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Abstract. We consider wireless ad-hoc networks and implement failure detec-
tions mechanisms. These failure detectors provide elementary information for
high level distributed algorithms such as consensus, election or agreement. The
aim is to guarantee a quality of service for these mechanisms. Stochastic models
for tuning failure detectors are proposed based on frequency analysis and con-
tention modelling. Tuning methods are suggested for setting time-out delays. The
theoretical results were validated experimentally on a wireless platform, based on
a statistical analysis of the measurements.

1 Introduction

Technological advances in wireless devices such as laptop computers, personal digital
assistants (PDAs), or mobile phones, bring significance to new wireless technologies.
Progress in wireless communication protocols, e.g. Bluetooth, WIFI, allow the use of
new ad-hoc networking schemes. It follows that new challenges arise from the commu-
nication variability in wireless networks and the unpredictable disconnections of those
heterogeneous devices, creating very dynamic topologies called ad-hoc wireless net-
works.

In this context, the distributed environment we consider is composed of heteroge-
neous devices which form a dynamic group. This environment is completely distributed
(no predefined memory or stable server in our case). In addition, this environment is also
unstable: due to unpredictable disconnections of devices and the variability of commu-
nication latencies, failures can occur.

In this unreliable environment, the main goal is that each device should offer its local
resources and services to one another, and could benefit from services provided by other
devices. So, to manage services and resource sharing and to maintain the consistency
of the group regarding newcomers and devices that voluntarily disconnect themselves,
we have developed middleware modules in order to be able to make some decisions.
Accordingly, our previous works [?,?] focus on distributed agreement problems in un-
reliable environments, and more specifically on consensus protocols.

To solve the agreement problem, several algorithms have been proposed. In partic-
ular Chandra & Toueg [?] establish that the consensus problem could be solved in an
asynchronous context with unreliable failure detectors. These detectors provide local
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estimation of the state of entities on the network. Thus a detector either suspects an
other site, or not. The estimation of the detector is clearly unreliable, but if the informa-
tion is asymptotically correct, the agreement is eventually obtained.

From an implementation point of view, failure detectors on each site communicate
with each others. The estimates of the failure detector about the status of all other de-
vices are delivered to an upper layer in form of a list containing the suspected devices.
These failure detectors implement a function that, according to some information, make
the decision to suspect or not. A typical function is a time-out delay : if the failure de-
tector has not heard from a site since some time-out period, then it suspects the remote
site.

The objective of this paper is to analyze the quality of service of such failure de-
tector and apply the modelling approach to a wireless ad-hoc architecture. The infras-
tructure have been implemented and tested in an industrial context (CRE MIRRA with
France-Télécom R&D) and in the RNRT SIDRAH project. Configurations with hetero-
geneous devices (PC, Laptop, PDA) have been used. Experiments shows that parameter
tuning should be set according to the type of device and the global load of the network.
Stochastic analysis of the system is then confirmed.

The paper is organized as follows. Section 2 introduces the failure detectors. Then,
Section 3, stochastic models are derived and quality of service factors computed. The
last part is devoted to experimental results and analysis.

2 Failure Detectors

2.1 Theoretical Concept

The working principle of failure detectors is to provide, at a given time and for a given
process, a list of suspected devices. As failure detectors are considered unreliable, this
list can contain wrong information about remote devices (suspicion of a device correctly
present or no suspicion of a failed device).

Each device ei included in the system has its own failure detector module. So, with
this module, each device can obtain information, periodically or on demand, concerning
the global state of the system.

However, information provided by a local failure detector does not necessarily in-
dicate the real state of the system. The failure detector only suspects that some devices
have crashed or are disconnected. Note that failure detectors are inherently unreliable
because the information they provide may be incorrect.

Chandra & Toueg [?] characterize failure detectors with two properties: the accu-
racy property, which restricts false suspicions that failure detectors can make, and the
completeness property, which requires that failure detectors eventually suspect every
failed devices. In this paper, we focus on the ♦S class of failure detectors, called Even-
tually Strong [?].

2.2 Failure Detector Implementation

From among the several strategies that have been proposed to implement failure detec-
tors, e.g., heartbeat or query (pinging), we choose to use the classical heartbeat detection
model.



