Visualization for Performance Debugging of Large-Scale Parallel Applications

Lucas M. Schnorr (CNRS), Guillaume Huard (UJF), Benhur Stein (UFSM), Jean-Marc Vincent (UJF)

– SBAC-PAD 2009 Tutorial –
São Paulo, Brazil
October 31st, 2009

à la mémoire de Jacques Chassin de Kergommeaux
1 Introduction
 - Motivations
 - Examples

2 Trace Fundamentals
 - Fundamentals
 - Pajé

3 Performance Analysis
 - Three-Dimensional Model
 - Temporal & Spatial Aggregation Model

4 Synthesis
 - Research directions
Motivations

Scientific context
- Complex parallel/distributed programs
- Potentially large size parallel applications.
- Executing on large size parallel systems:
 - Distributed systems
 - Clusters and Grids
 - Desktop grids, P2P systems...

Keypoints
- Distributed heterogeneous resources
- Dynamicity of the architecture
- Scalability (huge amount of data)
General Objective

Help users find performance errors:

- Visualization of parallelism, identify synchronization overheads,
- Usage of resources, identify bottlenecks,
- Behavior analysis method.
General Objective

Help users find performance errors:

- Visualization of parallelism, identify synchronization overheads,
- Usage of resources, identify bottlenecks,
- Behavior analysis method.

Based on:

- Execution model: user events,
- Infrastructure model: Measurement environment
- Visualisation model: graphical objects.
Visualization of parallel program execution

Who?
Program designer, Program certifier, · · ·
· · · Parallel programs vendors
Visualization of parallel program execution

Who?
Program designer, Program certifier, ···
··· Parallel programs vendors

Why?
■ Program debugging,
■ Quantitative debugging (performance evaluation),
■ Dimensionning and performance tuning
Visualization of parallel program execution

Who?
Program designer, Program certifier, ···
 ··· Parallel programs vendors

Why?
- Program debugging,
- Quantitative debugging (performance evaluation),
- Dimensionning and performance tuning

How?
- Graphical representation of the parallel execution
- Interactive representation (exploration)
 - zoom in and out on time, infrastructure, on objects
 - compute statistics
Methodology

Execution model
- Abstraction of the parallel execution: state / event model
- Observability of states / Practical interest of states
- Quality of observation (interaction tracer/application)

Environment model
- Structured set of resources (architecture)
- Model of time: Datation model

⇒ Manipulation language of resources, states and events
Collaboration (a not so short story)

UFSM, UFRGS, U. of Grenoble, INRIA

Scientific problems

Trace of parallel algorithms
Multithreaded applications
Multilevel analysis
Cluster control
Object oriented application
Middleware analysis
Ad-hoc network tuning
Ressource analysis
Multi-agent systems

Softwares

TAPE−PVM
PAJE
TRIVA
MAS−PAJE

Industrial projects

ST Microelectronics
Bull (middleware)
France−Telecom
Introduction - Existing Tools/Techniques

■ Statistical Techniques
 ■ ParaGraph (1990) – bar charts, utilization Count
 ■ Pablo (1993) – bar charts + 3D scatter plot
 ■ Paradyn (1995) – histograms

■ Behavioral Techniques
 ■ ParaGraph (1990) – Gantt-chart
 ■ Vampir (1996) – time-line system view
 ■ Virtue (1999) – virtual reality to performance analysis
 ■ Kojak, ParaProf (2003) – Call Graph

■ Structural Techniques
 ■ ParaGraph (1990) – network display / hypercube
 ■ Cray Apprentice (2007) – tree view of imbalances
Main difficulty

Large scale systems

- Large number of objects
- Complexity of views
- Level of abstraction
- Dynamicity of the observed infrastructure
Multithreaded Applications (1999)
Distributed Middleware
Distributed Middleware (2)
Distributed Middleware (3)

link representing the interaction

reading on socket events

sending through socket events
Distributed Middleware (4)

trading/Directory get()

object on the trader

recording of a servant

object on the trader

trading/Directory get()
Distributed Middleware (5)
Consensus in ad-hoc networks
Consensus in ad-hoc networks
Coordinator Crashes
Multi-Agent Systems
1. Introduction
 - Motivations
 - Examples

