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Abstract

In multi-server distributed queueing systems, the access of stochastically arriving jobs to resources
is often regulated by a dispatcher, also known as load balancer. A fundamental problem consists in
designing a load balancing algorithm that minimizes the delays experienced by jobs. During the last two
decades, the power-of-d-choice algorithm, based on the idea of dispatching each job to the least loaded
server out of d servers randomly sampled at the arrival of the job itself, has emerged as a breakthrough
in the foundations of this area due to its versatility and appealing asymptotic properties. In this paper,
we consider the power-of-d-choice algorithm with the addition of a local memory that keeps track of the
latest observations collected over time on the sampled servers. Then, each job is sent to a server with
the lowest observation. We show that this algorithm is asymptotically optimal in the sense that the load
balancer can always assign each job to an idle server in the large-system limit. This holds true if and
only if the system load λ is less than 1− 1

d
. If this condition is not satisfied, we show that queue lengths

are tightly bounded by
⌈
− log(1−λ)

log(λd+1)

⌉
. This is in contrast with the classic version of the power-of-d-choice

algorithm, where at the fluid scale a strictly positive proportion of servers containing i jobs exists for all
i ≥ 0, in equilibrium. Our results quantify and highlight the importance of using memory as a means to
enhance performance in randomized load balancing.

1 Introduction

In multi-server distributed queueing systems, the access of stochastically arriving jobs to resources, or servers,
is often regulated by a central dispatcher, also known as load balancer. A fundamental problem consists in
designing a load balancing algorithm able to minimize the delays experienced by jobs. In this paper, we are
interested in a setting where a traffic of rate λN needs to be distributed across N unit-rate parallel servers,
each with its own queue, as indicated in Figure 1. The load balancer may rely on feedback information
coming from the servers, which may also be stored in a local memory. Depending on the architecture,
feedback information can arrive at the dispatcher through a push- or pull-based mechanism. In the former,
the dispatcher initiates the communication fetching the requested information from the servers, while in the
latter servers periodically send state information to the dispatcher. This type of model finds applications
in computer and communication systems, hospitals and road networks, and there exists a significant and
growing number of references; see, e.g., the recent works Ying et al. [25], Gardner et al. [9], Gamarnik et al.
[8], Gupta and Walton [11] and the references therein. Nevertheless, it is often difficult to establish whether
an algorithm is better than another because in general the answer strongly depends on the underlying
architecture, application or traffic conditions. For instance, assigning jobs to servers uniformly at random
or in a cyclic fashion provides a very scalable dispatching scheme as it requires neither static nor dynamic
information about servers but the resulting performance is quite poor; the join-the-shortest-queue algorithm
is “optimal” under some conditions, Winston [23] and Weber [22], but its applicability in large systems is
debated due to the high communication overhead between the servers and the dispatcher; the join-the-idle-
queue algorithm, Lu et al. [12], performs very well when N is large, see Stolyar [18], but poorly when λ gets
close to its critical value, and in addition it requires servers to generate messages on their own; for a more
complete discussion, we point the reader to the recent survey in Van der Boor et al. [20].

During the last two decades, the power-of-d-choice algorithm, introduced in Mitzenmacher [15], Vveden-
skaya et al. [21] and referred to as SQ(d), has emerged as a breakthrough in the foundations of this area due
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Figure 1: Architecture of the distributed system for load balancing.

to its versatility and its appealing asymptotic properties. It works as follows: upon arrival of each job, d ≥ 2
servers are contacted uniformly at random, their state (e.g., queue length or workload) is retrieved, and then
the job is dispatched to a server in the best observed state (among the d selected). The first remarkable
property is that in the large-system limit, N → ∞, the stationary proportion of servers with at least i
jobs decreases doubly exponentially in i, though it remains strictly positive for all i. This result has been
generalized in Bramson et al. [3] to the case where service times are heavy-tailed rather than exponential;
see also Bramson et al. [4]. In addition, it turns out that SQ(d) is heavy-traffic optimal in the sense that
it minimizes the workload or queue-length process over all time in the diffusion limit where λ ↑ 1; see Chen
and Ye [5] and Maguluri et al. [14]. In Ying et al. [25], it is also shown that the number of sampled servers
can be dramatically reduced if tasks arrive in batches, which is useful to reduce the communication overhead
between the load balancer and the servers. In Mitzenmacher et al. [16], the power-of-d-choice algorithm is
studied in the case where the load balancer is endowed with a local memory that stores the index and the
state of the least loaded server out of the d sampled each time a job arrives. When the n-th job arrives, the
winning server is chosen among the d servers randomly selected upon its arrival and the server associated to
the observation stored in the memory. The resulting performance is better than the one achieved by SQ(2d).
In the standard memoryless case, if d is allowed to depend on N and d(N) → ∞, SQ(d) has been recently
shown to become fluid (or mean-field) optimal, i.e., optimal in the large-system limit, with a diffusion limit
matching the one of the celebrated join-the-shortest-queue algorithm provided that d(N) grows to infinity
sufficiently fast; see Mukherjee et al. [17], Dieker and Suk [6]. At a fluid scale, optimality here is related to
the ability of assigning each incoming job to an idle server. Also our work aims at achieving fluid optimality
but we will consider d as a constant to keep the communication overhead at a minimum. Towards this pur-
pose, we will show that it is enough to endow the load balancer with a local memory that keeps track of the
latest observation collected on each server. This approach is also close to Mitzenmacher et al. [16], though
different because in that reference the memory can only store one observation. In fact, one observation
(or even a finite number of observations) is not enough to achieve fluid optimality; see Gamarnik et al. [7].
We observe that fluid optimality can also be achieved by the join-the-shortest-queue and join-the-idle-queue
algorithms. However, these are not directly comparable to our algorithm because they are meant to run on
a different architecture (pull-based rather than push-pased).

The fact that we consider a memory with N slots has an impact on our proofs. As discussed in Mitzen-
macher et al. [16], if the memory size is uniformly bounded then the observations in the local memory evolve
much faster than the actual queue lengths, and in this case to establish fluid limit results one can adopt the
ad-hoc proof technique developed in Luczak and Norris [13]. On the other hand, this does not apply to our
case because observations and queue lengths evolve within the same timescale. Also the pull-based version
of join-the-idle-queue, Lu et al. [12], requires a memory with N slots but the main difference with respect
to our approach is that the information stored in the memory is always up to date, which is not the case
within our algorithm.
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1.1 Contribution.

In Algorithm 1, we provide a pseudocode for the proposed power-of-d-choices algorithm with memory and N
servers, referred to as SQ(d,N); some variants of such algorithm are also discussed in the Conclusions. Upon
arrival of one job, the states collected from d randomly chosen servers are stored in the local array Memory.
Then, the job is sent to a server chosen randomly (with replacement) among the ones having the lowest
recorded state. Finally, the observation of the selected server is incremented by one.

Algorithm 1 Power-of-d-choices with memory and N servers.

1: procedure SQ(d,N)
2: Memory[i] = 0, ∀i = 1, . . . , N ;
3: for each job arrival do
4: for i = 1, . . . , d do
5: rnd server = random(1,. . . , N);
6: Memory[rnd server] = get state(rnd server);
7: end for
8: selected server = random(arg mini∈{1,...,N} Memory[i]);
9: send job to(selected server);

10: Memory[selected server]++;
11: end for
12: end procedure

It is intuitive that SQ(d,N) results in more balanced allocations than SQ(d). This follows by using the
coupling argument developed in Theorem 3.5 of Azar et al. [1], which can be adapted to argue that at any
point in time the vector of queue lengths achieved with SQ(d,N) is majorized by the vector of queue lengths
achieved with SQ(d). On the other hand, it is not clear how much such improvement can be. This is the
goal of the present paper.

We investigate the time-varying dynamics of SQ(d,N) by means of a continuous-time Markov chain
XN (t) that keeps track of the proportion of servers with i jobs and for which their last observation collected
by the load balancer is j, for all i and j. To the best of our knowledge, this is the first paper that studies the
dynamics induced by SQ(d,N). The transition rates of XN (t) are non-Lipschitz and a satisfactory analysis
of XN (t) when N is finite seems to be out of reach. Our main contributions are as follows:

1. In Theorem 1, we let N →∞ and identify the fluid limit of XN (t), an absolutely continuous function
that is interpreted as a first-order approximation of the original model XN (t). The fluid limit is
motivated by the fact that real systems are composed of many servers and that it enables a tractable
analysis for the dynamics of SQ(d,N). A fluid limit is necessarily a fluid solution, as introduced
in Definition 1. The proof of the fluid limit is the main technical part of this work and is given in
Section 4. The main difficulty stands in the discontinuous structure of the drift of XN (t); see Section 2.2
for further details. We obtain the fluid limit under a finite buffer assumption, though as discussed in
the Conclusions we believe that this assumption can be relaxed.

2. We then study fixed points, fluid solutions that are constant over time. Theorem 2 shows that there
exists a unique fixed point. The general structure of such fixed point as a function of λ is quite involved
and implies that in equilibrium

a) Fluid queue lengths are uniformly and tightly bounded by j? + 1, where

j?
def
=

⌊
− log(1− λ)

log(λd+ 1)

⌋
. (1)

This is in contrast with SQ(d), where queue lengths are unbounded in the sense that a strictly
positive proportion of servers containing i jobs exists for all i ≥ 0, in the fluid equilibrium; see
Mitzenmacher [15]. Figure 2 illustrates the behavior of the upper bound j? + 1 by varying λ
and d, and shows that the size of the most loaded server will remain very small even when λ is
very close to its critical value. In fact, even when λ = 0.995 and d = 2, at the fluid scale no server
will contain more than just 5 jobs.
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Figure 2: Plots of the maximum queue length, j? + 1, by varying λ and d.

b) The load balancer memory can only contain two possible observations, namely j? and j? + 1.

The case of particular interest is when λ < 1− 1/d, where j? = 0 and thus the load balancer memory
always contains a strictly positive proportion of zeros. This means that the load balancer can always
assign incoming jobs to idle servers, which is clearly the ideal situation for any incoming job. In this
sense we say that SQ(d,N) is asymptotically optimal. When λ ≥ 1−1/d the load balancer memory will
never contain a strictly positive mass of zeros but it will still be able to assign a fraction of jobs to idle
servers ensuring that the average number of jobs in each queue belongs to the interval j? − 1

d + 1
2 ±

1
2

(Proposition 2).

3. Finally, we investigate stability properties of the unique fixed point. Theorem 3 establishes that fluid
solutions converge to such point regardless of the initial condition and exponentially fast, provided
that λ < 1 − 1/d. Thus, in this case all fluid solutions will be eventually asymptotically optimal as
the load balancer memory will eventually be populated by a strictly positive mass of zeros. The proof
of this result, given in Section 5.3, is based on a sort of Lyapunov argument that allows us to show
that the time evolution of fluid solutions is eventually governed by the unique solution of a linear and
autonomous ODE system.

In summary, the proposed algorithm SQ(d,N) has the same communication overhead of its memoryless
counterpart SQ(d) but a much better performance, which is paid at the cost of endowing the controller with
a memory of N slots. It is to be noted that asymptotic optimality can be obtained

2 Performance models

In order to describe the time varying effects of SQ(d,N) on queue lengths, we introduce a stochastic and a
deterministic model. The stochastic model is meant to capture the variability of job interarrival and service
times that is intrinsic in multi-server distributed queueing systems. Due to its intractability, a satisfactory
analysis of such model is out of reach. In this respect, the deterministic model is convenient because it does
enable analytical tractability. In this section, we also show our first result, which states that both models are
connected each other: the deterministic can be interpreted as a first-order approximation of the stochastic.

In the following, we will refer to a server with i jobs and for which its last observation at the controller
is j as an (i, j)-server.

2.1 Markov model.

First, we model the dynamics induced by SQ(d,N) as a Markov chain in continuous-time: arrivals at the
load balancer are assumed to follow a Poisson process with rate λN , with 0 < λ < 1, and service times are
independent, exponentially distributed random variables with unit mean. Servers process jobs according to
any work-conserving discipline and each of them can contain I > 1 jobs at most. A job that is sent to a
server with I jobs is rejected. Each incoming job is thus assigned to one out of N queues as in Algorithm 1.
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Upon each job arrival, we assume that the actions of sampling d servers and assigning the job to some queue
are instantaneous and occur at the same time.

