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Abstract
This article deals with the problem of data cache for dynamic web

servers. A set of requests (which number could be large) is submitted to
a server for computing. Every request is modelled by a series-parallel
graph of elementary tasks. These tasks are computed and their results are
submitted to be stored into a cache. Due to the limitation of the cache
capacity, some strategies should be used to select the right ones. The aim
of this paper is to determine, in a static session, what tasks results have to
be cached in order to reduce the computing time. The problem have been
formalized using graphs representation whose complexity is briefly shown
to be NP-hard. Then, heuristics are proposed to select the cached data.
Finally some preliminary experimental results are discussed.
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1. Introduction

The always increasing performance of the standard PCs
power for solving hard problem makes it possible to address
new applications which require huge computing power and
storage capacity. Thus, web applications available on Inter-
net are more and more complex. Despite networks improve-
ments (Myrinet, gigabit Ethernet), the growing number of
customers and the heaviness of applications create new prob-
lems due to limited network bandwidth and also to server
workload. From the users point of view, it induces an in-
creasing response time that is crucial to be reduced. Web
caches have already been proposed as a very promizing way
for improving the Internet quality of service. They reduce
both the user response time and the network congestion. In
spite of their low costs (compared to other techniques to gain
performance on the web), their application are mainly related
to static request servers [12, 9]. The previous work in [11]
is an attempt to define effective cooling policies taking into
account various parameters of caches. The web-cache prob-
lem is not restricted for static requests. It has been shown, in
[7, 13], that the most penalizing problem for these systems
is more the computing time of the response than its trans-
fer time from the server to the clients. Putting requests data
solutions into caches reduces the response generation time
to the time for searching the results into the memory. Thus,
it is difficult to manage the large number of data generated
by dynamic Web servers. We consider a generic architecture

which consists in a server according to the model {frontend,
caches, computing unit} [3]. Each element of the model can
be an association of standard computers (PC cluster). In this
case, the requests will be parallelized and executed on a set
of available processors. The originality of this work is to
model the requests as a series of task graphs and to use cache
techniques for reducing the user response time by avoiding
redundant computations. The cached elements are the results
of some elementary tasks of the parallelized requests. This
approach is applied to a web server of user parametrized ge-
ographic maps.

In section 2, the modelization of the problem is presented
for the static case. We obtain a Linear Program similar to
a knapsack problem [14], showing that the problem is NP-
hard. In the third section, an algorithm filling the cache is
described whose objective is to decrease the average user re-
sponse time. The last section is devoted to some experimen-
tal results of the cartographic maps web server,

2. Modelization

2.1. Request and session

An user request is sent to the server from a client interface
by specifying reals parameters of execution. For example a
typical request could be :
R : Map on Europe15, disparities between closed cities

taking birthrate as statistical resource and value 100 as
reference threshold.

We consider that this request arrives for the first time on the
server. It is then analysed and transformed into a parallel
program which will be executed on available processors on
a PCs cluster. This program is modelled by a graph of ele-
mentary tasks whose nodes correspond to computations on
the initial data and edges are constraints due to precedences
induced by the data flow graph. Precedence constraints rep-
resent data accesses and thus could be expensive if two suc-
cessive tasks are mapped on distinct processors [10]. The
graph, associated to a request, G = (V, E) is connected, di-
rected and acyclic. Its parameters are denoted by :
V = {v1, v2, · · ·} the finite set of nodes ;



Fig. 1. Abstraction of user session graphs.

E the set of edges ;
each node, a task of the program, corresponds to a proce-

dure call with its parameters. Quantitative parameters
for the task execution are :
t(vj) : the processing time ;
s(vj) : the size of the result d(vj) of the procedure.

A user session is defined by a series of requests sent by the
same user during one connection to the server (figure 1). In a
session, a new request is sent to the server after reception of
the result of the previous one. In a user session, because suc-
cessive computations operate on the same set of data, some
routines could be executed several time. For example, a user
may ask for the previous request R and after having received
the result decides to request the same computation with a
threshold of 80 instead of 100. Of course, the computation is
very similar to the previous one storing intermediate results
from R usually improves highly the new response time.