2. Trace Fundamentals
 - Fundamentals
 - Pajé

3. Performance Analysis
 - Three-Dimensional Model
 - Temporal & Spatial Aggregation Model

4. Synthesis
 - Research directions
Performance Analysis

- Collect performance data
- Process collected data
- Visualize resulting data
Performance data collection

- **Sampling**

 let the system run, and from time to time, take a look at the state of the system

- **Event-driven**

 get informed of interesting changes in system state
Performance data collection

- **Sampling**
 let the system run, and from time to time, take a look at the state of the system

- **Event-driven**
 get informed of interesting changes in system state
 - **Counting**
 count number of times event happened
 - **Timing**
 accumulate time passed between pairs of events
 - **Tracing**
 register events for later processing
 usually also registers sampling data
Some tracing problems

- Clock synchronization
- Timer resolution
- Intrusion
 time / memory / I-O / influence in program behaviour
- Observability
 level of abstraction
- Matching independently captured events
 different machines or abstraction levels
- Amount of data
- Bufferization
- Trace file format
Trace data processing

- Merge / reorder
- Complement information
- Filter
- Reduce
- Prepare data for visualization
Generalize visualization tool, remove semantics

- Trace file contains
 - hierarchy of containers
 - each can contain combination of containers and visualizable entities

- Entities can contain extra data, used for filtering and reducing; user knows semantics

- Tool keeps original data and processed data, user chooses views
Possible entity types

- **event** to represent events that happen at a certain instant
- **state** to represent that a given container was in a certain state during a certain period of time
- **link** to represent a relation between two containers that started at a certain instant and finished at a possibly different instant
- **variable** used to represent the evolution in time of a certain value associated to a container
1 Introduction
 ■ Motivations
 ■ Examples

2 Trace Fundamentals
 ■ Fundamentals
 ■ Pajé

3 Performance Analysis
 ■ Three-Dimensional Model
 ■ Temporal & Spatial Aggregation Model

4 Synthesis
 ■ Research directions
Outline

1. Introduction
 - Motivations
 - Examples

2. Trace Fundamentals
 - Fundamentals
 - Pajé

3. Performance Analysis
 - Three-Dimensional Model
 - Temporal & Spatial Aggregation Model

4. Synthesis
 - Research directions
Performance Analysis

1. Analysis considering network topology

2. Large-scale analysis
 - How to analyze thousands of processes?
 - Temporal & Spatial Aggregation
 - Treemap representation

- Execution Platform: Grid’5000
 - Distributed resources in France
 - Highly hierarchical network organization
 - Limited heterogeneity – clusters
3D Model – Basics

- Structural Representation – 2D
- Vertical dimension is time – 1D
 - Objects’ Behavior Evolution
 - States and Links
- Interaction Techniques
How objects are represented in 3D
3D Model - Visualization

- How objects are represented in 3D
- Rendering the Network Topology + Comm. Pattern
3D Visualization - Communication Patterns

- Differences from the space-time diagram
3D Visualization - KAAPI Trace

- Fibonacci Application
- 26 processes, two sites, two clusters
- Lines represent steal requests
- Different number of communication between clusters
 - beginning → big tasks, less communication
 - end → smaller tasks, more communication

![3D Visualization Diagram]
3D Visualization - KAAPI Trace

- 60 processes, two sites, three clusters
- Total execution time of a KAAPI fibonacci application
- Observe number of requests in time
3D Visualization - KAAPI Trace

- 200 processes, 200 machines, two sites, five clusters
- Annotated manually with bandwidth limitations