The heartbeat technique is based on the periodic emission of messages from each
failure detector to everyone. In our implementation we divide the failure detector into
two modules. We distinguish between the spreading information, which is included in
the failure detector export module, and the gathering information, which is treated by
the failure detector import module.

As a consequence, every export module periodically broadcasts a message (see fig-
ure ??) to inform other devices of its reachable state.
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Fig. 1. Heartbeat principle

When an failure detector import module of an entity e1 receives a message from
another device e2, it invokes its suspicion estimation function. This function in the
simplest case works by arming a timeout. This mechanism is repeated until every one
received a message from e2. Otherwise, if the import module of e1 does not receive a
new message from e2 after the expiration of the timeout, it adds e2 to its list of suspected
devices. The device e2 will be remove from this list when e1 receives a new message
from e2.

This implementation technique introduces two parameters: the heartbeat period and
the timeout delay. The heartbeat period is the time between two successive emissions
in the failure detector export module of each device. The timeout delay is used in the
import module. This parameter is the waiting period after which the failure detector of
a device e1 starts to suspect a device e2 of having failed.

2.3 Quality of Service of Failure Detectors

Intuitively, the failure detectors’ quality of service can be defined by: (1) the failure
detector reactivity, which should be the fastest possible and (2) the failure detector
should avoid false suspicions. Thus, the quality of a failure detector depends on its
reactivity against external events and on its capacity to provide correct information.
This quality of service notion was introduced and developed in [?] [?].

At run-time the failure detector is influenced by the two parameters [?] : D i, the
time period between two emissions of device i, and θ j(i), the timeout delay for device i
in the failure detector import module of device j. Therefore, the failure detector quality
of service closely depends on the tuning of these parameters.

To define the quality of service of failure detectors, we have to address several trade-
offs. First, there is a tradeoff between the failure detector’s reactivity and the number of
sent messages over the network. Indeed, a decrease in heartbeat emission time period
Di allows for a better reactivity, thus limiting the duration of time devices are under
false suspicion. However, this is at the cost of increased network utilization, which in
turn may degrade overall system performance.



The desired properties of a failure detector are to 1) avoid suspecting devices that
are available and 2) suspect devices that are not available as fast as possible. As the
reactivity is related to the value of the time period, the failure detector’s reliability
depends on the timeout tuning. Thus, one has to balance the existing tradeoff between
failure detector reliability and reactivity.

3 Stochastic Models

In this section we present stochastic modelling of failure detector mechanisms based on
heartbeat. The goal is to provide a model that allows for tuning of the failure suspicion
function. In fact, according to a set of parameter values, the model establishes the qual-
ity of service offered by the failure detector. This quality of service can be tuned by the
user to fit the needs of the application.

The two quality of service criteria studied in this section are the reactivity of the
failure detector and the quality of information given by the detector. The difficulty is to
establish the tradeoffs between these two properties. The reactivity is the delay needed
by a failure detector to detect the crash of the process. It is directly related to time-out
and heartbeat period. The quality of information given by the detector is estimated by a
false suspicion rate and the probability that the failure detector is in a state of suspicion.
The reactivity is a decreasing function of the time-out value, as is the suspicion rate,
that is also decreasing.

3.1 False detection probability

The difficulty for modelling such systems is the complexity of latency estimations. Fig-
ure ?? shows that the reception delay between two heartbeats send by the same failure
detector depends on (1) the time taken by the beat in the communication stack of the
sender, (2) the latency on the network taking losses into account, (3) the time spent in
the communication stack of the receiver (4) and finally the time needed by the receiver
failure detector process to access the information.
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Fig. 2. Running principle between two failure detectors



In the failure detector , suspicion occurs when the reception module has not received
a beat during some fixed time-out period. In this paper, the time-out θ is supposed to be
constant in all experiments.

The false suspicion rate φI(θ) is defined by the asymptotic ratio of the suspecting
period (grey blocks on figure ??) to the observation period.