Let U be the set of all computation tasks of a session,
U = {u1, u2, · · · , um} is a set of couples (procedure-name,
list-of-parameters). Usually U is very large (typically ses-
sion is composed by seventy requests having four routines).
A result d(ui), a processing time t(ui) and a size s(ui) are
associated to each task ui. It is supposed that these quanti-
ties are independent from each others. Then a session can
be modelled by a sequence of graphs, S = {G1, · · · , GN},
whose nodes are tasks in U . A task that appear several times
in S is called redundant. For each task uj ∈ U the oc-
currence number of task uj in the session S is denoted by
n(uj) (n(u) = 1 if task u appears only once).

A cache C is a memory device that could store data on
demand. It is characterized by its capacity K and its policy
for data management. For tasks whose occurrence number is
greater than one, it could be of interest to store its result in
C. Of course the data management policy should take into
account the processing time of the task, the size of the result,
or whatever parameter.

2.2. Optimization criteria

A session (R1, R2, · · · , RN ) of requests is associated to
the graph sequence S = {G1, · · · , GN}, the set of tasks U =

{u1, u2, . . . , um} and also n = {n(u1), n(2), . . . , n(um)} , the
occurrence vector of elements of U in S.
Decision variable, α is a binary vector of cardinality m

defining which results of elements of U are put in the
cache.

α(u) =

{
1 if the result of task u is cached ;
0 if not.

Two main optimization criteria are of interest :
The server overload, W , is the total computation time of

redundant tasks during one session. If a task result is
cached, the task is computed only once. If not, the task
is computed each time. So,

W (α) =
∑

u∈U
(n(u)− 1)(1− α(u))t(u).

User response time, T (α), the critical path length of a ses-
sion, is the sum of the critical paths of all the sub-
graphs representing the requests in the session. Denote
by CCi(α) the critical path (set of nodes) of the ith re-
quest graph given cache content. We have :

T (α) =
X

u∈U

 X

i

11CCi(α)(u)− 11non−first(u)

!
(1−α(u))t(u),

with

11non−first(u) =





1 if u is on the critical path
but its first occurrence

is not on the critical path;
0 if not.

Execution hypothesis :
1. graphs representing requests are series-parallel

(SP-graph)[5] ;
2. widths of generated graphs are lower than the number

of computation nodes of the cluster. Processing time of
a request is equal to the critical path length of its gen-
erated graph (and thus can be computed in polynomial
time);



3. the total sequence of the requests is known before the
execution ;

4. a location in the cache is written only once during the
session : at the end of the first execution of the corre-
sponding task.
The first hypothesis is related to the graph structure. In
our target application, the graph structure appears via
recursive calls and then are SP-graphs. The second hy-
pothesis is based on the capability of the PC-cluster.
During the parallelization, the maximum number of par-
allel tasks is controlled to be less than processor num-
ber. The third hypothesis consider that we are in a very
optimistic case. Where all knowledge is available at the
beginning. The last hypothesis is the restriction of a dy-
namic policy to a static case. The requests are known
in advance, so the tasks to be excuted are known too.
We can then put them in cache after computed them for
the first time. We get then an upper bound for the cache
performance.

Constraints : The set of constraints (C) is defined by :

(C) =

{ ∑
u∈U α(u)s(u) ≤ K (capacity)

α(uj) ∈ {0, 1} (integrity)

Objective : O1 minimize the server overload W (α) under
constraints (C).
It is easy to remark that problem O1 be identified as a
variant of well-known knapsack problem [14] ; that is
known to be a NP-hard problem.

Objective : O2 minimize the user mean response time for a
session T (α) under constraint (C).
Proposition 1 Problem O2 is NP-hard.