Let (QN (t),MN (t)) = (QNk (t),MN
k (t))Nk=1 ∈ {0, 1, . . . , I}2N+ be the system state at time t ∈ R+: QNk (t)

represents the number of jobs in queue k at time t and MN
k (t) represents the last observation collected from

server k by the controller at time t. To avoid unnecessary technical complication in our proofs and since the
observation associated to server k is no less than the actual number of jobs in k after sampling k for the first
time, for the initial condition we assume that QNk (0) ≤MN

k (0) for all k.
It is convenient to represent the system state by XN (t) = (XN

i,j(t) : 0 ≤ i ≤ j <∞) where

XN
i,j(t)

def
=

1

N

N∑
k=1

1{QNk (t)=i,MN
k (t)=j} (2)

denotes the proportion of (i, j)-servers at time t. It is clear that XN (t) is still a Markov chain with values
in some finite set SN that is a subset of

S def
=
{

(xi,j ∈ R+ : 0 ≤ i ≤ j ≤ I) :

I∑
i=0

I∑
j=i

xi,j = 1
}
. (3)

The transitions and rates of the Markov chain XN (t) that are due to server departures are easy to write
because they have no impact on memory: for x ∈ SN , the transition x 7→ x − ei+1,j

N +
ei,j
N occurs with

rate N xi+1,j where ei,j
def
= (δi,i′ δj,j′ ∈ {0, 1} : 0 ≤ i′ ≤ j′ ≤ I) and δa,b is the Kronecker delta. On the other

hand, the transitions and rates of XN (t) that are due to job arrivals are quite involved and they are omitted.
However, in Section 4.1 we will show how to construct the sample paths of XN (t).

2.2 Fluid model.

For any x ∈ S, let

xi,·
def
=

I∑
j=i

xi,j and x·,j
def
=

j∑
i=0

xi,j

The next definition introduces the fluid model for the dynamics of SQ(d,N).

Definition 1. A function x(t) : R+ → S is said to be a fluid model (or fluid solution) if the following
conditions are satisfied:

1. x(t) is absolutely continuous, and

2.
dxi,j(t)
dt = bi,j(x(t)) almost everywhere, for every i ≥ 0 and j ≥ i,

where b(x)
def
= (bi,j(x) : 0 ≤ i ≤ j ≤ I) is given by

b0,0(x) =λd(x0,· − x0,0)− λ+R0(x) (4)

bi,j(x) =xi+1,j − 1{i>0}xi,j − λdxi,j −Rj−1(x)
xi,j
x·,j

1{x·,j>0}

+ 1{i>0}Rj−2(x)
xi−1,j−1
x·,j−1

1{x·,j−1>0} + 1{j=I,i>0}RI−1(x)
xi−1,I
x·,I

1{x·,I>0}, ∀i, j : i < j (5)

b1,1(x) =− x1,1 + λd(x1,· − x1,1) + λ−R0(x)−R0(x)
x1,1
x·,1

1{x·,1>0} − G1(x) (6)

bi,i(x) =− xi,i + λd(xi,· − xi,i)−Ri−1(x)
xi,i
x·,i

1{x·,i>0} +Ri−2(x)
xi−1,i−1
x·,i−1

1{x·,i−1>0}

+ Gi−1(x)− Gi(x), ∀i = 2, . . . , I − 1 (7)

bI,I(x) =− xI,I +RI−2(x)
xI−1,I−1
x·,I−1

1{x·,I−1>0} + GI−1(x) +RI−1(x)
xI−1,I
x·,I

1{x·,I>0} (8)
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with

Rj(x) = 0 ∨ λ

(
1− d

j∑
i=0

(j + 1− i)xi,·

)
1{
∑j
i=0 x·,i=0} (9)

Gj(x) = λd1{∑j
i=0 x·,i=0, d

∑j
i=0(j+1−i)xi,·≤1}

j∑
i=0

xi,· (10)

and a ∨ b def
= max{a, b}.

The discontinuous function b will be referred to as drift, and to some extent it may be interpreted as
the conditional expected change from state x of the Markov chain XN (t), though this may only be true
when x0,0 > 0, where Rj(x) = 0 for all j and the formulas above become linear admitting a very intuitive
explanation.

Let us provide some intuition for the drift expressions in Definition 1, and let us start with coordi-
nates (0,0). At the moment of each arrival at the load balancer, the states of d servers are sampled and k
idle servers that the load balancer has not yet spotted are sampled with probability

(
d
k

)
(x0,·−x0,0)k(1−x0,·+

x0,0)d−k. Since
∑d
k=1 k

(
d
k

)
(x0,· − x0,0)k(1 − x0,· + x0,0)d−k = d(x0,· − x0,0) and arrivals occur with rate λ,

the average rate in which (0, j)-servers, j ≥ 1, are discovered is λd(x0,· − x0,0) and the rationale behind the
first term in (4) is justified. The dynamics that remain to specify are the ones related to the effective job
assignments, that is where singularities can happen. In order to build a fluid model ‘consistent’ with the
finite stochastic system XN (t), one should take into account the fluctuations of order 1/N that appear when

XN
0,0(t) = 0. These bring discontinuities in the drift. Let zj

def
=
∑
i≥j xi,· and RNj (t)

def
=
∑j
i=0X

N
·,i(t). We

notice that Rj(x)/λ, where Rj(x) is defined in (9), will be interpreted as the proportion of time where the
process (RNj (t))[t,t+ε] tends to stay on zero with the load balancer sampling (·, j′)-servers only, for all j′ > j,
in the limit where N → ∞ first and then ε ↓ 0; this will be formalized in Section 4.3.2. Thus, the term
λ−R0(x) represents the rate in which jobs are assigned to (0,0)-servers, which become (1,1)-servers as soon
as they receive a job. This explains the drift expression in (4). The particular structure of Rj(x) given in
(9) will be the outcome of the stochastic analysis that will be developed in Section 4.

Let us provide some intuition also for the drift expression on coordinates (1,1) (see (6)), as it brings some
additional interpretation that also applies on general coordinates. The first term says that departures from
(1, 1)-servers occur with rate x1,1 and the second one says that new (1, 1)-servers are discovered with rate
λd(x1,· − x1,1). This can be easily justified as done above for the first summation term of b0,0. Then, we
notice that the λ − R0(x) term has been already interpreted above and thus the dynamics that remain to
specify are the ones related to job assignments at (1,1)-servers. According to SQ(d,N), if the load balancer
knows no (0, 0)-server then it randomizes over the set of (·, 1)-servers, and thus within this scenario x1,1
should decrease with rate proportional to

x1,1

x·,1
. This is indeed the case if x·,1 > 0. Thus,

x1,1

x·,1
R0(x) is the

rate in which jobs are assigned to (1,1)-servers when x·,1 > 0. It remains to model the rate in which jobs
are assigned to (1,1)-servers when x·,1 = 0. Since we aim at building a deterministic model ‘consistent’ with
the stochastic one, to model the rate of job assignments to (1,1)-servers when x·,1 = 0 one should take into
account the fluctuations of order 1/N that appear when RN1 (t) = 0. The term G1(x) given in (10) is indeed
such rate, and again it will be the outcome of the stochastic analysis developed in Section 4.

The following proposition will be proven in Section 4.

Proposition 1. Fluid solutions exist.

2.3 Connecting the Markov and the fluid models.

Our first result is the following connection between the stochastic and the fluid models.

Theorem 1. Assume that XN (0) → x0 ∈ S almost surely. With probability one, any limit point of the
stochastic process (XN (t))t∈[0,T ] satisfies the conditions that define a fluid solution.

In view of this result, proven in Section 4, a fluid solution may be interpreted as an accurate approximation
of the time-dependent dynamics of the finite stochastic system XN (t), provided that N is sufficiently large.
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Figure 3: Numerical convergence of the stochastic model XN (t) (continuous lines) to the fluid model x(t)
(dashed line).

Given x ∈ S, let us define the functions

LS(x)
def
=

I∑
i=1

ixi,· LM (x)
def
=

I∑
j=1

jx·,j

We notice that LS(XN (t)) represents the number of jobs in the system at time t scaled by N and that
LM (XN (t)) represents the number of jobs scaled by N the load balancer believes are in the system at time t.
Since the system is symmetric with respect to the servers, the function LS(XN (t)) is also interpreted as the
average number of jobs at time t in each queue.

It is clear that LM (x)−LS(x) =
∑
i≥0
∑
j≥i(j− i)xi,j ≥ 0, which is to be expected because (·, j)-servers

can not contain more than j jobs by definition.
The following corollary of Theorem 1 is immediate.

Corollary 1. Let x(t) be a fluid solution. Assume that (x(t))t∈[0,T ] is a limit point of (XN (t))t∈[0,T ] with
probability one. Then, (LS(x(t)))t∈[0,T ] and (LM (x(t)))t∈[0,T ] are limit points of (LS(XN (t)))t∈[0,T ] and
(LM (XN (t)))t∈[0,T ], respectively, with probability one.

We complement Theorem 1 and Corollary 1 presenting some numerical simulations to support the claim
that the fluid model provides a remarkably accurate approximation of the sample paths of XN (t) even
when N is finite and relatively small. Assuming d = 2, Figure 2.3 plots the time dependent dynamics of
XN (t) and x(t). At time zero, we have chosen XN (0) and x(0) such that XN

0,0(0) = x0,0(0) = 1, which
means that all servers are idle and the load balancer is aware of it. Each curve on these plots is an average
over ten simulations. The fluid (stochastic) model is always represented by dashed (continuous) lines. In
the picture on the left (λ = 0.45), we set N = 100 and notice that the fluid model already captures in an
accurate manner the dynamics of XN (t), which turn out to be concentrated more and more on just three
components: namely (0,0), (0,1) and (1,1). Matter of fact XN

0,0(t) +XN
0,1(t) +XN

1,1(t) gets closer and closer
to 1 when both N and t increase. In the picture on the right (λ = 0.9), dynamics are distributed on several
components and for convenience we have plotted LS(XN (t)) and its fluid model counterpart LS(x(t)). We
notice that LS(x(t)) almost overlaps the trajectory of LS(XN (t)) already when N = 1000. This size is in
agreement with the magnitude of modern distributed computing such as web-server farms or data-centers,
as they are often composed of (tenths of) thousands of servers.
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3 Main results

In this section we focus on fluid solutions and investigate optimality and stability properties. First, we are
interested in fixed points.

Definition 2. We say that a fluid solution x(t) is a fixed point if b(x(t)) = 0 for all t.

When fluid solutions are fixed points, we drop the dependency on t.
Let us define j? as in (1) and for simplicity let us assume that I > j?.
The next result, proven in Section 5.1, establishes the existence and uniqueness of a fixed point and says

that its mass is concentrated only on coordinates of the form (i, j?) and (i, j? + 1).

Theorem 2 (Existence and Uniqueness of Fixed Points). There exists a unique fixed point, say x?. It is
such that x?·,j? + x?·,j?+1 = 1 and

λdx?0,j? = (1 + λd)(1− λ)− 1

(1 + λd)j?
(11a)

x?0,j? + x?0,j?+1 = 1− λ. (11b)

In the fixed point, our first remark is that queue lengths are bounded, by j?+1. As we show in our proof,
an explicit expression for x? seems to be difficult to obtain, though it can be easily computed when λ and d
are fixed numerically. In fact, in Section 5.1 we provide an explicit expression for x?i,j when (i, j) 6= (j?, j?)
as a function of x?j?,j? , and identify x?j?,j? by means of a polynomial equation of degree j? + 1 (see (61)).

A case of particular interest is when j? = 0, which given (1) occurs if and only if λ < 1− 1/d, where we
have the following remark.

Remark 1 (Asymptotic Optimality). If λ < 1 − 1/d, then Theorem 2 implies that x?0,0 = 1 − λ − 1/d,
x?0,1 = 1/d, x?1,1 = λ and x?i,j = 0 on the remaining coordinates. Thus, provided that dynamics converge to
x?, we have shown that a load balancer implementing SQ(d,N) is always aware of the fact that some servers
are idle when N → ∞ and t is sufficiently large because x?0,0 > 0. In this scenario, the load balancer can
certainly assign each incoming job to one of such idle servers, and the job itself would incur zero delay. This
is in fact the ideal situation for any arriving job and in this sense we say that SQ(d,N) is asymptotically
optimal.

The next proposition provides further insights on the system performance at the fixed point x?.

Proposition 2. Let x? as in Theorem 2. Then,

LM (x?) = LS(x?) +
1

d
(12)

and

j? − 1

d
≤ LS(x?) ≤ j? − 1

d
+ 1. (13)

Proposition 2, proven in Section 5.2, provides simple bounds on the average number of jobs in each queue.
It also says that there is a fluid mass equal to 1/d that the load balancer will never spot. In other words, the
samplings performed by the load balancer at each arrival will correctly build the true state of the system up
to an (absolute) error of 1/d.

In Remark 1, we discussed the asymptotic optimality of SQ(d,N) postulating some form of stability for
fluid solutions when t → ∞. The next result shows that fluid solutions are indeed globally stable and that
convergence to x? occurs exponentially fast, provided that λ < 1− 1/d.

