 1.3 f = 1.01

Fig. 2. Result of penalties depending of network

bandwidth sharing when we just add 1 communication task
each time.
At first, we can see that 3 different flow controls protocols give
different behaviors. Gigabit Ethernet with TCP appears to be
the best architecture for concurrence management. Because
when you add one communication in your scheme, whole
communications won’t be impacted.
But we shouldn’t forget the initial bandwidth to really compare
the results. Even if Gigabit ethernet seems to have a better
”sharing behavior”, Infiniband will probably stay the faster
interconnect whatever the communication scheme.

V. MODELS

In this section we will present 2 finished congestion models
for Gigabit Ethernet and Myrinet interconnect finalizing our
previous work [10], [11].

A. Gigabit Ethernet

v vds
c

i

k
c

0
c k+1

c

N
c

Fig. 3. Detail scheme of a communication.

Gigabit Ethernet congestion model is based on a quantitative
approach (parameters + measures) due to distinctive feature
from manufacturer. Looking at figure 3, the scheme represents
a situation in a graph. This scheme pushes forward a

communication ci coming from vs to vd. This communication
is in conflict with the outgoing communications c0 to ck
on the node vs and incoming communications ck+1 to cN .
We will note ∆o(vs) the outgoing degree of the node vs

(that represents the number of outgoing communications) and
∆i(vd) the incoming degree of the node vd (that represents
the number of incoming communications).
As shown in our previous section, conflicts with an important
number of communication cause important penalties. So, for
a conflict, we define 2 set of communications: communication
strongly penalized and the other ones.

Definition 1: Let ci be a communication corresponding to an
arc (vs, vd) of a graph G, having as degrees ∆o(i) = ∆o(vs)
and ∆i(i) = ∆i(vd). Let Co be the set of communications
having the same source as ci in the graph G. Let Ci be the
set of communications having the same destination as ci in
the graph G.
Then if ∆i(i) = max{∆i(j),∀j | cj ∈ Co}, we say
that ci belongs to the set Cm

o of strongly slow outgoing
communications. Reciprocally, we say that cibelongs to the
set of strongly slow incoming communications Cm

i if ∆o(i) =
max{∆o(j),∀j | cj ∈ Ci}.
We will note card(Cm

i) (resp. card(Cm
o)), the number of

communications belong to the set Cm
i (resp. Cm

o). To fix
the penalty of a communication ci, we compute two values.
The first one represents penalties involved by the conflict
in emission, noted po. The second one represents penalties
involved by the conflict in reception, noted pi.

po =

 1 if ∆o(i) = 1{
if ci ∈ Cm

o : ∆o(i)× β × (1 + γo(∆o(i)− card(Cm
o)))

then : ∆o(i)× β × (1− γo/card(Cm
o))

pi =

 1 if ∆i(i) = 1{
if ci ∈ Cm

i : ∆i(i)× β × (1 + γi(∆i(i)− card(Cm
i)))

then : ∆i(i)× β × (1− γi/card(Cm
i))

Last, the penalty associated to a communication ci is:

p = max(po, pi)

We used 3 parameters (β, γi , γo). They characterize the
specificity of the card.
The parameter β describes the penalty get by the resource
sharing. To estimate β, we use simple outgoing conflicts. We
evaluate penalties of this conflict by increasing the number of
outgoing communication. Then we divide the values that we
get by the number of communication. For the Figure 2, we
can see that β=0.75 (1.5

2 = 2.25
3 = 0.75).

•0(a)

xxrrrrrr
(b)

��

(c)

&&LLLLLL

•1
(e)

//

(d) &&LLLLLL •3

•0
(f)

88rrrrrr

Coms Measured T [s] Predicted T [s]
a 0.095 0.095
b 0.099 0.095
c 0.118 0.113
d 0.068 0.069
e 0.099 0.103
f 0.103 0.103

Fig. 4. Verification of parameters, size of communication at 4MB.