Problem O2 can be easily reduced from prob-
lem O1. Consider a particular instance of problem O2
that consists of a sequence of N chains. As

T (α) = W (α) +
∑

u∈U
t(u),

minimizing T (α) needs to minimize W (α) which is
solving problem O1 which is NP-hard.
As the processor number is sufficiently large, hypothe-
sis (2), the critical path of the session is the hard con-
straint for user response time.

3. Minimizing the user response time

As seen previously, tasks on critical paths really con-
strained the execution time of the session. Computing the
critical path of a graph is usually achieved in O(n2log(n))
times, where n is the number of nodes. In our case, of SP-
graphs, it is straitforward to see that it can be reduced to
O(n).

3.1. Selection algorithm

A greedy algorithm is designed according to a task selec-
tion policy. The basis of the heuristic that we propose is to
choose which task results to put in the cache on the criti-
cal path of the session. So if there is only one task result
to store, it should guaranty that the critical path length is re-
duced. This algorithm computes the critical path of the ses-
sion after each entry in the cache, because the critical path
does not necessarily remain the same.

Algorithm 1 Greedy heuristic algorithm.
for all u ∈ U do
α(u) = 0; {Initialization of cache index}
AS = K; {Initialization of cache size : available space
for caching}

end for
repeat

compute set AT of tasks u ∈ U such that :
α(u) = 0;
u is on the critical path given cache state α;
u is redundant (n(u) > 1);
s(u) ≤ AS;

select u ∈ AT according to a given criterion;
α(u) = 1;
AS ← AS − s(u);

until AT = ∅;

The algorithm tends to reduce the critical path length of
the graph at each step of the loop. It results an execution
time T (α) that is also the time to compute the session given
α.

The selection criterion are very important for the cache
efficiency. We propose below a heuristic that allows the re-
duction of the response time. Calling T (αopt) the optimal
execution time related to the size of the cache, we have the
inequality

T (αopt) ≤ T (α) ≤ T (0)

The selection criterion fixes a local priority for the storage of
tasks results in the cache. So we have to build this selection
function such as it achieves a ”good” performance.

3.2. Tasks utility

As for the knapsack problem, a utility value g(u) (usually
called a profit) is associated to each task u at time when the
algorithm selects a task result to put it into the cache. Several
indicators could be used as utility :
Size The size of task result is a static utility parameter, ac-

cording to this utility, tasks on the current critical path



are selected in an increasing order of their result size.

g1(u) = s(u).

This idea of using such a heuristic is comes from under-
lying hit-rate model. What is important is the number of
cache hit. Storing small size results increases the global
number of tasks results in the cache.

Execution time Here, the utility of a task is the economy
computation time of the computed on the current critical
path.

g2(u) =

(∑

i

11CCi(α)(u)− 11non−first(u)

)
t(u).

Tasks on the current critical path are selected in a de-
creasing order of their contribution to the critical path
length. In relation with objective O2, the tasks with a
huge computation time can intuitively reduce the ses-
sion computation time. This strategy should perform
well, but could be limited by the cache capacity.

Ratio time size The utility of a tasks is the ratio between
the computation economy when caching it to the size
of its result s(u). Tasks on the current critical path are
selected in a decreasing order of their time size ratio.

g3(u) =
t(u)

s(u)

(∑

i

11CCi(α)(u)− 11non−first(u)

)
.

In relation with heuristics for the knapsack, this strategy
selects at each stage, the task result which achieves the
best computation time per unit of space in the cache.

4. A parallel web server of dynamic maps

4.1. Server architecture and requests structure

We apply our heuristics to a geographical map Web server
presented in figure(2). Europe is represented by the countries
association. For example : Europe 15 correspond to the set
of the 15th first countries of Europe community. Each coun-
try is subdivided in elementary units representing the cities
(NUTS4) of the given nations. The basics units are aggre-
gated to create several cutting level (regions, departments,
. . . ) and for every unit an inventory of various statistical re-
sources (population, birthrate, . . . ) is available. This cutting
can be modified by the user and deviations calculated com-
pared to precise criteria. The server has a web interface on
the web from which all requests are submitted. The goal of
this server is to provide to users an effective and interactive
tool for mapping demographic data sets on a defined geo-
graphical area [15]. Since input files are huge (example :
791 Mo for an inventory on 116000 units)1, cache strategies

1This size is given for European space subdivided in at a NUTS4 level.