Theorem 3 (Global Stability). Let x(t) be a fluid solution. If λ < 1−1/d, then there exist α > 0 and β > 0
independent of t such that

‖x(t)− x?‖ ≤ αe−βt, ∀t (14)

where ‖ · ‖ is the Euclidean norm.
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The proof of Theorem 3 is given in Section 5.3 and is based on the following ‘Lyapunov-type’ argument.
When x0,0(t) = 0, we first show that L̇S(x(t)) ≤ λ − 1 + 1

d , which implies that LS(x(t)) decreases with
derivative bounded away from zero. However, since LS(x(t)) ≥ 0, x0,0(t) must necessarily increase in finite
time, and when it does we show that x(t) is uniquely determined by the unique solution of a linear ODE
system of the form ẋ = A(x − x?). At this point, (14) follows by standard results of ODE theory. When
λ ≥ 1 − 1/d, a generalization of this argument is complicated by the involved structure of x? and the fact
that LS(x(t)) is in general not monotone. However, we conjecture that x? remains globally stable. This is
also confirmed by the numerical simulations shown in Section 2.3.

4 Connection between the fluid and the Markov models

We now prove that the sequence of stochastic processes {(XN (t))t∈[0,T ]}∞N=d converges almost surely, as
N →∞, to a fluid solution, for any T > 0. This proves Proposition 1 and Theorem 1.

Our proof is based on three steps. First, we construct the sample paths of the process XN (t) on each pair
of coordinates. This is achieved using a common coupling technique that defines the processes (XN (t))t∈[0,T ]

for all N ∈ Z+ on a single probability space and in terms of a finite number of “fundamental processes”.
Then, we show that limit trajectories exist and are Lipschitz continuous with probability one. This is done
by using standard arguments, e.g., Gamarnik et al. [7], Tsitsiklis and Xu [19], and Bramson [2]. Finally, we
prove that any such limit trajectory must be a fluid solution, which is the main difficulty. This last step is
based on technical arguments that are specific to the stochastic model under investigation.

4.1 Probability space and coupled construction of sample paths.

We construct a probability space where the stochastic processes {(XN (t))t∈[0,T ]}N≥d are coupled. All the
processes of interest will be a function of the following fundamental processes, all of them independent of
each other:

• Nλ(t), the Poisson processes of job arrivals, with rate λ, defined on (ΩA,AA,PA);

• N1(t), the Poisson processes of potential job departures, with rate 1, defined on (ΩD,AD,PD);

• V pn for all p = 1, . . . , d, (Wn)n, (Un)n, where the random variables V pn , Wn and Un, for all n and p,
are all independent and uniformly distributed over the interval (0, 1]. These are selection processes:
(V pn )n will select the servers to sample at each arrival (see Line 5 of Algorithm 1), (Wn)n will be used
to randomize among the servers having the lowest observations (see Line 8 of Algorithm 1) and (Un)n
will select the server that fires a departure. These 2 + d processes are defined on (ΩS ,AS ,PS);

• (XN (0))N , the process of the initial conditions, where each random variable XN (0) takes values in S,
defined on (Ω0,A0,P0).

Each process {(XN (t))t∈[0,T ]}, with N ≥ d, can be constructed on (Ω,A,P) = (ΩA × ΩD × ΩS ×
Ω0,AA × AD × AS × A0,PA × PD × PS × P0) by using that Nλ(Nt) =st NλN (t), where =st denotes
equality in distribution. This equality ensures that the Poisson process with rate λN , which represents the
arrival process associated to the N -th system, is coupled with the fundamental Poisson process Nλ(t). Since
N1(Nt) =st NN (t), this coupling is also used for the processes of potential job departures.

Now, let tN,λn and tN,1n be the times of the n-th jump of the Poisson processes Nλ(Nt) and N1(Nt),

respectively. Let also XN
i,j(t

−)
def
= lims↑tX

N
i,j(s) and XN

i,·(t)
def
=
∑
j≥iX

N
i,j(t). In view of the coupling discussed

above, we can construct XN
0,0(t) as follows

XN
0,0(t) = XN

0,0(0) +
1

N

Nλ(Nt)∑
n=1

d∑
p=1

I(V
p
n )

(XN0,0(t
N,λ−
n ),XN0,·(t

N,λ−
n )]

(15a)

+
1

N

Nλ(Nt)∑
n=1

(
1{XN0,0(t

N,λ−
n )=0}

d∏
p=1

I(V
p
n )

(XN0,·(t
N,λ
n −),1]

− 1

)
. (15b)
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In the above expression, the term (15a) corresponds to the action of sampling d servers and the term
(15b) corresponds to the action of assigning each job to a server. At the arrival of the n-th job, tN,λn , the
proportion of (0,0)-servers increases by k/N if k (0, j)-servers, for any j > 0, are sampled, which justifies
the term in (15a), and decreases by 1/N except when such proportion is zero immediately before tN,λn and
no idle server is sampled at time tN,λn , which justifies the term in (15b).

Using the random variables Wn and Un, an expression similar to (15) can be written for XN
i,j(t) when

(i, j) ∈ {0, 1, . . . , I}2. Towards this purpose, let us define

RNi (t)
def
=

i∑
j=0

XN
·,j(t), SNi,j(t)

def
=

i−1∑
i′=0

XN
i′,·(t) +

j∑
j′≥i

XN
i,j′(t), ZNi (t)

def
=
∑
k≥i

XN
k,·(t), (16)

which respectively represent i) the proportion of servers that the controller believes have at most i jobs, ii)
the proportion of servers with at most i− 1 jobs, or i jobs but with observation less than or equal to j and
iii) the proportion of servers with at least i jobs, and

MN
i,j,n

def
=

1

N

d∑
p=1

I(V
p
n )

(SNi,j−1(t
N,λ−
n ),SNi,j(t

N,λ−
n )]

, MN
j,n

def
=

j∑
i=0

MN
i,j,n, M

N

j,n
def
=
∑
j′≥j

MN
j′,j,n.

We notice that MN
i,j,n, MN

j,n and M
N

j,n are the scaled-by-N numbers of (i, j)-, (·, j)- and (j, ·)- servers sampled

immediately before time tN,λn , respectively. Furthermore, let also

FNi,j,n
def
= I(Wn(X

N
·,j(t

N,λ−
n )+M

N
j,n−M

N
j,n))

(
∑i−1
k=0X

N
k,j(t

N,λ−
n )−MN

k,j,n,
∑i
k=0X

N
k,j(t

N,λ−
n )−MN

k,j,n]
(17)

if i < j, and

FNj,j,n
def
= I(Wn(X

N
·,j(t

N,λ−
n )+M

N
j,n−M

N
j,n))(∑j−1

k=0X
N
k,j(t

N,λ−
n )−MN

k,j,n,X
N
·,j(t

N,λ−
n )+M

N
j,n−MN

j,n

] (18)

if j ≥ 1. For all i ≤ j, the random variable FNi,j,n will be used to handle the randomness in Line 8 of
Algorithm 1 and thus perform a job assignment to a (i, j)-server, which needs to be chosen in the set of (·, j)-
servers. Specifically, we will use FNi,j,n, with i ≤ j, in the scenario where RNi−1(tN,λ−n ) = 0 and MN

i′,j′,n = 0 for
all i′ < i and j′ ≥ i′, that is the case where the load balancer memory contains no observation less than j and
no server containing less than j jobs is sampled immediately before tN,λn . In this case, according to SQ(d,N),
the n-th job must be routed to a random (·, j)-server, provided that such a server exists. This randomness

is captured by the uniform random variable Wn and we notice that N(XN
·,j(t

N,λ−
n ) + M

N

j,n −M
N
j,n) is the

number of (·, j)-servers, or equivalently the occurrences of j in the memory of the load balancer, at the
arrival of the n-th job and after having performed the associated sampling of the states of d random servers.
Within these conditions, the job arriving at time tN,λn is routed to an (i, j)-server if and only if FNi,j,n = 1.

Provided that i < j, the following formula constructs the process XN (t) on coordinates (i, j)

XN
i,j(t) = XN

i,j(0) +
1

N

N1(Nt)∑
n=1

I(Un)
(SNi+1,j(t

N,1−
n )−XNi+1,j(t

N,1−
n ),SNi+1,j(t

N,1−
n )]

(19a)

−
1{i>0}

N

N1(Nt)∑
n=1

I(Un)
(SNi,j(t

N,1−
n )−XNi,j(t

N,1−
n ),SNi,j(t

N,1−
n )]

(19b)

− 1

N

Nλ(Nt)∑
n=1

d∑
p=1

I(V
p
n )

(SNi,j(t
N,λ−
n )−XNi,j(t

N,1−
n ),SNi,j(t

N,λ−
n )]

(19c)

− 1

N

Nλ(Nt)∑
n=1

1{RNj−1(t
N,λ−
n )=0}F

N
i,j,n

d∏
p=1

I(V
p
n )

(1−ZNj (tN,λ−n ),1]
(19d)

+
1{i>0}

N

Nλ(Nt)∑
n=1

1{RNj−2(t
N,λ−
n )=0}F

N
i−1,j−1,n

d∏
p=1

I(V
p
n )

(1−ZNj−1(t
N,λ−
n ),1]

(19e)
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+
1{j=I,i>0}

N

Nλ(Nt)∑
n=1

1{RNI−1(t
N,λ−
n )=0}F

N
i−1,I,n

d∏
p=1

I(V
p
n )

(1−ZNI (tN,λ−n ),1]
. (19f)

The summations in (19a) and (19b) refer, respectively, to job departures from (i+1, j)- and (i, j)-servers, the
summation in (19c) refers to the case where k (i, j)-servers are sampled (as soon as k of them are sampled,
they become (i, i)-servers, and thus XN

i,j decreases by k/N), and the summations in (19d) and (19e) refer to
the case where a job is assigned to an (i, j)-server and to an (i−1, j−1)-server, respectively. We notice that
a job can be assigned at time tN,λn to an (i, j)-server only if the memory contains no server with observation
less than j − 1 immediately before tN,λn (i.e., RNj−1(tN,λ−n ) = 0) and no (i′, j′)-server, for some i′ < i and for

any j′, has been sampled at time tN,λn . Summation (19f) covers the boundary case where j = I and has the
same intuition of term (19f).

Similarly, when i = j ≥ 1, we have

XN
i,i(t) = XN

i,i(0)− 1

N

N1(Nt)∑
n=1

I(Un)
(SNi−1,I(t

N,1−
n ),SNi,i(t

N,1−
n )]

(20a)

+
1

N

Nλ(Nt)∑
n=1

d∑
p=1

I(V
p
n )

(SNi,i(t
N,λ−
n ),SNi,I(t

N,λ−
n )]

(20b)

+
1{i=1}

N

Nλ(Nt)∑
n=1

1{XN0,0(t
N,λ−
n )+

∑I
j=1M

N
0,j,n>0} (20c)

+
1{i>1}

N

Nλ(Nt)∑
n=1

1{RNi−2(t
N,λ−
n )=0}F

N
i−1,i−1,n

d∏
p=1

I(V
p
n )

(1−ZNi−1(t
N,λ−
n ),1]

(20d)

−
1{i<I}

N

Nλ(Nt)∑
n=1

1{RNi−1(t
N,λ−
n )=0}F

N
i,i,n

d∏
p=1

I(V
p
n )

(1−ZNi (tN,λ−n ),1]
(20e)

+
1{i=I}

N

Nλ(Nt)∑
n=1

1{RNI−1(t
N,λ−
n )=0}F

N
I−1,I,n

d∏
p=1

I(V
p
n )

(1−ZNI (tN,λ−n ),1]
. (20f)

The summation in (20a) refers to job departures from (i, i)-servers, the summation in (20b) refers to the
sampling of k different (i, j)-servers, which become (i, i)-servers immediately after sampling. Finally, the
summations in (20c) and (20e) refer to jobs assignments and have the same intuition of (19d) and (19e).

4.2 Limit trajectories are Lipschitz.

With respect to a set of sample paths ω having probability one, we show that any subsequence of the sequence
{XN (ω, t)}N contains a further subsequence {XNk(ω, t)}k that converges to some Lipschitz continuous
function x. This proves tightness of sample paths.

First, let us introduce the following formulas for quick reference. These can be proven in a straightforward
manner using the strong law of the large numbers and the functional strong law of large numbers for the
Poisson process.