Time
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Timeout
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FD Import

Fig. 3. Receptions and Suspicions

Denote by λ0 the emission beat rate and λ the reception rate. The mean inter-arrival
time of beats is 1

λ and λ = λ0.(1 − p) with p the loss rate of messages on the network.
Let {Xn}n∈N be the sequence of inter-arrivals of beats on the receiver. So

lim
n→+∞

1
n

n∑
i=1

Xi =
1
λ

.

With this notation, it is possible to give an asymptotic expression for φ I(θ).

φI(θ) = lim
n→+∞

∑n
i=1(Xi − θ)+∑n

i=1 Xi
= λ lim

n→+∞
1
n

n∑
i=1

(Xi − θ)+, (1)

with x+ the positive part of x.
To analyze the behavior of the failure detector and estimate φ I(θ), the system will

be considered to be time homogeneous. Then parameters are constant on a sufficiently
large period to ensure stationarity of the random process.

In a first model, we suppose that the heartbeat receiving process may be considered
as a renewal process and the impact of variability of the inter-arrivals of beats on sus-
picion rate is established. A second model focuses on the impact of the latency in the
receiver stack on the suspicion rate.

3.2 Variable sending delay

An current implementation of the heartbeat sender is a simple loop of waiting periods.

loop forever
wait(period)
send(heartbeat)

end loop

When this algorithm is perturbated by the operating system or access to the network,
variability occurs and heartbeats are not periodic.



In a first approximation, we consider the inter-arrival process as a renewal process.
It corresponds to strategies when the receiver estimates the distribution of inter-arrivals
and tries to fix the time-out according to some histogram.

Then, because the inter-arrivals of beats are independent with the same probability
law, the failure suspicion rate is just

φI(θ) = λE [X − θ]+ . (2)

This kind of formula is of high interest because it rapidly gives the order of Φ I when
the shape of the distribution of inter-arrivals distribution of beats is known.

Exponential model In the case when the inter-arrivals are exponentially distributed
with rate λ. The arrival process is a Poisson process and

φI(θ) = λ

∫ +∞

0

(x − θ)+λe−λxdx = e−λθ (3)

In figure ??, the first curve shows exponential decreasing of φ I(θ) depending on time-
out. As an example, to achieve a false suspicion rate of 10−3 the adequate time-out
should be seven times the mean inter-arrival period.

In fact, when the inter-arrival X exhibits an new better than used in expectation
property (NBUE), the quantity ΦI(θ) is bounded from above by the exponential model
and so

φI(θ) ≤ e−λθ.

Moreover, if we need to decrease the false suspicion rate by an adaptative scheme, an
additive increment strategy will be sufficient.

Low variance model In many cases the exponential model overestimates the false
suspicion rate, typically when the variance of inter-arrivals is small. To obtain finer
results, Erlang distributions with parameters (k, kλ) and density

fX(x) =
(kλ)kxk−1e−kλx

(k − 1)!
,

with mean 1
λ and variance 1

kλ2 . Then

φI(θ) = λ

∫ +∞

0

(kλ)kxk−1e−kλx

(k − 1)!
(x − θ)+dx (4)

It may be shown that
ΦI(θ) = e−kλθPk(λθ),

where Pk is a polynomial of degree k − 1. For small values of k, figure ?? shows the
suspicion probability for a mean inter-arrivals of beats equal to 1 and a variance of 1

k .
For example, with a variance 1

5λ2 , a time-out of three times the inter-arrivals of beats
is sufficient to ensure a false suspicion rate of 10−3.
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Fig. 4. Suspicion probability related to reactivity for the low variance model

In the case when the inter-arrival could be modelled by a normal distribution with
mean 1

λ and standard deviation σ, we can bound the false suspicion rate by

φI(θ) ≤ σ√
2π

e−
(θ− 1

λ
)2

2σ2 (5)

In this case, figure ?? indicates the false suspicion rate. Naturally, these curves decrease
more rapidly than the Erlang model. For a standard deviation of 0.5, taking a time-out
of 3 times the period is sufficient to guarantee a false suspicion rate of 10−3.
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Fig. 5. Suspicion probability related to reactivity for the normal model

High variance model Unfortunately, the observed distribution could exhibit large val-
ues and when tail of the distribution is not of a negative exponential form. Then Pareto
distribution functions (α > 2) could be used

fX(x) =
α − 1
α − 2

1
(1 + x

α−2 )α
. (6)



For these parameters, the mean has been fixed to 1 and the variance, for α > 3, is α−1
α−3 .