Fig. 2. Cartography server. Clients formulate requests via this
interface.

should be efficient. Future works will consider data set on
all 25 states Europe with a statistical inventory on communal
level (NUTS5) that is about one million of units. Five types
of requests are possible from this interface.

4.2. Parallel programming environnement

ATHAPASCAN [6] has been used as parallel program-
ming environment. In ATHAPASCAN environnement, the
application designer develops his program by recursive pro-
cedure calls named tasks. Because procedure calls could be
forked, the execution could be done in parallel. The forking
process determines the task granularity. Given a scheduling
strategy, the runtime environment schedules automatically
those tasks on a parallel machine. The data flow graph is
an instance of the precedence relation graph between all ele-
mentary tasks of the program. So, by construction, we get a
series-parallel task graph.

4.3. Cache implementation

As cache environment, we use CaLi [8], a C++ framework
elaborated to allow a fast implementation of distributed or
local cache systems. The library follows the ideas of the
generic programming paradigm, providing users with a high
efficiency while keeping a great flexibility. CaLi is indepen-
dent of the running application and management of the cache
is specified separately by the user (type of items to cached,
insert and remove policy). CaLi could be used with dis-
tributed caches. In this case it uses MPI to achieve strong co-
herence between the distributed caches. Our environnement



TABLE I
Tasks results are put into cache in increasing order of their size.

Csize (b) timeWoC(s) timeWC (s) teconomy HitTx Citem CacheC
1024 28.9 28.891 0.05 0.009 9 961
4096 28.9 28.890 0.06 0.03 31 3918

16384 28.9 28.82 0.27 0.092 94 15875
65536 28.9 28.49 1.45 0.22 225 63674

262144 28.9 26.81 7.26 0.33 343 253890
1048576 28.9 19.8 31.5 0.42 441 995034
4194304 28.9 15.49 46.4 0.451 464 1521173

16777216 28.9 15.49 46.4 0.451 464 1521173

is designed for parallelized and distributed cache strategies.
In this paper, only centralized cache have been considered.

4.4. Experiments

The goal is to integrate this cache management into an ac-
tual web portal. Experiments have been done on real case to
evaluate the efficiency of these three policies on the running
of the cartography server. We run the server on a symmet-
ric biprocessor(AMD Athlon(tm), 1194 MHz, 256 KB cache
size). For the experiment we process different sessions. A
session is a sequence of randomly chosen requests among
the set of all possible requests. A session is automatically
transformed in a task graph. Session containing 17 requests
have been processed and each of them generates over than
1000 elementary tasks. A single task is computed by one of
the smp node. The size of the tasks results are between 218
bytes and 31 Kbytes. Only tasks with significant computa-
tion time (larger than 10−2s) comparing to data manipulation
time by the cache are submitted to the cache. For cache size
between 1024 bytes and 16 Mbytes, one processes 50 ran-
dom sessions for each task utility policy. For each session
one notes the value of the different statistical performance
indicator.

In the following tables, Csize is the cache size, timeWoC is
the execution time without caching any tasks, HitTx is the hit
rate, timeWC is the execution time with HitTx, CacheC is the
total size of tasks result in the cache, and Citem the number
of task result in the cache
Size as utility (g1) (in table(I) ). This strategy based on the

tasks result size allows a good hit rate. The computation
time economy is not so good because the task results
with a small size are not necessarily the most critical
for the execution time. Wasted space in the cache is
hight because only tasks results with big size are out
of the cache and can’t be packed in the residual space
of the cache. Compared to the caching policy define in
[18, 17, 16], this shows that it is not the number of hits
which is important for this kind of application.