Initial Execution of Application with Link Properties

Interconnection becomes bottleneck, possible hints to better allocation

Too many WS Requests on low bandwidth Link
3D Visualization - KAAPI Trace

- 2900 processes, four sites, thirteen clusters

End of Execution
Outline

1. Introduction
 - Motivations
 - Examples

2. Trace Fundamentals
 - Fundamentals
 - Pajé

3. Performance Analysis
 - Three-Dimensional Model
 - Temporal & Spatial Aggregation Model

4. Synthesis
 - Research directions
Temporal & Spatial Aggregation Model

- Enable large-scale trace analysis
- Visually compare entities behavior
- Detect global and local characteristics

Steps of the Model

1. Hierarchical Monitoring Data
2. Temporal Aggregation
3. Spatial Aggregation
4. Treemap representation
Temporal Aggregation - Basics

Objective: annotate leaves of the hierarchy

- Time-slice definition
- Summary of trace events on the interval
 - States, Variables, Links, Events, ...

![Diagram showing temporal aggregation basics](image-url)
Temporal Aggregation - Example

Blocked (seconds) Executing (seconds)

G

C1 C2

M1 M2 M3

A B C D E

(5) (2) (6) (0) (5)

(4) (7) (3) (9) (4)
Temporal Aggregation - Example

(Blocked, Executing)
Spatial Aggregation

- Explore the hierarchical organization
- Create aggregated values at intermediary levels

Aggregation Functions

- add, subtract, multiply, divide, max, min, median, ...
- Depends on
 - what type of value the leaves have
 - the desired statistical result
Spatial Aggregation

- Explore the hierarchical organization
- Create aggregated values at intermediary levels

Aggregation Functions

- `add`, `subtract`, `multiply`, `divide`, `max`, `min`, `median`, ...
- Depends on
 - what type of value the leaves have
 - the desired statistical result
Spatial Aggregation

- Explore the hierarchical organization
- Create aggregated values at intermediary levels

Aggregation Functions

- add, subtract, multiply, divide, max, min, median, ...
- Depends on
 - what type of value the leaves have
 - the desired statistical result
Spatial Aggregation

- Explore the hierarchical organization
- Create aggregated values at intermediary levels

Aggregation Functions

- add, subtract, multiply, divide, max, min, median, ...
- Depends on
 - what type of value the leaves have
 - the desired statistical result

```
G (18, 27)
  C1 (7, 11)
  C2 (11, 16)
    M1 (7, 11)
    M2 (6, 12)
    M3 (5, 4)
      P1
      P2
      P3
      P4
      P5
(5, 4) (2, 7) (6, 3) (0, 9) (5, 4)
```
Visualization of the Approach - Treemaps

- Scalable hierarchical representation
- Top-down drawing algorithm
- For a given node, split screen space among children

Original algorithm has several evolutions
- Squarified treemap is used here
- Keeps rectangles as close to squares as possible
Treemap to view the Aggregated Hierarchy

G (18, 27)

C1 (7, 11) C2 (11, 16)

M1 (7, 11) M2 (6, 12) M3 (5, 4)

P1 P2 P3 P4 P5

(5, 4) (2, 7) (6, 3) (0, 9) (5, 4)
Treemap to view the Aggregated Hierarchy

G (18, 27)
 C1 (7, 11) C2 (11, 16)
 M1 (7, 11) M2 (6, 12) M3 (5, 4)
 P1 P2 P3 P4 P5
(5, 4) (2, 7) (6, 3) (0, 9) (5, 4)
Treemap to view the Aggregated Hierarchy

G (18, 27)
 C1 (7, 11) C2 (11, 16)
 M1 (7, 11) M2 (6, 12) M3 (5, 4)
 P1 P2 P3 P4 P5
(5, 4) (2, 7) (6, 3) (0, 9) (5, 4)
Treemap to view the Aggregated Hierarchy

G (18, 27)

C1 (7, 11) C2 (11, 16)

M1 (7, 11) M2 (6, 12) M3 (5, 4)

P1 P2 P3 P4 P5

(5, 4) (2, 7) (6, 3) (0, 9) (5, 4)
Treemap Visualization - Description
Time-Slice and Aggregated Hierarchies

- Interaction Techniques: mouse wheel, mouse over
- Detailed information is available in the status bar
Treemap Visualization - KAAPI Trace