Lemma 1. Let T > 0 and a, b ∈ [0, 1]d such that ak ≤ bk for all k = 1, . . . , d. There exists C ⊆ Ω such that
P(C) = 1 such that

lim
N→∞

sup
t∈[0,T ]

| 1NNλ(Nt, ω)− λt| = 0, lim
N→∞

sup
t∈[0,T ]

| 1NN1(Nt, ω)− t| = 0,

lim
N→∞

1

N

N∑
n=1

d∑
p=1

I(V
p
n (ω))

(ak,bk]
=

d∑
p=1

bk − ak, lim
N→∞

1

N

N∑
n=1

d∏
p=1

I(V
p
n (ω))

(ap,bp]
=

d∏
p=1

(bp − ap)

for all ω ∈ C.
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In the following, we will work on the set C introduced in previous lemma and we will also often use that

lim
N→∞

1

N

Nλ(Nt,ω)∑
n=1

d∏
p=1

I(V
p
n (ω))

(ak,bk]
= λt

d∏
p=1

(bk − ak)

by the renewal theorem.
Let x0 ∈ [0, 1], sequences Rn ↓ 0 and γn ↓ 0, and a constant L > 0 be given. For n ≥ 1, let also

EN (RN , γN , L, x
0)

def
=
{
x ∈ D[0, T ] : |x(0)− x0| ≤ RN , |x(a)− x(b)| ≤ L|a− b|+ γN , ∀a, b ∈ [0, T ]

}
and

Ec(L, x
0)

def
=
{
x ∈ D[0, T ] : x(0) = x0, |x(a)− x(b)| ≤ L|a− b|, ∀a, b ∈ [0, T ]

}
.

The next lemma says that the sample paths along any coordinates (i, j) is approximately Lipschitz
continuous. The proof is omitted because follows exactly the same standard arguments used in Lemma 5.2
of Gamarnik et al. [8], which basically use the fact that the jumps of the Markov chain of interest are of the
order of 1/N and that the evolution of such Markov chain on a given pair of coordinates only depends on
the evolution of such Markov chain on a finite number of other coordinates.

Lemma 2. Fix T > 0, ω ∈ C, and some x0 ∈ S. Suppose that ‖XN (ω, 0) − x0‖ ≤ R̃N , for some sequence
R̃N ↓ 0. Then, there exists sequences RN ↓ 0 and γN ↓ 0 such that

XN
i,j(ω, ·) ∈ EN (RN , γN , L, x

0), ∀(i, j) ∈ Z+ : i ≤ j,∀N

where L = λd+ 1.

The next proposition says that the sample paths along any coordinates (i, j) are sufficiently close to a
Lipschitz continuous function. The proof is omitted because follows exactly the same arguments used in the
proof of Proposition 11 in Tsitsiklis and Xu [19]: it uses Lemma 2 and topological properties of the space
Ec(L, x

0), i.e., sequential compactness (by the Arzelà-Ascoli theorem) and closedness.

Proposition 3. Fix T > 0, ω ∈ C, and some x0 ∈ S. Suppose that ‖XN (ω, 0) − x0‖ ≤ R̃N , for some
sequence R̃N ↓ 0. Then, every subsequence of {XN (ω, ·)}∞N=1 contains a further subsequence {XNk(ω, ·)}∞k=1

such that
lim
k→∞

sup
t∈[0,T ]

|XNk
i,j (ω, t)− xi,j(t)| = 0, ∀i, j ≥ i

where xi,j ∈ Ec(1 + λd, x0) for all i, j ≥ i.

Since Lipschitz continuity implies absolute continuity, we have thus obtained that limit points of XN (t)
are absolutely continuous, and it remains to show that the partial derivatives of x(t) are given by the
expressions in Definition 1.

4.3 Limit trajectories are fluid solutions.

To conclude the proof of Theorem 1, it remains to show that any limit point is a fluid solution, i.e., it satisfies
the conditions given in Definition 1. This is the main technical difficulty.

Fix ω ∈ C and let {XNk(ω, t)}∞k=1 be a subsequence that converges to x, i.e.

lim
k→∞

sup
t∈[0,T ]

‖XNk(ω, t)− x(t)‖ = 0. (23)

Since xi,j must be Lipschitz continuous for all i and j by Proposition 3, it is also absolutely continuous and
thus it remains to show that

ẋi,j(t) = lim
ε→0

1

ε
lim
k→∞

XNk
i,j (t+ ε)−XNk

i,j (t) = bi,j(x(t)), (24)

whenever xi,j(·) is differentiable. This will be done in the following subsections. Now, we introduce the
following technical lemmas.
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Lemma 3. Fix ω ∈ C, ε > 0 and let (23) hold. Then, for all i, j and t,

|XNk
i,j (u)− xi,j(t)| ≤ 2Lε, ∀u ∈ [t, t+ ε]

for all k sufficiently large, where L = λd+ 1.

Proof: By Lemma 2, there exists a sequence γNk ↓ 0 such that XNk
i,j (ω, u) ∈ [xi,j(t)− εL− γNk , xi,j(t) +

εL+ γNk ], for all u ∈ [t, t+ ε]. Thus, for all k sufficiently large, XNk
i,j (ω, u) ∈ [xi,j(t)− 2εL, xi,j(t) + 2εL], for

all u ∈ [t, t+ ε], as desired. 2

As a corollary of Lemma 3, we obtain

|SNki,j (u)− si,j(x(t))| ≤ Cε, ∀u ∈ [t, t+ ε] (25)

for all k sufficiently large, where C
def
= 2L(I + 1)2.

Remark 2. In the following, we will work on any fixed trajectory ω ∈ C but we will write XNk(t), instead
of XNk(ω, t), for simplicity of notation.

Lemma 4. Fix ω ∈ C and let (23) hold. Then,

lim
ε→0

lim
k→∞

1

εNk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

d∑
p=1

I(V
p
n )

(S
Nk
i,j (t

Nk,λ−
n )−XNki,j (t

Nk,λ−
n ),S

Nk
i,j (t

Nk,λ−
n )]

= λdxi,j(t) (26a)

lim
ε→0

lim
k→∞

1

εNk

N1(Nk(t+ε))∑
n=N1(Nkt)+1

I(Un)
(S
Nk
i,j (t

Nk,λ−
n )−XNki,j (t

Nk,λ−
n ),S

Nk
i,j (t

Nk,λ−
n )]

= xi,j(t). (26b)

Proof: Given in the Appendix. 2

4.3.1 Fluid solution on coordinates (0,0).

The next lemma explicits the derivative of x0,0(t) when x0,0(t) > 0. It also implies that x0,0(·) is differentiable
when strictly positive.

Lemma 5. Fix ω ∈ C, let (23) hold and assume x0,0(t) > 0. Then,

ẋ0,0(t) = −λ+ dλ(x0,·(t)− x0,0(t)). (27)

Proof: Choose ε > 0 small enough such that x0,0(t) − 2(I + 1)εL > 0 where L = λd + 1. Such ε exists
because x0,0(t) > 0 by hypothesis. Since tNk,λ−n ∈ (t, t + ε] when n ∈ {Nλ(Nkt) + 1, . . . ,Nλ(Nk(t + ε))},
Lemma 3 implies that for all k sufficiently large we must have

1{XNk0,0 (t
Nk,λ
n −)>0} = 1, ∀n ∈ {Nλ(Nkt) + 1, . . . ,Nλ(Nk(t+ ε))}.

Thus, using (15), we obtain

lim
k→∞

XNk
0,0 (t+ ε)−XNk

0,0 (t) = lim
k→∞

1

Nk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

−1 +

d∑
p=1

I(V
p
n )

(X
Nk
0,0 (t

Nk,λ−
n ),X

Nk
0,· (t

Nk,λ−
n )]

.

A direct application of Lemma 4 concludes the proof. 2

The next two lemmas give properties on the boundary where x0,0(t) = 0.

Lemma 6. Fix ω ∈ C, let (23) hold and assume x0,0(t) = 0 and dx0,·(t) > 1. Then, t is not a point of
differentiability.
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Proof: First of all, we notice that

lim
ε↓0

1

ε
lim
k→∞

XNk
0,0 (t+ ε)−XNk

0,0 (t) ≥ − λ+ dλ(x0,·(t)− x0,0(t)). (28)

This holds true because

XNk
0,0 (t+ ε)−XNk

0,0 (t) ≥ 1

Nk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

d∑
p=1

I(V
p
n )

(X
Nk
0,0 (t

Nk,λ−
n ),X

Nk
0,· (t

Nk,λ−
n )]

− 1, (29)

which is obvious given (15), and because the RHS of (29), once divided by ε, converges to −λ+ dλ(x0,·(t)−
x0,0(t)), by Lemmas 1 and 4, in the limit where k →∞ first and ε ↓ 0.

Now, assume by contradiction that t is a point of differentiability. In this case, the limit in the LHS of
(28) exists and must be equal to ẋ0,0(t). Furthermore, if x0,·(t) > 1/d, the RHS of (28) is strictly positive
and thus ẋ0,0(t) must be strictly positive as well. On the other hand, it is not possible to have ẋ0,0(t) > 0
and x0,0(t) = 0 because the function x0,0 is always non-negative. This contradicts that t is a point of
differentiability of x0,0(·). 2

The next lemma says that the limit trajectory x0,0 remains on zero in a right neighborhood of t, provided
that x0,0(t) = 0 and 0 ≤ x0,·(t) < 1/d.

Lemma 7. Fix ω ∈ C, let (23) hold and assume x0,0(t) = 0 and dx0,·(t) < 1. Then,

∃δ > 0 : x0,0(t′) = 0, ∀t′ ∈ [t, t+ δ]. (30)

Proof: Assume that (30) is false. Then, there exists a sequence tn ↓ t such that tn > tn+1 > t and

x0,0(tn) > 0 and ẋ0,0(tn) > 0

for all n. By Lemma 5, we have ẋ0,0(tn) = −λ+ dλ(x0,·(tn)− x0,0(tn)) and thus x0,·(tn)− x0,0(tn) > 1
d , for

all n, and by continuity

inf
n
x0,·(tn)− x0,0(tn) ≥ 1

d
. (31)

Thus, we get

x0,·(t)− x0,0(t) = lim
n→∞

x0,·(tn)− x0,0(tn) ≥ inf
n
x0,·(tn)− x0,0(tn) ≥ 1

d
.

This contradicts the hypothesis. 2

Summarizing,

• when x0,0(t) > 0, we have proven that ẋ00(t) = b0,0(x(t));

• when x0,·(t) < 1/d and x0,0(t) = 0, we have proven that x0,0(t) remains zero on a right neighborhood,
and thus if t is a point of differentiability, then 0 = ẋ00(t) = b0,0(x(t));

• when x0,·(t) > 1/d and x0,0(t) = 0, we have proven that t is not a point of differentiability;

• when x0,·(t) = 1/d and x0,0(t) = 0, either t is not a point of differentiability or it is. In the latter case,
we must have ẋ00(t) = 0 because x00 is a non-negative function and since also b0,0(x(t)) = 0, we have
indeed ẋ00(t) = b0,0(x(t)) as desired.

Thus, ẋ0,0(t) = b0,0(x(t)) almost everywhere.

4.3.2 Fluid solution on arbitrary coordinates.

We now prove that ẋi,j(t) = bi,j(x(t)) almost everywhere with respect to arbitrary coordinates (i, j). This
requires a more in-depth analysis of the stochastic process XN (t).

Let

Rj(t)
def
= lim

ε↓0
lim
k→∞

1

εNk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

1{
R
Nk
j (t

Nk,λ−
n )=0

} d∏
p=1

I(V
p
n )

(1−ZNkj+1(t
Nk,λ−
n ),1]

, (32)
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which is interpreted as the proportion of time where the process RNkj (tNk,λ−n ) remains on zero in the interval
[t, t+ ε] while the load balancer keeps sampling only (j′, ·)-servers for all j′ > j in the limε↓0 limk→∞ limit.
In the following, we show that Rj(t) = Rj(x(t)), where Rj is given in Definition 1.

The structure of R0 is easily obtained as a corollary of the analysis developed in previous section.

Lemma 8. Fix ω ∈ C, let (23) hold, and assume that x(t) is differentiable. Then, R0(t) exists and is given
by

R0(t) = λ(1− d x0,·(t)) 1{x0,0(t)=0}1{d x0,·(t))<1}. (33)

Proof: First, we notice that if x0,0(t) > 0, then necessarily R0(t) = 0. In fact, if for any j,
∑j
i=0 x·,i(t) > 0,

then we can find ε > 0 such that
∑j
i=0 x·,i(t)−2L(I+1)2ε > 0. Since tNk,λ−n ∈ (t, t+ε] when n ∈ {Nλ(Nkt)+

1, . . . ,Nλ(Nk(t+ ε))}, Lemma 3 implies that for all k sufficiently large we must have RNkj (tNk,λ−n ) > 0, and
therefore Rj(t) = 0 in this case.

Thus, assume that x0,0(t) = 0. In this case, since t is a point of differentiability, we necessarily have
ẋ0,0(t) = 0 and, by Lemma 6, necessarily d x0,·(t) ≤ 1. This gives the indicator functions in (33). Further-
more, recalling the structure of XN

0,0(t) given in (15), we have

0 = ẋ0,0(t)

= lim
ε↓0

1

ε
lim
k→∞

XNk
0,0 (t+ ε)−XNk

0,0 (t)

= lim
ε↓0

1

ε
lim
k→∞

1

Nk

Nλ(Nk(t+ε))∑
n=1+Nλ(Nkt)

1{XNk0,0 (t
Nk,λ−
n )=0}

d∏
p=1

I(V
p
n )

(X
Nk
0,· (t

Nk,λ
n −),1]

− 1 +

d∑
p=1

I(V
p
n )

(X
Nk
0,0 (t

Nk,λ−
n ),X

Nk
0,· (t

Nk,λ−
n )]

= λd(x0,·(t)− x0,0(t))− λ+R0(t).