To evaluate γi and γo, we use conflict from Figure 4 where
each communication send the same amount of data. Following

the scheme, the parameter γo leads strongly the communica-
tion a of node 0 and the parameter γi the communication f
of node 3. Basing on communication times (ta) and (tf), we
can deduce values of both γ. We obtain:
• γo = 1− ta/(3× β × tref)
• γi = 1− tf/(3× β × tref)

with tref the necessary time to send the same amount of data
as (a) or (f) but without concurrency. On figure 4, we obtain
γi = 0.036 and γo = 0.115.

B. Myrinet

Myrinet congestion model is based on a descriptive ap-
proach, a first quantitative approach was study in [11]. As
Myrinet NIC used a Stop & Go flow control protocol, we
will consider 2 states for a communication: send and wait.
Using those 2 states, we look up to determine all the possible
combinations of communication states from the graph. For
that, we use only one rule: When a communication is in
state “send”, each communication having the same source
node or the same destination node becomes in state “wait”.
Figure 5 shows an example of this rule. For the original graph
introduces, we can find 5 different sets of communication
states. On these schemes, a communication in state “send”
is represented by a solid arrow, and a communication in state
“wait” is represented by a dotted arrow.

•0

a
{{wwwwwwwww

b

��

c

##G
GGGGGGGG

•1 •2

f

��

e
oo •3

•4

d

OO

•5

Original

•0

a
~~~~

~~
~~

~
b

��

c

  
•1 •2

f

��

e
oo •3

•4

d

OO

•5

1

•0

a
~~

b

��

c

  
•1 •2

f

��

e
oo •3

•4

d

OO

•5

2

•0

a
~~

b

��

c

  
•1 •2

f

��

e
oo •3

•4

d

OO

•5

3

•0

a
~~

b

��

c

  @
@@

@@
@@

•1 •2

f

��

e
oo •3

•4

d

OO

•5

4

•0

a
~~

b

��

c

  @
@@

@@
@@

•1 •2

f

��

e
oo •3

•4

d

OO

•5

5

Fig. 5. Example of the various set of communication states

Communications
a b c d e f

Sum 1 2 2 2 2 3
Minimum 1 1 1 2 2 2

penalty 5 5 5 2.5 2.5 2.5

Fig. 6. penalty calculation for figure 5

When all sets of state are determined, we compute the
emission coefficient defined as the number of states “send”
for a communication. Then, we analyze the set of emission



coefficients of outgoing communications from a node, and we
associate for each of the communication the minimal emission
coefficient. In fact, we consider the worst case where each
outgoing communication, of a same node, is as much slow
as the slowest communication. It is because we consider that
each communication is sharing the network card fairly.
Finally, the penalty of a communication is computed by
dividing the number of state sets by the emission coefficient.
An example is given at Figure 6 using the set of communica-
tion state of the Figure 5.

VI. EVALUATION OF PREDICTIVE MODELS

A. Simulator

In order to compute the prediction of each models, we build
a simulator. This simulator has different kind of parameters:
• One or more application represented by a sequence of

event. There are two kind of events: compute events and
communication events. A compute event is composed
only by the time of computation when a communication
event is defined by the numbers of source and destination
task and by the size of data to send (or receive).

• The definition of the cluster including for each node
the number of core, the number of node etc... Node are
numbered by iterative way starting by 0.

• Scheduling of tasks on nodes. It can be user defined or
using Round-Robin scheduling

• The definition of the kind of model and the parameters:
latency, bandwidth, size of buffer, etc...

With all these informations, the simulator will give us for each
task, the duration of all events and total time, the kind of
conflicts, the average penality, the size of communication etc...

B. Evaluation method

The evaluation of the models is based on the comparison be-
tween predicted times Tp and measured times Tm for various
graphs. In the case of the synthetic graphs, this comparison
is carried out by calculating the relative error (Erel) for each
communication.
Moreover, to measure the total error of the graph, we compute
the average of the absolute errors (Eabs) of the communica-
tions of the graph. Both errors are measured as a percentage.
For a graph constitutes by N communications and a com-
munication called ck, formulas calculating these errors are
presented below:

Erel(ck) =
Tp − Tm

Tm
× 100

Eabs(G) =
1
NR

NR∑
k=1

|Erel(ck)|

The relative error gives a fine view of the accuracy of models.It
allows, among others, to show if the model has an optimistic
(negative error) or pessimistic (positive error) behavior. On the
other hand, the average of the absolute errors gives a global
view of the accuracies on the given graph.
The use of the absolute error avoids behaviors of compensation

between relative errors, and therefore a more exact description
of the predictions. Measurements are carried out by the
program presented in VI-A.
In the case of graph coming from applications, we compute
for each task the amount of times of the predicted and
measured communications. For a task ti, these sums are noted
Sm =

∑
ck ∈ ti

Tm for the measured communications and
Sp =

∑
ck ∈ ti

Tp for the predicted communications. Relying
on these values, we compute the absolute error for a task ti:

Eabs(ti) = |Sp − Sm

Sm
× 100|

C. Synthetic Benchmark

Schemes Communication times
MK1 com. Tm Tp Error (Erel)

•0
(a)