The false suspicion rate could easily be computed by

ΦI(θ) =
1

(1 + θ
a−2 )a−2

.
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Fig. 6. Suspicion probability related to reactivity for the Pareto model
In this situation, it is clear that the high variability of inter-arrivals of beats produces

a very poor quality of service of the failure detector . Even with a standard deviation of
1.1 the time out period should be more then ten times the heartbeat period to achieve a
suspicion rate of 10−3.

Synthesis In this table the inter-arrivals of beats is 1 and the time-out function gives
the quality of service for false suspicions.

Distribution shape Properties Time-out function

Exponential
Most mixed distribution, bound for New
Better than Used in Expectation distribu-
tion

e−θ

Erlang(k, k)
Exponential tail, low coefficient of varia-
tion

Pk(θ)e−kθ

Gauss(1, σ2)
White noise model around a deterministic
value

≤ σ√
2π

e−
(θ−1)2

2σ2

Pareto(α) Heavy tail distribution 1
(1+ θ

a−2 )a−2 if α > 3

3.3 Queueing of heartbeat messages

General model During experimentations, we observe that the delay between heartbeats
mainly depends on the nature of the receiver: laptop or PDA. This suggests that the
capability of the receiver introduces variability of inter-beats periods. Moreover, inter-
arrivals appear to be correlated and the correlation could be important. Observing the
phenomena at the network level by a non-intrusive "sniffer” we establish that heartbeats



are emitted as specified (e.g., periodically). The problem is due to the time spent by the
receiver module to get the heartbeat from its own network buffer. Consequently, we
have to take into account the contention of heartbeats on the receiver and variability
appear when the heartbeat is delivered from the network layer to the heartbeat module
at the middleware layer. A queueing model (figure ??) is used to describe the system.

Buffer
Network

Service

Delivery to
upper layer

Heart−beats Failure detector

Fig. 7. Model for beats delivery

In such a queueing model denote the arrival process of beats by {A n}n∈N and the
sequence of service delays for delivering the beats by {Sn}n∈N .

The interesting process for dimensioning is the inter-output process denoted by
{Zn}n∈N. The aim of this section is to compute the stationary distribution of this pro-
cess. Following the evolution equation approach [?] the process {Z n} satisfies

Zn+1 = Sn+1 + [An+1 − Rn]+ , (7)

where Rn is the residual service time of clients in the queue just after the n th arrival.
This expression is obtained by the study of two cases :
- the server is busy at the arrival of client n + 1, it begins its service at the end of the
preceding client and the inter-output corresponds to the service time of client n + 1;
- the queue is empty, An+1 −Rn is positive and represent the elapsed time between the
last client output and the arrival of client n + 1.

Provided that arrival and service processes are stationary ergodic, the queueing sys-
tem is stable if ES < EA. Thus, the embedded process {Rn} is also stationary and
consequently, the process {Zn} converges to a stationary distribution denoted by Z .

The GI/M/1 case We suppose now that the inter-arrivals are independent with the
distribution density fA(.). The services are considered exponentially distributed with
rate µ and independent. The system is modelled by a GI/M/1 queue, this queue is
stable iff 1

µEA < 1. The embedded process (number of clients in the queue) at arrival
times is a homogeneous Markov chain and the stationary distribution is geometrically
distributed with parameter β defined as the unique fixed point of the equation

β = LA(µ(1 − β)),

where LA(.) is the Laplace transform of the inter-arrivals density fA [?].
Moreover, because of the memoryless property of service time, the residual service

time R is exponentially distributed with rate µ(1 − β). The residual service time is a
geometric sum of i.i.d. exponentially distributed random variables.

Given an inter-arrival distribution, it is possible to numerically compute the distri-
bution of

Z = S + [A − R]+ ;



and to deduce the false suspicion probability given a reactivity θ as

P(Z > θ) = P

(
S + [A − R]+ > θ

)
. (8)

The D/M/1 case In the case when failure detectors have periodic heartbeats (period
A = 1

λ ), the formulation above could be simplified. First, we compute the rate of the
exponential distribution of R. Because LA(t) = e−At, β is the unique solution of

β = e−Aµ(1−β).