In the last equality we have used Lemma 4 and the definition of R0. This equation gives (33). 2

The next lemma provides an expression for Rj(t) for all j and shows that Rj(t) = Rj(x(t)). Our proof,
given in the appendix, is based on Lemma 8, which allows us to establish the existence and find the structure
of Rj in an iterative manner.

Lemma 9. Fix ω ∈ C, let (23) hold and assume that x(t) is differentiable. Then, for all j, Rj(t) exists and
is given by

Rj(t) = 0 ∨ λ

(
1− d

j∑
i=0

(j + 1− i)xi,·(t)

)
1{
∑j
i=0 x·,i(t)=0}. (34)

For any i, j ≥ i, let us define

Γε,ki,j (t)
def
=

1

εNk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

1{
R
Nk
j (t

Nk,λ−
n )=0

}FNki,j+1,n

d∏
p=1

I(V
p
n )

(1−ZNkj+1(t
Nk,λ−
n ),1]

(35)

and Γi,j(t)
def
= limε↓0 limk→∞ Γε,ki,j (t), which is interpreted as the proportion of time where the process

RNkj (tNk,λ−n ) remains on zero in the interval [t, t + ε] while the load balancer samples (j′, ·)-servers only,
for all j′ > j, and assigns jobs to (i, j + 1)-servers only when the proportion of (·, j + 1)-servers vanishes in
the limε↓0 limk→∞ limit.

The next lemma, proven in the appendix, gives an expression for Γi,j(t) when x·,j+1(t) > 0 and will allow
us to identify the limit behavior of terms (19d)-(19f) and (20d)-(20f).

Lemma 10. Fix ω ∈ C and let (23) hold. Assume that x(t) is differentiable and that x·,j+1(t) > 0. Then,

Γi,j(t) =
xi,j+1(t)

x·,j+1(t)
Rj(t). (36)

for all i, j such that i ≤ j + 1.
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With the lemmas above, we can identify the asymptotic behavior (in the limε↓0 limk→∞ limit) of each

summation appearing in the expressions of XNk
i,j (t+ ε)−XNk

i,j (t) and XNk
i,i (t+ ε)−XNk

i,i (t) that are obtained
using (19) and (20), respectively.

Let us first treat the case i < j.
Applying Lemma 10 in (19), when x(t) is differentiable we obtain

ẋi,j(t) = lim
ε→0

1

ε
lim
k→∞

XNk
i,j (t+ ε)−XNk

i,j (t)

=xi+1,j(t)− 1{i>0}xi,j(t)− λdxi,j(t)

− xi,j(t)

x·,j(t)
Rj−1(t) 1{x·,j(t)>0}

+ 1{i>0}
xi−1,j−1(t)

x·,j−1(t)
Rj−2(t) 1{x·,j−1(t)>0}

+ 1{j=I,i>0}
xi−1,I(t)

x·,I(t)
RI−1(t) 1{x·,I(t)>0}

+ lim
ε↓0

lim
k→∞

−Γε,ki,j−1(t)1{
∑j

j′=0
x·,j′ (t)=0} + Γε,ki−1,j−2(t)1{i>0,

∑j−1

j′=0
x·,j′ (t)=0} (37a)

where the first three terms follow by applying Lemma 4 to terms (19a), (19b) and (19c). Now, assume

i = 0 and j > 0. Then, if
∑j
j′=0 x·,j′(t) = 0, then the first six terms of previous equation and the second

summation term in (37a) are equal to zero, and if in addition t is a point of differentiability, then necessarily
ẋi,j(t) = 0 (because xi,j(t) = 0), which means that necessarily

lim
ε↓0

lim
k→∞

Γε,ki,j−1(t)1{
∑j

j′=0
x·,j′ (t)=0}

exists and is equal to zero. Assume i > 0 and j > i. If
∑j
j′=0 x·,j′(t) = 0, then the first six terms of previous

equation again coincide with zero and if in addition t is a point of differentiability, then necessarily

lim
ε↓0

lim
k→∞

−Γε,ki,j−1(t)1{
∑j

j′=0
x·,j′ (t)=0} + Γε,ki−1,j−2(t)1{i>0,

∑j−1

j′=0
x·,j′ (t)=0} (38)

exists and is equal to zero. Furthermore, if
∑j−1
j′=0 x·,j′(t) = 0 and x·,j(t) > 0, then (38) still exists and is equal

to zero as a consequence of the fact that we have inductively shown that limε↓0 limk→∞ Γε,ki−1,j−2(t)1{i>0,x·,j−1(t)=0} =

0. Therefore, the limit in (37a) is always equal to zero. We have thus shown that ẋi,j = bi,j(xi,j) when i < j.

The case i = j > 0 is treated in a similar manner. Let Gε,ki (t)
def
= 1{

∑i
j′=0

x·,j′ (t)=0}Γ
ε,k
i,i−1(t) and

Gi
def
= Gi(t)

def
= limε↓0 limk→∞Gε,ki (t). In the following, we show that Gi(t) = Gi(x(t)), where Gi is given in

Definition 1.
Applying Lemma 4 to handle terms (20a) and (20b), rewriting term (20c) as

1{XN0,0(t
N,λ−
n )+

∑I
j=0M

N
0,j,n>0} =1− 1{XN0,0(t

N,λ−
n )=0}1{

∑I
j=0M

N
0,j,n=0}

=1− 1{
X
Nk
0,0 (t

Nk,λ−
n )=0

} d∏
p=1

I(V
p
n )

(1−ZNk1 (t
Nk,λ−
n ),1]

,

and applying Lemma 10 to handle terms (20d), (20e) and (20f), when x(t) is differentiable we obtain

ẋi,i(t) = lim
ε→0

1

ε
lim
k→∞

XNk
i,i (t+ ε)−XNk

i,i (t) (39a)

=− xi,i(t) + λd(xi,·(t)− xi,i(t)) (39b)

+ 1{i=1}(λ−R0(t)zd1) (39c)

+ 1{i>1}Ri−2(t)
xi−1,i−1(t)

x·,i−1(t)
1{x·,i−1(t)>0} (39d)
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− 1{i<I}Ri−1(t)
xi,i(t)

x·,i(t)
1{x·,i(t)>0} (39e)

+ 1{i=I}RI−1(t)
xI−1,I(t)

x·,I(t)
1{x·,I(t)>0} (39f)

+ lim
ε↓0

lim
k→∞

−Gε,ki (t)1{i<I} +Gε,ki−1(t)1{i>1}. (39g)

Now, assume that i = 1. If t is a point of differentiability and x0,0(t) + x·,1(t) = 0, then we must have
ẋ1,1(t) = 0, and thus necessarily

G1(t) = (λdx1,·(t) + λ−R0(t)) 1{x0,0(t)+x·,1(t)=0} = λd (x1,·(t) + x0,·(t)) 1{x0,0(t)+x·,1(t)=0}.

In the last equality we have used Lemma 8 and that dx0,·(t) ≤ 1, which holds true because t is a point of

differentiability (Lemmas 6 and 7). When i = 2, . . . , I−1, if t is a point of differentiability and
∑i
j′=0 x·,j′(t) =

0, then necessarily ẋi,i(t) = 0 and proceeding in an iterative manner, we obtain

Gi(t) = (Gi−1(t) + λdxi,·(t)) 1{
∑i
i′=0

x·,i′ (t)=0} = λd1{
∑i
i′=0

x·,i′ (t)=0}

i∑
i′=0

xi′,·(t).

The following two lemmas are a generalization of Lemmas 6 and 7 and show under which conditions x(t)
is differentiable. The proofs use the same arguments in those lemmas and therefore they are omitted.

Lemma 11. Fix ω ∈ C, let (23) hold and assume
∑j
j′=0 x·,j′(t) = 0 and d

∑j
i=0(j+ 1− i)xi,·(t) > 1. Then,

t is not a point of differentiability.

Lemma 12. Fix ω ∈ C, let (23) hold and assume
∑j
j′=0 x·,j′(t) = 0 and d

∑j
i=0(j+ 1− i)xi,·(t) < 1. Then,

∃δ > 0 :

j∑
j′=0

x·,j′(t
′) = 0, ∀t′ ∈ [t, t+ δ]. (40)

Now, we notice that the expressions of Rj(t) and Gi(t) obtained so far assumed that t was a point of

differentiability. However, if
∑j
j′=0 x·,j′(t) = 0, previous lemmas say that this can only be true if d

∑j
i=0(j+

1− i)xi,·(t) ≤ 1. Thus, those expressions make sense only in that case. This does not change the structure
of Rj(t) obtained in (34) because

Rj(t)× 1{d∑j
i=0(j+1−i)xi,·(t)≤1} = Rj(t) = Rj(x(t)).

but on the other hand we must have Gi(t) = Gi(x(t)), where Gi is defined in (10). We have thus shown that
ẋi,i(t) = bi,i(x).

5 Proofs of Theorems 2 and 3

Let us introduce the intervals
In

def
=
[
λ∗n, λ

∗
n+1

)
, ∀n ≥ 0

where λ∗0 = 0 and λ∗n, for n ≥ 1, is the unique root in (0, 1] of the polynomial equation

(1− z)(zd+ 1)n = 1.

The first values of λ∗n are λ∗1 = 1 − 1
d and λ∗2 = 1

2 −
1
d +

√
1
4 + 1

d . We notice that j?, defined in (1), is the

unique integer such that λ ∈ Ij? . In fact, λ ∈ In if and only if

n = − log(1− λ∗n)

log(λ∗nd+ 1)
≤ − log(1− λ)

log(λd+ 1)
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and

n+ 1 = −
log(1− λ∗n+1)

log(λ∗n+1d+ 1)
> − log(1− λ)

log(λd+ 1)
,

which thus implies n =
⌊
− log(1−λ)

log(λd+1)

⌋
= j?.

Let x(t) be a fluid solution. Since the xi,j(t)’s are absolutely continuous, both LS(x(t)) and LM (x(t)) are
absolutely continuous as well, and thus almost everywhere differentiable. When t is a point of differentiability,
it is clear that

L̇S(x(t)) =

I∑
i=1

i bi,·(x(t)), L̇M (x(t)) =

I∑
j=1

j b·,j(x(t)). (41)

The following trivial lemma gives a differentiability property of fluid solutions.

Lemma 13. Let x(t) be a fluid solution. If
∑j
i=0 x·,i(t) = 0, then t is a point of differentiability if and only

if

d

j∑
i=0

(j + 1− i)xi,·(t) ≤ 1. (42)

The following proposition will be crucial to prove both Theorems 2 and 3.