The utility of a task result is critical execution time (g2)
(in table(II) ). The number of tasks results cached is
small, so the hit rate do not increase quickly. But those
which are cached, affect the critical path length. As

TABLE II
Tasks results are put into cache in decreasing order of their cumulative

execution time on the critical path.

Csize (b) timeWoC(s) timeWC (s) teconomy HitTx Citem CacheC
1024 27.26 27.23 0.11 0.19 2 970
4096 27.26 27.21 0.206 0.19 2 3931

16384 27.26 27 0.955 0.47 4 15996
65536 27.26 26.75 1.88 0.43 4 63957

262144 27.26 25.04 8.17 1.4683 14 256028
1048576 27.26 18.42 32.36 10.2 103 1003507
4194304 27.26 14.67 46.42 45.1 464 1521173

16777216 27.26 14.67 46.42 45.1 464 1521173

TABLE III
Tasks results are put into cache in decreasing order of their ratio

time-size.

Csize (b) timeWoC(s) timeWC (s) teconomy HitTx Citem CacheC
1024 28.86 28.82 0.17 0.22 2. 964
4096 28.86 28.73 0.496 0.66 6 3987

16384 28.86 28.43 1.52 1.0 10 15967
65536 28.86 27.41 5.08 2.13 21 63980

262144 28.86 24.92 13.7 6.49 65 256018
1048576 28.86 18.35 36.42 24 244 1003516
4194304 28.86 15.50 46.3 45.1 464 1521173

16777216 28.86 15.47 46.4 45.1 464 1521173

our intuition, the computation time economy is good in
relation with the content of the cache.

The utility of a task result is the ratio time size (g3) (in
table(III) ). This strategy takes into account both the
size and the computation economy. So it achieve both
best hit rate and computation time economy. In our
situation the wasted cache space is small.

From curves in figure 3, we operate the cache by choosing an
adapted cache size. The best strategy is for the ratio time size
utility function. It achieves the best use of the available space
in the cache. Curves of time and size strategies are very
closed. The computation economy strategy is efficient but
does not take into account the size of the cache. All these
strategies are equivalent when the cache is large enough. Ex-
ecution time is then the time to compute at least one time the
different tasks. In our situation, a cache size of about 6Mb
will achieve a good performance rate. The contrary conclu-
sion about the consideration of the hit rate and the compu-
tation time economy comes from the fact that in this model,
one put in cache the elementary tasks results witch can be a
small part of one request computation. That will not be the
same if we put in cache the request full solution because a hit
will incurs a request solution. In the last case, the impact of
the hit rate on the computation economy will be important.
The computation economy strategy is efficient but it does not
take into account the size of the cache. All these strategies
are equivalent when the cache is large enough. The execu-
tion time is then the time to compute at least one time the
different tasks.
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Fig. 3. Comparing the three strategies.

5. Concluding remarks

In this paper, an algorithm to improve the user response
time for caching dynamics requests have been proposed.
This algorithm is based on a task weighting heuristic for
known session (which means that the serie of requests to be
processed is known in advance). We propose here a new way
of optimizing the scheduling by avoiding redundant compu-
tation. These algorithms for static session have been tested
for several strategies. The ratio time size strategy appears to
be significantly better than time based or size based strate-
gies. Complementary studies should be done on various sce-
narios to inforce this result. The software framework devel-
opped in this paper could easily be adapted for this purpose.
The task graph model could be completed by annotations of
precedence relations. This could be used to make the com-
putation of the makespan more accurate and so data transfers
inside the cluster could be optimized. Simultaneously, cache
strategy could take in account the cluster node which process
the elementary tasks of the graph. We are currently working
on this improvement. The continuation of this work concerns
the application of this technique for dynamic sessions (on-
line caching). It consists in extending the utility heuristic for
dynamic sessions, evaluate it on-line for a real case. The car-
tography server has been designed in order to achieve such a
strategy.
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