Then we compute the distribution of [A − R]+ :

P{(A − R)+ ≤ x} =




0 if x < 0;
e−µ(1−β)A if x = 0;
e−µ(1−β)(A−x) if 0 ≤ x ≤ A;
1 if x ≥ A.

(9)

Then we form the convolution of the service time distribution and the distribution of
(A − R)+:

P{Z ≤ x} = P{(A − T )+ + S ≤ x}
=

∫ x

0

P{(A − T )+ ≤ x − s}µe−µsds

=
∫ x

0

P{(A − T )+ ≤ t}µe−µ(x−t)dt

P{Z ≤ x} =

{
1

2−β (e−µ(1−β)(A−x) − e−µ((1−β)A+x)) if x ≤ A;
1 − e−µx

2−β (e−µ(1−β)A + (1 − β)eµA) if x ≥ A.
(10)

The density is obtained by differentiation

fZ(x) =

{
µ

2−β e−µ(1−β)A((1 − β)eµ(1−β)x + e−µx) if x < A;
µ

2−β e−µx(e−µ(1−β)A + (1 − β)eµA) if x ≥ A.
(11)

For a given θ, the false suspicion rate is

φI(θ) =
1
A

E [Z − θ]+ =
∫ ∞

0

(x − θ)+fZ(x) dx.

After some computation, for θ > A, we obtain

E [X − θ]+ =
1

(2 − β)µ
e−µθ(e−µ(1−β)A + (1 − β)eµA) θ ≥ A, (12)

and we deduce

φI(θ) =
1

A(2 − β)µ
e−µθ(e−µ(1−β)A + (1 − β)eµA) θ ≥ A. (13)
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Fig. 8. False suspicion probability, D/M/1 model A = 1

When the system is loaded, the impact on false suspicion probability is important.
For example, if the time to retrieve the heartbeat on the network is about half of the
heartbeat period (µ = 2λ), we should fix a time-out of four times the inter-arrival
period to get a quality of service less than 10−3.

From a practical point of view, this model permits us to adapt the suspicion policy
of the failure detector to the architecture of the device. Moreover we may deduce the
impact of the size of the network on the queueing system by considering µ as a function
of the number of devices in the network.

However, these results are obtained for a deterministic arrival process on the re-
ceiver. This hypothesis could be weakened by modifying the arrival law. Using a Pois-
son process arrival, the queue is a M/M/1 and the output process is a Poisson process.
In this case, we apply results from the previous section. Moreover, stochastic ordering
techniques provides results on arrival processes that could compare with deterministic
and Poisson process. This gives stochastic bounds for the dimensioning.

4 Experimentation

In this section we will use a real system to illustrate the relationship between the timeout
value and the quality of information provided by the failure detectors.

4.1 First Approach

Experimental design: This first study utilized 2 laptop devices (Linux 800 Mhz)
and 2 personal digital assistants (Linux 200 Mhz). The interconnections were based on
a 802.11b wireless ad-hoc network. The failure detector modules developed were in-
stalled in each device (import module and export module). Thus, each device has an
unreliable view of the global system based on the information in its own failure detec-
tor’s import module. The parameter settings used for the import modules were 100 ms
for the heartbeat time period, the timeout value was not fixed (infinite value). During
the experiment which lasted approximately 15 minutes, about 10,000 measures were
obtained. The system appeared to be stressed. In the experiment, the system’s reactivity



was of the order of 1 second. Since the experiment was conducted in a dedicated envi-
ronment, i.e., no other applications were running, it is to be expected that in a system
under standard application load the delay will likely increase.

Results: These graphic representations illustrate the various behaviors existing be-
tween a PDA and a laptop. Note that, in all these experiments, the environment was
"stressed", the heartbeat losses could be significant (loss rate was around 50% when the
receiver was a PDA).
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As we can see in the graphics, if the timeout value had been fixed at 200 ms (θ = 2∗
the heartbeat emission time period), it would have been a too small value for some
of the devices and would have generated a lot of false suspicions. Indeed, when the
sending and receiver device are laptops (see figure ??), the distribution of heartbeat
receipt delays is centered around the emission duration mean value (100 ms). Most of
these durations are included between 50 ms and 150 ms. Therefore, a timeout value
fixed at 200 ms seems to be appropriate in spite of false suspicions engendered, since
the system reactivity is preserved.