Proposition 4. Let x(t) be a fluid solution. If t is a point of differentiability, then

L̇S(x(t)) = x0,·(t)− 1 + λ. (43)

Proof: Let j∗(t)
def
= min{j ≥ 0 : x·,j(t) > 0}. To prove (43), we consider the cases j∗(t) ≥ 1 and j∗(t) = 0

separately. Let us drop the dependency on t for notational simplicity.
First, assume that j∗ ≥ 1. Using Definition 1, we obtain

b1,·(x) =x2,· − x1,· + λdx0,· −R0(x)
x1,1
x·,1

1{x·,1>0} − G1(x) (44a)

+
∑
j≥2

Rj−2(x)
x0,j−1
x·,j−1

1{x·,j−1>0} −Rj−1(x)
x1,j
x·,j

1{x·,j>0} + 1{j=I}RI−1(x)
x0,I
x·,I

1{x·,I>0} (44b)

bi,·(x) =xi+1,· − xi,· −Ri−1(x)
xi,i
x·,i

1{x·,i>0} +Ri−2(x)
xi−1,i−1
x·,i−1

1{x·,i−1>0} + Gi−1(x)− Gi(x)1{i<I} (44c)

+
∑
j≥i+1

Rj−2(x)
xi−1,j−1
x·,j−1

1{x·,j−1>0} −Rj−1(x)
xi,j
x·,j

1{x·,j>0} + 1{j=I}RI−1(x)
xi−1,I
x·,I

1{x·,I>0}, (44d)

that is,

bi,·(x) =xi+1,· − xi,· − λdxi,· +Rj∗−1(x)
xi−1,j∗

x·,j∗
−Rj∗−1(x)

xi,j∗

x·,j∗
, ∀i = 1, . . . , j∗ − 1 (45a)

bj∗,·(x) =xj∗+1,· − xj∗,· + Gj∗−1(x)−Rj∗−1(x)
xj∗,j∗

x·,j∗
+Rj∗−1(x)

xj∗−1,j∗

x·,j∗
(45b)

bj∗+1,·(x) =xj∗+2,· − xj∗+1,· +Rj∗−1(x)
xj∗,j∗

x·,j∗
(45c)

bi,·(x) =xi+1,· − xi,·, ∀i ≥ j∗ + 2. (45d)

Since t is a point of differentiability, then d
∑j
i=0(j + 1− i)xi,· ≤ 1 (by Lemma 13) and thus

Gj∗−1(x) = λd

j∗−1∑
i=0

xi,· Rj∗−1(x) = λ− λd
j∗−1∑
i=0

(j∗ − i)xi,· (46)

Substituting these expressions in (41), we get

L̇S(x) =
∑
i≥1

i(xi+1,· − xi,·) +

j∗−1∑
i=1

i

(
−λdxi,· +Rj∗−1(x)

xi−1,j∗

x·,j∗
−Rj∗−1(x)

xi,j∗

x·,j∗

)
(47a)
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+ j∗

λd j∗−1∑
i′=0

xi′,·(t)−Rj∗−1(x)
xj∗,j∗

x·,j∗
+Rj∗−1(x)

xj∗−1,j∗

x·,j∗

 (47b)

+ (j∗ + 1)Rj∗−1(x)
xj∗,j∗

x·,j∗
(47c)

=−
∑
i≥1

xi,· + λd

j∗−1∑
i=0

(j∗ − i)xi,· +Rj∗−1(x)

j∗−1∑
i=1

i

(
xi−1,j∗

x·,j∗
− xi,j∗

x·,j∗

)
(47d)

+ j∗Rj∗−1(x)
xj∗−1,j∗

x·,j∗
+Rj∗−1(x)

xj∗,j∗

x·,j∗
(47e)

=x0,· − 1 + λd

j∗−1∑
i=0

(j∗ − i)xi,· +Rj∗−1(x) (47f)

=x0,· − 1 + λ (47g)

as desired.
Now, assume that j∗ = 0. In this case, x0,0 > 0 and the drift b(x) given in Definition 1 takes the linear

form

b0,0(x) = − λ+ λd(x0,· − x0,0) (48a)

b0,1(x) =x11 − λdx0,1 (48b)

b1,1(x) = − x11 + λ+ λd(x1,· − x1,1) (48c)

b0,j(x) =x1,j − λdx0,j , j > 1 (48d)

bi,j(x) =xi+1,j − xi,j − λdxi,j , j > i, i ≥ 1 (48e)

bi,i(x) = − xi,i + λd(xi,· − xi,i), i > 1. (48f)

By taking summations in (48), we obtain

b1,·(x) =λ+ x2,· − x1,· (49a)

bi,·(x) =xi+1,·1{i+1≤I} − xi,· ∀i ≥ 2. (49b)

Thus,

L̇S(x) =
∑
i≥1

ibi,·(x) = λ+
∑
i≥1

i(xi+1,·1{i+1≤I} − xi,·) = x0,· − 1 + λ (50)

where in the last equality we have used the normalizing condition. 2

5.1 Existence and uniqueness of fixed points.

Assume that x is a fixed point. Then the system of equations

bi,j(x) = 0, ∀i, j (51)

must be satisfied.
Let j∗

def
= j∗(x)

def
= min{j ≥ 0 : x·,j > 0}. By Definition 1, this means that Rj(x) = 0 for all j ≥ j∗.

If j∗ = 0, then x0,0 > 0 and the drift b(x) given in Definition 1 takes the linear form given in (48).
Removing one equation from (51) and adding the normalizing condition

∑
i,j xi,j = 1, we obtain a linear

system composed of (I + 1)(I + 2)/2 independent equations and (I + 1)(I + 2)/2 unknowns. It is easy to see
that x?, where x?0,0 = 1 − λ − 1/d, x?0,1 = 1/d, x?1,1 = λ and x?i,j = 0 on the remaining coordinates, is the
unique solution of such system. It is also clear that x? ∈ S and x?0,0 > 0 if and only if λ < 1 − 1/d = λ∗1.
Therefore, in the following we assume that j∗ ≥ 1.

If (51) holds true, then we must also have

b·,j(x) = 0, ∀j. (52)
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Using Definition 1, we obtain

b·,1(x) =− λdx0,1 −R0(x) 1{x·,1>0} + λd(x1,· − x1,1) + λ−R0(x)− G1(x) (53a)

b·,j(x) =λdxj,· − λdx·,j −Rj−1(x) 1{x·,j>0} +Rj−2(x) 1{x·,j−1>0} + Gj−1(x)− Gj(x)

b·,I(x) =RI−2(x) 1{x·,I−1>0} + GI−1(x)−
I−1∑
i=0

λdxi,I . (53b)

which can be rewritten as

b·,j(x) =0, ∀j = 0, . . . , j∗ − 1 (54a)

b·,j∗(x) =λdxj∗,· − λdx·,j∗ −Rj∗−1(x) + Gj∗−1(x) (54b)

b·,j∗+1(x) =λdxj∗+1,· − λdx·,j∗+1 +Rj∗−1(x) (54c)

b·,j(x) =λdxj,· − λdx·,j , ∀j ≥ j∗ + 2. (54d)

Summing (54) for all j ≥ j∗ + 2, we obtain

0 =

I∑
j=j∗+2

xj,· − x·,j = −
j∗+1∑
i=0

∑
j≥j∗+2

xi,j

and since x is composed of non-negative components only, we must have xi,j = 0 when i ∈ {0, 1, . . . , j∗ + 1}
and j ∈ {j∗+2, . . . , I}. Using this in (54) when j = j∗+2, we obtain that necessarily xj,j′ = 0 for all j′ > j.
Using again this argument when j = j∗ + 3, we obtain xj,j′ = 0 for all j′ > j∗ + 3, and so forth for all j.
We have thus shown that the only non-zero elements of x can be on coordinates (i, j∗) and (i, j∗ + 1), for
all i < j∗ + 1, and (i, i) for all i ≥ j∗. Substituting these properties in (5), we also obtain bj−1,j(x) = xj,j ,
provided that j ≥ j∗ + 2. On the other hand, (51) must hold true and therefore xj,j = 0 for all j ≥ j∗.
Thus, we have shown that the only non-zero elements of x can be on coordinates (i, j∗) and (i, j∗ + 1), for
all i ≤ j∗ + 1. In this case, (51) simplifies to

0 =bi,j∗(x) = xi+1,j∗ − 1{i>0}xi,j∗ − λdxi,j∗ −Rj∗−1(x)
xi,j∗

x·,j∗
, ∀i < j∗ (55a)

0 =bi,j∗+1(x) = xi+1,j∗+1 − 1{i>0}xi,j∗+1 − λdxi,j∗+1 + 1{i>0}Rj∗−1(x)
xi−1,j∗

x·,j∗
, ∀i < j∗ + 1 (55b)

0 =bj∗,j∗(x) = −xj∗,j∗ −Rj∗−1(x)
xj∗,j∗

x·,j∗
+ λd(1− xj∗,j∗ − xj∗+1,j∗+1) (55c)

0 =bj∗+1,j∗+1(x) = −xj∗+1,j∗+1 +Rj∗−1(x)
xj∗,j∗

x·,j∗
(55d)

where Rj∗−1(x) = λ − λd
∑j∗−1
i=0 (j∗ − i)(xi,j∗ + xi,j∗+1) ≥ 0 by Lemma 13 because a fixed point is a fluid

solution that is everywhere differentiable. In the remainder of the proof, we show that the system in (55)
admits a unique solution that satisfies the normalizing condition x·,j∗ +x·,j∗+1 = 1 and x·,j∗ > 0 if and only
if λ ∈ Ij∗ , and that such solution satisfies as well the properties given in the statement of Theorem 2. This
will conclude our proof.

Using that x0,j∗ + x0,j∗+1 = 1− λ (by Proposition 4), equations (55) imply that

0 =b0,j∗(x) + b1,j∗+1(x) = y1 − λd(1− λ)− (λd)2x0,j∗+1

0 =bi,j∗(x) + bi+1,j∗+1(x) = xi+1,j∗ + xi+2,j∗+1 − (1 + λd)(xi,j∗ + xi+1,j∗+1), ∀i = 1, . . . , j∗ − 1

0 =bj∗,j∗(x) + bj∗+1,j∗+1(x) = λd(1− xj∗,j∗ − xj∗+1,j∗+1)− (xj∗,j∗ + xj∗+1,j∗+1).

Letting yi
def
= xi,j∗ + xi+1,j∗+1, the key observation is that

y1 =λd(1− λ) + (λd)2x0,j∗+1 (57a)

yi+1 =(1 + λd)yi, ∀i = 1, . . . , j∗ − 1 (57b)
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yj∗ =λd(1− yj∗), (57c)

and we notice that the last equation is autonomous. Previous equations imply that

yj∗−i =
yj∗

(1 + λd)i
, ∀i = 1, . . . , j∗ − 1 (58a)

yj∗ =
λd

1 + λd
(58b)

and using (57a) we obtain the equation

λd(1− λ) + (λd)2x0,j∗+1 =
λd

(1 + λd)j∗

which gives

λdx0,j∗+1 = λ− 1 +
1

(1 + λd)j∗
.

Since it must hold true that x0,j∗ + x0,j∗+1 = 1− λ (by Proposition 4), we also obtain

λdx0,j∗ = (1 + λd)(1− λ)− 1

(1 + λd)j∗
.

Now, in order for such x to be feasible, we need that both x0,j∗ and x0,j∗+1 are non-negative. Using previous
expressions, it is not difficult to see that x0,j∗ ≥ 0 and x0,j∗+1 ≥ 0 if and only if λ ∈ cl(Ij∗), where cl(A)
denotes the closure of set A.

We notice that the normalizing condition can be written as 1 = x0,j∗ + x0,j∗+1 + x1,j∗+1 +
∑j∗

i=1 yi and
using the expressions above it is not difficult to check that it is indeed satisfied.

We now proceed with the construction of the fixed point. Substituting the properties obtained so far, we
notice that

0 = bj∗+1,j∗+1(x)− bj∗,j∗(x) = 2xj∗,j∗ + 2Rj∗−1(x)
xj∗,j∗

x·,j∗
− 2λd

1 + λd

and since necessarily xj∗,j∗ > 0, which is immediately implied by (55c), we obtain

Rj∗−1(x)

x·,j∗
=

1

xj∗,j∗

λd

1 + λd
− 1.

Using this equation in (55) and recalling that x0,j∗ has been already explicited, we get

0 =b0,j∗(x) = x1,j∗ − λdx0,j∗ − x0,j∗
(

1

xj∗,j∗

λd

1 + λd
− 1

)
0 =bi,j∗(x) = xi+1,j∗ − xi,j∗ − λdxi,j∗ − xi,j∗

(
1

xj∗,j∗

λd

1 + λd
− 1

)
, ∀i = 1 . . . , j∗ − 1

and thus,

x1,j∗ =

(
λd− 1 +

1

xj∗,j∗

λd

1 + λd

)
x0,j∗

xi+1,j∗ = λd

(
1 +

1

xj∗,j∗

1

1 + λd

)
xi,j∗ = (λd)i

(
1 +

1

xj∗,j∗

1

1 + λd

)i
x1,j∗

for all i = 1, . . . , j∗−1. In particular, when i = j∗−1, the last equation allows us to identify xj∗,j∗ by means
of the following polynomial equation

F (xj∗,j∗)
def
= (λd)j

∗−2
(

1 +
1

xj∗,j∗

1

1 + λd

)j∗−1(
λd− 1 +

1

xj∗,j∗

λd

1 + λd

)(
(1 + λd)(1− λ)− 1

(1 + λd)j∗

)
− xj∗,j∗ = 0. (61)

Since xi+1,j∗+1 = yi − xi,j∗ and the value of yi has been already explicited for each i, to conclude the proof
of existence and uniqueness of a solution of (55), it remains to show that previous equation admits a unique
root in (0,1] when λ ∈ Ij∗ . This property follows easily once noted that limx↓0 F (x) = +∞, F (1) < 0 if
λ ∈ Ij∗ , and that F (x) is strictly decreasing if λ ∈ Ij∗ .
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5.2 Bounds on fluid mass.

Whenever x(t) is differentiable, (46) and (54) imply

L̇M =

I∑
j=1

j b·,j(x) (62a)

=j∗ (λdxj∗,· − λdx·,j∗ −Rj∗−1(x) + Gj∗−1(x)) (62b)

+ (j∗ + 1) (λdxj∗+1,· − λdx·,j∗+1 +Rj∗−1(x)) (62c)

+ λd
∑

j≥j∗+2

j(xj,· − x·,j) (62d)

=λ+ λd

j∗−1∑
i=0

ixi,· + λd
∑
j≥j∗

j(xj,· − x·,j) (62e)

=λ+ λdLS − λdLM . (62f)

In a fixed point x, we must have L̇M = 0. This condition gives (12) and since x·,j? + x·,j?+1 = 1 (by
Theorem 2) we obtain

LS(x) = LM (x)− 1

d
= j?x·,j? + (j? + 1)x·,j?+1 −

1

d
= j? + x·,j?+1 −

1

d

and (13) holds true because x?·,j?+1 ∈ [0, 1].