Run and **RSteal** states, 2900 processes, 310 processors
Treemap Visualization - Large-Scale

- Synthetic trace with 100 thousand processes
- Two states, four-level hierarchy

A Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100)
B Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100)
C Hierarchy: Site (10) - Cluster (10) - Machine (10) - Processor (100)
D Hierarchy: Site (10) - Cluster(10) - Machine (10) - Processor (100)
E Maximum Aggregation
Treemap Visualization - KAAPI Trace

- 400 processes, 50 machines, one site
- 8 processes per machine
 - Overload of some machines with 2 CPUs
 - Unusual amount of time in Steal state
- Machines with 4 CPUs show normal behavior

A Larger **RSteal** states, for each K-Processor

B Showing only **RSteal** state, for each K-Processor
188 processes, 188 machines, five sites
Different behavior at Porto Alegre
Probably due to the interconnection
 - Latency for Grid’5000 in France: ~10 ms
 - Latency between Porto Alegre and France: ~300 ms
More time spent in work stealing functions
Treemap Visualization - MPI Trace

- Traces from the EP application – NAS Benchmark
- 32 processes – time spent in each MPI operation
- Init and Barrier views indicate a linear implementation
1. Introduction
 - Motivations
 - Examples

2. Trace Fundamentals
 - Fundamentals
 - Pajé

3. Performance Analysis
 - Three-Dimensional Model
 - Temporal & Spatial Aggregation Model

4. Synthesis
 - Research directions
Conclusion

Concepts

- Trace of parallel/distributed applications
- Multi-level trace
- Structural informations
Conclusion

Concepts
- Trace of parallel/distributed applications
- Multi-level trace
- Structural informations

Algorithmic solutions
- Trace collection (quality of tracers, time estimation...)
- Simulation engine based on the state/event model
- Visualization engine (interactivity, extensibility, scalability)
Conclusion

Concepts

- Trace of parallel/distributed applications
- Multi-level trace
- Structural informations

Algorithmic solutions

- Trace collection (quality of tracers, time estimation...)
- Simulation engine based on the state/event model
- Visualization engine (interactivity, extensibility, scalability)

Case studies

- Parallel systems (MPI, Kaapi,...) Distributed middlewares, Wireless networks, Multi-agent systems,...
- Industrial application : Embedded systems, Jboss analysis, resilient protocols
Research directions

Scalability

- Aggregation: in time, space, structure (level, operators,...)
- Clustering: criteria of clustering
Research directions

Scalability
- Aggregation: in time, space, structure (level, operators, ...)
- Clustering: criteria of clustering

User capabilities
- Observation environment: instrumentation, information synthesis
- Visualization environment: visual objects manipulation (time, objects, or structure selection), coherent multiple views
Research directions

Scalability
- Aggregation: in time, space, structure (level, operators, ...)
- Clustering: criteria of clustering

User capabilities
- Observation environment: instrumentation, information synthesis
- Visualization environment: visual objects manipulation (time, objects, or structure selection), coherent multiple views

Global properties and trace mining
- Query language for traces (filtering/aggregation/selection)
- Automatic data mining in the trace (patterns, properties)
Main papers in the domain

- **What to Draw? When to Draw? An Essay on Parallel Program Visualization**, Miller, B.P., JPDC, 18, 1993

Some of our papers

- **Visualisation interactive et extensible de programmes parallèles base de processus Igers**, Benhur de Oliveira Stein PhD 1999
- **Observations et analyses quantitatives multi-niveaux dapplications à objets réparties**, Francois-Gael Ottogalli 2001
- **Some Visualization Model applied to the Analysis of Parallel Applications**, Lucas Mello Schnorr 2009
Thanks for your attention
The slides of the tutorial will be at
http://www.inf.ufrgs.br/~lmschnorr

Triva - http://triva.gforge.inria.fr/

Thanks to: Brazil/France collaboration projects, CAPES, CNPq, COFECUB, CNRS, INRIA, UFSM, UFRGS, UJF, Grenoble INP, and many colleagues providing nice ideas, improving the code and sharing drinks with us