On the other hand, when the receiver is a PDA (figures ?? and ??), the distribution
curves show that a timeout value equal to 200 ms is not adapted because it generates
too many false suspicions.

Thus, this experiment points out the importance of good parameter setting. Accord-
ing to the kind of devices, a same parameter configuration does not imply a same quality
of information:



– A laptop will not wrongly suspect another laptop (figure ??)
– A PDA often stands a good chance of suspecting a laptop which is present in the

system (figure ??)

4.2 An "ideal setting" Experimentation

Experimental design: The high loss rate observed in the previous experiment denotes
that the heartbeat emission frequency is not adequate and it disrupts the system network.
Then, the goal of this next experimentation is to obtain a sample of measures which
will be used as a reference for the models. The parameters may be adjusted so that the
network works correctly, which means there is no voluntary stress or overload.

In this experiment, the system was composed with 6 devices: 3 PDAs (ipaq linux
200 Mhz), 2 laptops (linux 800 Mhz) and 1 laptop device which is used as a network
sensor (linux 800 Mhz). The sensor role is to capture network traffic and record all
heartbeat packets. This sensor will allow us to get an exterior view of the system behav-
ior during the experimentation.
Parameters setting:

– Heartbeat emission period time: 500 ms
– Timeout : none
– Experimental duration: around 15 minutes

Losses: With this parameter setting, the heartbeat mechanism do not overload the sys-
tem studied. Essentially due to external disturbances in wireless environment, heartbeat
message losses are then limited (approximately 2 out of 1000 messages).

Heartbeat Reception Analysis: Figure ?? represents the distribution of elapsed time
between two receipts of messages from the same device. Note that the distributions are
slightly different according to the type of emitter/receiver devices.
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If the timeout value is fixed at 2 ∗ (heartbeat period time), then the wrong sus-
picion rate is of the order of 10−3 when the receiver devices are laptops, and of 10−2

when receivers are PDAs.

4.3 Experimentation in a Disrupted Environment

Experimental Design: For this experiment, the platform configuration is like the pre-
vious one. However, contrary to the previous experiment, here we introduced a vol-
untary disruption. To do this, a laptop is used to generate a data transfer (ping with 4
KB/20ms packets) to an external device during the experiment.

Losses: To compare with the previous experiment, the loss rate is more important
in this case (around 15% of the messages are lost). Whereas the loss rate is between
approximatively 6% and 9% for all other devices, it is approximatively 44% for the
device which generate the network overload.

Heartbeat Reception Analysis: As in the previous section, figure ?? illustrates the
elapsed time between two heartbeat messages from a same remote device received by
each device.
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Fig. 14. Distributions of the update times

In this context, it is possible to get durations between two successive receipts which
could be more than six times the average of heartbeat emission delays. As we can see
in figure ??, there are many long receipt durations when the receiver is a PDA. More-
over, some delays between heartbeat receipts are very small. This phenomenon may be
explained by the fact that after a long waiting time (before receiving the next heartbeat
message), because of the heartbeat messages are regularly sent, several messages could
arrive closely together.

Thus, it seems that a correlation exists between successive waiting times of two
heartbeat receipts and should be used in further modelling.



5 Conclusion

Tuning failure detectors is of great importance for the efficient control of distributed
systems. However, the tradeoff between the quality of information and the reactivity
of failure detectors should be established clearly. In this paper we demonstrated that
stochastic models, taking into account the architecture, can be useful for setting specific
time-out delays.

This study should now be extended to a finer analysis of correlation. Auto-regressive
approaches could follow the evolution of the network, especially since network delays
depend on the load on the network. Another approach could be a finer description of the
spatial organization of the network. Distances between devices could affect the reliabil-
ity of communications. In this case, stochastic geometry techniques could be efficiently
used to model the knowledge an entity could built of the whole system.