~~~~
~~

~~
~
(b)

��
•1

(e)

��

•2 •3

(c)
``@@@@@@@

(g)

��
•4

(d)
>>~~~~~~~
•5 •6

(f)

OO

•7

a 0.087 0.089 2.3
b 0.087 0.089 2.3
c 0.070 0.071 1.4
d 0.052 0.053 1.9
e 0.037 0.035 -5.4
f 0.051 0.053 3.9
g 0.070 0.071 1.4

Average of absolute errors Eabs = 2.6
MK2 com. Tm Tp Error (Erel)

•0
(a)

~~~~
~~

~~
~

(b)

��

(c)

��0
00

00
00

00
00

00
00 (d)

''PPPPPPPPPPPPPPP

•1

(g)   @
@@

@@
@@ (f)

''PPPPPPPPPPPPPPP •2
(e)oo

•3

(i) 77nnnnnnnnnnnnnnn
•4

(h)
oo

(j)

>>~~~~~~~

a 0.164 0.177 7.9
b 0.164 0.177 7.9
c 0.164 0.177 7.9
d 0.164 0.177 7.9
e 0.043 0.053 23.2
f 0.086 0.085 -1.2
g 0.087 0.085 -2.3
h 0.108 0.101 -6.5
i 0.108 0.101 -6.5
j 0.059 0.073 23.7

Average of absolute errors Eabs = 9.5

Fig. 7. Accuracy of Myrinet 2000 model with synthetic graphs

At the beginning, to evaluate our models and the simulator,
we use synthetic graph. Synthetics graphs allow us to explore
the relevance of models. It is interesting to determine the
evolution of errors to discover for each conflict the weakness
and the strong of each models. The Figure 7 show us an
example with a tree (MK1) and a complete graph (MK2)
results on our Myrinet model. Concerning Myrinet and Gigabit
Ethernet on trees, our model is often pessimistic (but with
enough efficacy) specially when a conflict outgo and another
one income in the same time for Myrinet. It should be happen
due to the use of the full duplex link.
The only big difference come from complete graph, we can
see that both have a good evaluation but the gigabit ethernet
model seems to be optimistic compare to Myrinet model that
seems to be pessimistic.

D. Linpack

To finish the evaluation of our models we use Linpack with
a communication scheme where each task n send message
to the task n + 1 for a problem size of 20500. To get
the events, we modified MultiProcessing Environment (MPE)
library integrate in Mpich. The impact of tracing is very low
because the average cost of the tracing was of 0,7%.



The Figures 8 and 9 show the result for our Myrinet and
Gigabit Ethernet Models. The diagrams represent the measured
and predicted times and the line the absolute error for each
MPI task.

Fig. 8. Evaluation of Gigabit Ethernet model using HPL, size 20500

Fig. 9. Evaluation of Myrinet model using HPL, size 20500

We tested models using 3 possible scheduling:
• RRN (Round-Robin per Node): MPI tasks are assigned

cyclicly between each nodes.
• RRP (Round-Robin per Processor): MPI tasks are as-

signed filling first the nodes.
• Random: MPI tasks are assigned randomly.

We can see that Myrinet model is globally accurate, and the
errors should be caused by memory congestion. Gigabit Eth-
ernet are a bit less accurate than Myrinet. It could be explain
by the variability of Gigabit network behaviors. Compare to
Myrinet, Gigabit Ethernet doesn’t use technique as RDMA or
OS-bypass. These techniques limit the influence of the system
in the management of communications.
This method highlights two problems: the influence of the
resource memory and propagation of the error. These two

problems are responsible for the loss of accuracy obtained.
However, the predictions under these conditions remain satis-