5.3 Global stability.

To prove Theorem 3, we first introduce the following lemma.

Lemma 14. Assume λ < 1− 1
d . Let x(t) be a fluid solution such that x0,0(t) > 0 for all t ≥ 0. Then, (14)

holds true.

Proof: If x0,0 > 0, then the drift b(x) has the linear form given in (48). Thus, if x0,0(t) > 0 for all t ≥ 0,
then the fluid solution x(t) is uniquely determined by the ODE system

ẋ0,0 = − λ+ λd(x0,· − x0,0) (63a)

ẋ0,1 =x11 − λdx0,1 (63b)

ẋ1,1 = − x11 + λ+ λd(x1,· − x1,1) (63c)

ẋ0,j =x1,j − λdx0,j , j > 1 (63d)

ẋi,j =xi+1,j − xi,j − λdxi,j , j > i, i ≥ 1 (63e)

ẋi,i = − xi,i + λd(xi,· − xi,i), i > 1. (63f)

We have already shown in Section 5.1 that x? is the unique fixed point of such linear system. The equations
(63b)-(63f) do not depend on x0,0 and thus form an autonomous ODE system. This means that we can
safely remove the equation (63a) and recall that x0,0(t) can be uniquely obtained by using the normalizing
condition, i.e., x0,0(t) = 1−

∑
(i,j)6=(0,0) xi,j(t). The ODE system (63b)-(63f) has the linear form ẋ = Ax+ p

where A is a triangular matrix and p is a column vector, and it is clear that the eigenvalues of A are −1,−λd
and −(1 + λd). Since the eigenvalues of A are strictly negative, it follows from standard results in ODE
theory that x(t) = x? + eAt(x(0)−x?). Thus, (14) follows by the norm bound on the exponential matrix. 2

For the fluid solution x(t), either x0,0(t) > 0 for all t ≥ 0, in which case Theorem 3 follows directly by
previous lemma, or x0,0(t0) = 0 for some t0, that is the case we study in the following. Without loss of
generality, let us assume t0 > 0.

If t0 is a point of differentiability of x0,0(·), then Lemma 13 implies that dx0,·(t0) ≤ 1. If t0 is not a
point of differentiability of x0,0(·), then we still have dx0,·(t0) ≤ 1 because either there exists δ such that
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x0,0(t) = 0 for all t ∈ [t0 − δ, t0] and the inequality holds true again by Lemma 13 or there exists a sequence
tn ↑ t0, n ≥ 1, such that tn < tn+1 < t0 where x0,0(tn) > 0 and 0 > ẋ0,0(tn) = dλ(x0,·(tn) − x0,0(tn)) − λ
(by (4)) for all n, which implies dλx0,·(t0)− λ = limn→∞ dλ(x0,·(tn)− x0,0(tn))− λ ≤ 0.

Lemma 13 also ensures that dx0,·(t) ≤ 1 on [t0,∞) as long as x0,0(t) = 0. Substituting dx0,·(t) ≤ 1 in

(43), we obtain L̇S(x(t)) ≤ 1/d − 1 + λ. Since λ < 1 − 1/d by hypothesis, this means that x0,0(t) cannot
remain equal to zero on [t0,∞) because LS(x(t)) would be decreasing in t with derivative bounded away from

zero and necessarily LS(x) ≥ 0 for all x. This implies that t∗
def
= inf{t ≥ t0 : x0,0(t) > 0} < ∞ must exist.

Since x(t) is continuous and b(x) is linear when x0,0 > 0, there exists δ > 0 such that x0,0(t) is both positive
and increasing on (t∗, t∗ + δ]. This means that 0 < ẋ0,0(t) = λd(x0,·(t) − x0,0(t)) − λ for all t ∈ (t∗, t∗ + δ]
(by (4)), which implies limt↓t∗ x0,·(t)− x0,0(t) = x0,·(t

∗) ≥ 1/d. On the other hand, on a left neighborhood
of t∗, x0,·(t

∗) = limt↑t∗ x0,·(t) ≤ 1/d, and thus x0,·(t
∗) = 1/d. Summarizing, we have obtained

x0,·(t
∗) = 1

d , x0,0(t∗) = 0 (64a)

x0,0(t) > 0, x0,·(t)− x0,0(t) > 1/d, ∀t ∈ (t∗, t∗ + δ]. (64b)

These conditions, together with the fact that b(x) is linear when x0,0 > 0, imply that also the function

w0(t)
def
= x0,·(t)− x0,0(t) must be increasing on a right neighborhood of t∗. Thus,

ẇ0(t∗) = lim
t↓t∗

ẇ0(t) ≥ 0. (65)

On [t∗, t∗+ δ], we have shown that the fluid solution x(t) is uniquely determined by the solution of the ODE
system (63) where the initial condition x(t∗) is such that (64) and (65) hold true. In the remaining part of
the proof, we study (63) under these conditions and show that x0,0(t) > 0 for all t > t∗. This will conclude
the proof in view of Lemma 14.

Without loss of generality and by means of a time shift, let us assume t∗ = 0. By taking proper
summations in (63), we obtain

ẇ0,· = − λdw0 + x1,· (66)

Now, given that w0(0) = 1/d, (65) ensures that ẇ0(0) = −λdw0(0) + x1,·(0) ≥ 0, which means

x1,·(0) ≥ λ. (67)

By taking proper summations in (63), we also obtain

ẋ0,· = − λ+ x1,· (68a)

ẋ1,· =λ+ x2,· − x1,· (68b)

ẋi,· =xi+1,·1{i+1≤I} − xi,· ∀i ≥ 2. (68c)

and solving for such autonomous ODE system,

xI,·(t) =xI,I = xI,I(0) e−t

xI−1,·(t) =xI,I(0) e−t − xI−1,· = (xI,I(0)t+ xI−1,·(0)) e−t

xI−i,·(t) = e−t
i∑

j=0

xI−i+j,·(0)
tj

j!

for all i = 2, . . . , I − 2, and thus

x2,·(t) = e−t
I−2∑
j=0

x2+j,·(0)
tj

j!
.

Substituting previous equation in (68b), we obtain

ẋ1,· = λ− x1,· + e−t
I−2∑
j=0

x2+j,·(0)
tj

j!
(69)
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and solving for such ODE we obtain,

x1,·(t) = λ+ (x1,·(0)− λ)e−t + e−t
I−1∑
j=1

x1+j,·(0)
tj

j!

Substituting previous equation in (68a), we obtain

ẋ0,·(t) = (x1,·(0)− λ)e−t + e−t
I−1∑
j=1

x1+j,·(0)
tj

j!
.

Integrating both sides, we obtain

x0,·(t)−
1

d
=x1,·(0)− λ− (x1,·(0)− λ)e−t +

I−1∑
j=1

x1+j,·(0)

j!

∫ t

0

e−ssjds.

Similarly, substituting (69) in (66) and solving for w0(t), we obtain

w0(t) =
1

d
+
x1,·(0)− λ
λd− 1

(
e−t − e−λdt

)
+ e−λdt

I−1∑
j=1

x1+j,·(0)

∫ t

0

sj

j!
e(λd−1)sds

and thus

x0,0(t) = x0,·(t)− w0(t)

= (x1,·(0)− λ)(1− e−t)− x1,·(0)− λ
λd− 1

(
e−t − e−λdt

)
+

I−1∑
j=1

x1+j,·(0)

∫ t

0

sj

j!
e−s

(
1− e−λd(t−s)

)
ds.

We now use the condition (67). If x1,·(0) = λ, then
∑
i≥2 xi,·(0) = 1− 1/d− λ > 0 and therefore

x0,0(t) =

I−1∑
j=1

x1+j,·(0)

j!

∫ t

0

sje−s
(

1− e−λd(t−s)
)

ds ≥
(

1− 1

d
− λ

)
I−1
min
j=1

∫ t

0

sj

j!
e−s

(
1− e−λd(t−s)

)
ds > 0

for all t > 0, as desired. If x1,·(0) > λ, then

x0,0(t) ≥ (x1,·(0)− λ)(1− e−t)− x1,·(0)− λ
λd− 1

(
e−t − e−λdt

)
.

Given that x0,0(0) = 0, to conclude that x0,0(t) > 0 for all t > t∗ = 0 it is sufficient to show that the RHS
of last equation is strictly increasing in t. This follows easily once noted that the derivative of the RHS of
last equation is strictly positive if and only if

e−t − e−λdt

λd− 1
> 0, ∀t > 0.

6 Conclusions

In this paper, we have provided new insights on randomized load balancing: if a load balancer is endowed
with a local memory storing the last observation collected on each server, the celebrated power-of-d-choices
algorithm can be made asymptotically optimal in the sense that arriving jobs can be always routed to idle
servers. Our approach provides an algorithm that is both fluid (N → ∞) and heavy-traffic (λ ↑ 1) optimal
while employing a fair control message rate that scales linearly with the system size N . This means that
randomized load balancing can be made robust to orthogonal variations of both N and λ, which can for
instance occur in presence of unexpected workload peaks or server breakdowns.

On the practical side, Algorithm 1 can be improved in several ways to enhance performance:
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• Server selections can be made without replacement, instead of with replacement. In view of the results
in Gast and Van Houdt [10], this may also improve the convergence speed of XN to fluid solutions.

• Since the action of sampling (0, 0)-servers does not bring any additional information to the load bal-
ancer, server selections can be restricted to (·, j)-servers, with j ≥ 1.

• Upon a job arrival, if i is both the least load of the d sampled servers and the least observation contained
in the memory immediately before the last sampling, then the job may be randomly assigned to one
of the (·, i)-server known to the load balancer immediately before the sampling. In fact, by the time
of the last update, one of such servers may have decreased its load.

• At any point in time, it is clear that the observation collected on a specific server is an upper bound
on the actual state of that server. This observation leads us to consider a variant of SQ(d,N) where
to each server is associated a timer representing the age of its observation. Specifically, at the moment
where a new job arrives, all timers are incremented by one except the ones associated to the d sampled
servers, whose timers are set to zero. Then, the load-balancer dispatches the job to a server with the
lowest stored observation and for which the timer is the largest.

It is intuitive that all the above variations of SQ(d,N) yield performance improvements. It may be less
intuitive that at the fluid scale only the last variation can yield performance improvements. In view of the
results presented in this paper, such improvements can only appear when λ > 1−1/d. We leave this subject
as future research.

A last variant of Algorithm 1 consists in swapping Lines 4–7 and 8–10. This is meant to perform each
job assignment before the d servers are sampled (the collected information will be thus used for future
assignments). It can be easily shown, mutatis mutandis, that this yields the same fluid limit. This is
not surprising: if x0,0 > 0, the number of zeros in the memory is proportional to N and getting d more
observations does not make x0,0 zero.

In our analysis, we have assumed that each server has a finite buffer of size I. We conjecture that our
results generalize to the case where I =∞ and a first step to prove this claim consists in adapting the proofs
of Lemma 2 and Proposition 2 on coordinates (i, i) only. Provided that servers are initially empty, this
conjecture is coherent with the numerical observation that the Lyapunov function LS(x(t)) monotonically
increases in t to its limit point, which is necessarily less than j? + 1; see Figure 2.3. If λ < 1 − 1/d and
x0,0(0) > 0, this can be easily proven by using Lemma 14, which ensures that the drift function b takes the
linear form in (48). When λ ≥ 1− 1/d, a proof is complicated by the involved structure of LS .

Our model can be generalized to a setting where servers have bin-packing constraints. Specifically, each
server has B units of a resource, there are R types of jobs, type-r jobs requires br units of resource, and
an arriving job is ‘blocked’ if it does not find the required amount of resource at the server. Memoryless
power-of-d-choice strategies have been recently applied to this type of models in Xie et al. [24], though the
resulting blocking probability does not converge to zero in the fluid limit. A further direction for future
research aims at evaluating whether or not a local memory at the dispatcher can still be exploited to achieve
fluid optimality in this setting.