factory.

VII. CONCLUSION

In this paper, we compared and studied the penalties of
Myrinet 2000 and Gigabit Ethernet with Infiniband. With the
study of these penalties and the knowledge of flux control
protocols, we established models of these interconnects. Those
2 models was integrated inside a simulator to study the
accuracy of them. A set of synthetic benchmark has been tested
to prove and accurate our models, before to test them on real
application.
These models allow us to predict performance loss due to
bandwidth sharing and compare the performance on the same
application on Myrinet and Gigabit Ethernet networks.
We are actually working to improve again these models with
a deep study of some specific cases and to test our models on
nodes with 8 and 16 cores to extend them. We are working
too on the model of the Infiniband InfinihostIII and ConnectX
interconnect on BULL Novascale clusters.

REFERENCES

[1] J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark:
past, present and future.” Concurrency and Computation: Practice and
Experience, vol. 15, no. 9, pp. 803–820, 2003.

[2] J. Liu, B. Chandrasekaran, J. Jiang, S. Kini, W. Yu, D. Buntinas,
P. Wyckoff, and D. Panda, “Performance comparison of mpi
implementations over infiniband myrinet and quadrics,” 2003. [Online].
Available: citeseer.ist.psu.edu/liu03performance.html

[3] K. Al-Tawil and C. A. Moritz, “Performance modeling and evaluation
of MPI,” Journal of Parallel and Distributed Computing, vol. 61, no. 2,
pp. 202–223, 2001. [Online]. Available: citeseer.ist.psu.edu/453861.html

[4] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E.
Schauser, R. Subramonian, and T. von Eicken, “Logp: a practical model
of parallel computation,” Commun. ACM, vol. 39, no. 11, pp. 78–85,
1996.

[5] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“LogGP: Incorporating long messages into the LogP model
for parallel computation,” Journal of Parallel and Distributed
Computing, vol. 44, no. 1, pp. 71–79, 1997. [Online]. Available:
citeseer.ist.psu.edu/alexandrov95loggp.html

[6] R. P. Martin, A. Vahdat, D. E. Culler, and T. E. Anderson,
“Effects of communication latency, overhead, and bandwidth in a
cluster architecture,” in ISCA, 1997, pp. 85–97. [Online]. Available:
citeseer.ist.psu.edu/martin97effects.html

[7] S. C. Kim and S. Lee, “Measurement and prediction of communication
delays in myrinet networks,” J. Parallel Distrib. Comput., vol. 61, no. 11,
pp. 1692–1704, 2001.

[8] Myricom Inc., “GM: A Message-Passing System For Myrinet Net-
works,” 2003, http://www.myri.com/scs/GM-2/doc/html/.

[9] L. Prylli and B. Tourancheau, “Bip: A new protocol designed for high
performance networking on myrinet,” in IPPS/SPDP Workshops, 1998,
pp. 472–485.

[10] M. Martinasso and J.-F. Méhaut, “Model of conccurent mpi commu-
nications over smp clusters,” HAL-INRIA, Tech. Rep. 00071352, May
2006.

[11] M. Martinasso and J.-F. Méhaut, “Prediction of communication latency
over complex network behaviors on SMP clusters,” in Proceedings of
the 2nd European Performance Engineering Workshop, EPEW 2005, ser.
Lecture Notes in Computer Science, vol. 3670. Versailles: Springer-
Verlag, Sep. 2005, pp. 172–186.