A Proof of Lemma 4

We give a proof when ε ↓ 0 as the same arguments can be applied when ε ↑ 0. Let si,j
def
= si,j(x)

def
=∑i−1

i′=0 xi′,· +
∑j
j′≥i xi,j′ . For any ε > 0 and all k sufficiently large, Lemma 3 states that the inclusions

(si,i(t) + 2εL(I + 1)2, si,·(t)− 2εL(I + 1)2] ⊆ (SNki,i (tNk,λ−n ), SNki,· (tNk,λ−n )]

⊆ (si,i(t)− 2εL(I + 1)2, si,·(t) + 2εL(I + 1)2]

hold true, as we recall that under the coupled construction given in Section 4.1 we have that tNk,λ−n ∈ (t, t+ε]
when n ∈ {Nλ(Nkt) + 1, . . . ,Nλ(Nk(t+ ε))}. Using these inclusions and Lemma 1, we obtain

−λε+ dλ
(
xi,·(t)− xi,i(t)− 4εL(I + 1)2

)
ε ≤ lim

k→∞

1

Nk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

d∑
p=1

I(V
p
n )

(S
Nk
i,i (t

Nk,λ−
n ),S

Nk
i,I (t

Nk,λ−
n )]
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≤ −λε+ dλ
(
xi,·(t)− xi,i(t) + 4εL(I + 1)2

)
ε

for all ε > 0, and dividing these inequalities by ε and letting ε ↓ 0, we obtain (26a).
Finally, (26b) is proven using the same argument.

B Proof of Lemma 9

At the beginning of the proof of Lemma 8, we have already shown that Rj(t) = 0 if
∑j
j′=0 x·,j′(t) > 0. Thus,

in the following we assume that
∑j
j′=0 x·,j′(t) = 0.

First, for the indicator function in (20c), we will use that

1{XN0,0(t
N,λ−
n )+

∑I
j′=1

MN
0,j′,n>0} =1− 1{XN0,0(t

N,λ−
n )=0}1{

∑I
j′=1

MN
0,j′,n=0} (72a)

=1− 1{XN0,0(t
N,λ−
n )=0}

d∏
p=1

I(V
p
n )

(1−ZN1 (tN,λ−n ),1]
. (72b)

We also notice the following sequence of equalities (see (17) and (18) for the definition of FNi,j,n)

j∑
i=0

FNi,j,n = I(Wn(X
N
·,j(t

N,λ−
n )+M

N
j,n−M

N
j,n))(

0,XN·,j(t
N,λ−
n )+M

N
j,n−MN

j,n

] (73a)

= 1{XN·,j(t
N,λ−
n )+M

N
j,n−MN

j,n>0} = 1− 1{XN·,j(t
N,λ−
n )−MN

j,n=0}1{MN
j,n=0} (73b)

= 1− 1{XN·,j(t
N,λ−
n )−MN

j,n=0}

d∏
p=1

I(V
p
n )

(0,1−ZNj (tN,λ−n )]
⋃

(1−ZNj+1(t
N,λ−
n ),1]

(73c)

= 1−

(
1{XN·,j(t

N,λ−
n )=0} +

d∑
p=1

1{NXN·,j(t
N,λ−
n )=p}1{NMN

j,n=p}

)
d∏
p=1

I(V
p
n )

(0,1−ZNj (tN,λ−n )]
⋃

(1−ZNj+1(t
N,λ−
n ),1]

= 1− 1{XN·,j(t
N,λ−
n )=0}

d∏
p=1

I(V
p
n )

(0,1−ZNj (tN,λ−n )]
⋃

(1−ZNj+1(t
N,λ−
n ),1]

(73d)

−
d∑
p=1

1{NXN·,j(t
N,λ−
n )=p}1{NMN

j,n=p} ×
d∏
p=1

I(V
p
n )

(0,1−ZNj (tN,λ−n )]
⋃

(1−ZNj+1(t
N,λ−
n ),1]

. (73e)

For the summation terms in (73e), we observe that

1{NMN
j,n=p} = 1{∑j

i=0NM
N
i,j,n=p} = 1{ j∑

i=0

d∑
q=1

I(V
q
n )

(SN
i,j−1

(t
N,λ−
n ),SN

i,j
(t
N,λ−
n )]

=p

}

= 1{ d∑
q=1

I(V
q
n )⋃j
i=0

(SN
i,j−1

(t
N,λ−
n ),SN

i,j
(t
N,λ−
n )]

=p

}

=
∑

I⊆{1,...,d}:‖I‖=p

∏
q∈I

I(V
q
n )⋃j
i=0(S

N
i,j−1(t

N,λ−
n ),SNi,j(t

N,λ−
n )]

×
∏
q/∈I

I(V
q
n )

¬
⋃j
i=0(S

N
i,j−1(t

N,λ−
n ),SNi,j(t

N,λ−
n )]

≤
∑

I⊆{1,...,d}:‖I‖=p

∏
q∈I

I(V
q
n )⋃j
i=0(S

N
i,j−1(t

N,λ−
n ),SNi,j(t

N,λ−
n )]

where ¬A denotes the complement of set A and we have defined SNj,j−1(tN,λ−n )
def
= SNj−1,I(t

N,λ−
n ). Thus, for

any ε > 0, on the interval [t, t+ ε], (25) ensures that

0 ≤ 1{NkM
Nk
j,n=p}

≤
∑

I⊆{1,...,d}:
‖I‖=p

∏
q∈I

I(V
q
n )⋃j
i=0(0∨si,j−1−ε,si,j+ε]

(74)
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for all k sufficiently large, where si,j
def
= si,j(x(t))

def
=
∑i−1
i′=0 xi′,·(t) +

∑j
j′≥i xi,j′(t) for all i ≤ j and sj,j−1 =

sj−1,I .
Let us treat the cases j = 1 and j > 1 separately.
Assume for now j = 1. Substituting (72) in the sample path expressions (19) and (20), we obtain

XN
·,1(t) =XN

·,1(0) +
1

N

Nλ(Nt)∑
n=1

d∑
p=1

I(V
p
n )

(SN1,1(t
N,λ−
n ),SN1,I(t

N,λ−
n )]

+
1

N

Nλ(Nt)∑
n=1

(
1− 1{RN0 (tN,λ−n )=0}

d∏
p=1

I(V
p
n )

(1−ZN1 (tN,λ−n ),1]

)

− 1

N

Nλ(Nt)∑
n=1

d∑
p=1

I(V
p
n )

(SN0,1(t
N,λ−
n )−XN0,1(t

N,1−
n ),SN0,1(t

N,λ−
n )]

− 1

N

Nλ(Nt)∑
n=1

1{RN0 (tN,λ−n )=0}
(
FN0,1,n + FN1,1,n

) d∏
p=1

I(V
p
n )

(1−ZN1 (tN,λ−n ),1]
.

Since x0,0(t) + x·,1(t) = 0 and t is a point of differentiability, necessarily ẋ·,1(t) = 0 and thus

0 =ẋ·,1(t) (76a)

= lim
ε→0

1

ε
lim
k→∞

XNk
·,1 (t+ ε)−XNk

·,1 (t) (76b)

=λdx1,·(t) + λ−R0(t) (76c)

− lim
ε→0

1

ε
lim
k→∞

1

Nk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

1{
R
Nk
0 (t

Nk,λ−
n )=0

} (FNk0,1,n + FNk1,1,n

) d∏
p=1

I(V
p
n )

(1−ZNk1 (t
Nk,λ−
n ),1]

. (76d)

The terms in (76c) are a direct application of Lemmas 1 and 4. Equation (76) also states that the limit in
(76d) exists. Now, using (73)-(74) and (25), for any ε > 0

1− 1{RNkj (t
Nk,λ−
n )=0}

d∏
p=1

I(V
p
n )

(0,1−ZNkj (t
Nk,λ−
n )]

⋃
(1−ZNkj+1(t

Nk,λ−
n ),1]

(77a)

≥
j∑
i=0

FNki,j,n ≥ (77b)

1− 1{RNkj (t
Nk,λ−
n )=0}

d∏
p=1

I(V
p
n )

(0,1−ZNkj (t
Nk,λ−
n )]

⋃
(1−ZNkj+1(t

Nk,λ−
n ),1]

−
d∑
p=1

∑
I⊆{1,...,d}:
‖I‖=p

∏
q∈I

I(V
p
n )
j⋃
i=0

(0∨si,j−1−Cε,si,j+Cε]

(77c)

for all k sufficiently large. Using both inequalities and that

I(V
p
n )

(0,1−ZNkj (t
Nk,λ−
n )]

⋃
(1−ZNkj+1(t

Nk,λ−
n ),1]

× I(V
p
n )

(0,1−ZNkj (t
Nk,λ−
n )]

= I(V
p
n )

(1−ZNkj+1(t
Nk,λ−
n ),1]

,

for the term (76d) we obtain

R0(t)−R1(t)− lim
ε→0

1

ε
×O(ε)ε

≤ lim
ε→0

1

ε
lim
k→∞

1

Nk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

1{
R
Nk
0 (t

Nk,λ−
n )=0

} (FNk0,1,n + FNk1,1,n

) d∏
p=1

I(V
p
n )

(1−ZNk1 (t
Nk,λ−
n ),1]

≤ R0(t)−R1(t).
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where the O(ε)ε term is obtained by applying Lemma 1 to the terms in the double sum of (77c), which gives

lim
k→∞

1

Nk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

d∑
p=1

∑
I⊆{1,...,d}:
‖I‖=p

∏
q∈I

I(V
p
n )
j⋃
i=0

(0∨si,j−1−εC,si,j+εC]

=

d∑
p=1

∑
I⊆{1,...,d}:
‖I‖=p

(2εC)p × λε = O(ε)ε.

Thus, when x0,0(t) + x·,1(t) = 0 and t is a point of differentiability, we obtain

lim
ε↓0

1

ε
lim
k→∞

1

Nk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

1{
R
Nk
0 (t

Nk,λ−
n )=0

} (FNk0,1,n + FNk1,1,n

) d∏
p=1

I(V
p
n )

(1−ZNk1 (t
Nk,λ−
n ),1]

= R0(t)−R1(t)

and substituting this in (76) we obtain

0 = lim
ε→0

1

ε
lim
k→∞

XNk
·,1 (t+ ε)−XNk

·,1 (t) = λdx1,·(t) + λ− 2R0(t) +R1(t),

which implies that R1(t) exists and furthermore that (since R1(t) is necessarily non-negative by definition)
is given by

R1(t) = 0 ∨ (2R0(t)− λdx1,·(t)− λ) 1{x0,0(t)+x·,1(t)=0}

= 0 ∨ λ (1− 2dx0,·(t))− dx1,·(t)) 1{x0,0(t)+x·,1(t)=0}

where the last equation follows by substituting the expression of R0(t) given in Lemma 8. This proves (34)
when j = 1.

If j > 1, the same argument applies again. First, taking summations over the sample path expressions (19)
and (20), we obtain

XN
·,j(t) =XN

·,j(0) +
1

N

Nλ(Nt)∑
n=1

d∑
p=1

I(V
p
n )

(SNj,j(t
N,λ−
n ),SNj,I(t

N,λ−
n )]

−
j−1∑
i=0

1

N

Nλ(Nt)∑
n=1

d∑
p=1

I(V
p
n )

(SNi,j(t
N,λ−
n )−XNi,j(t

N,1−
n ),SNi,j(t

N,λ−
n )]

+
1

N

Nλ(Nt)∑
n=1

1{RNj−2(t
N,λ−
n )=0}

(
j−1∑
i=0

FNi,j−1,n

)
d∏
p=1

I(V
p
n )

(1−ZNj−1(t
N,λ−
n ),1]

− 1

N

Nλ(Nt)∑
n=1

1{RNj−1(t
N,λ−
n )=0}

(
j∑
i=0

FNi,j,n

)
d∏
p=1

I(V
p
n )

(1−ZNj (tN,λ−n ),1]
.

Then, using (73) and noting that the term in (73e) can be bounded as in (77) we obtain

0 =ẋ·,j(t) = lim
ε→0

1

ε
lim
k→∞

XNk
·,j (t+ ε)−XNk

·,j (t)

=λdxj,·(t) + (Rj−2(t)−Rj−1(t))− (Rj−1(t)−Rj(t)),

provided that
∑j
j′=0 x·,j′(t) = 0 and t is a point of differentiability. This condition inductively proves the

existence of Rj(t)) and implies that

Rj(t) =0 ∨ (2Rj−1(t)−Rj−2(t)− λdxj,·) 1{
∑j

j′=0
x·,j′ (t)=0}.

Since we have already obtained an expression for R0 and R1, we can derive an expression for R2 and so forth
iteratively for all j. By iteratively substituting in previous equation the expressions of Rj−1 and Rj−2, we
obtain (34).
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C Proof of Lemma 10

As shown at the beginning of the proof of Lemma 8, if
∑j
i=0 x·,i(t) > 0, then RNkj (tNk,λ−n ) > 0 for all k

sufficiently large, and therefore Γi,j = 0. Thus, let us assume in the following that
∑j
i=0 x·,i(t) = 0. We give

a proof when i ≤ j; when i = j + 1, the proof uses the same argument and is omitted.
So far we have assumed that ω ∈ C was fixed but for now let us explicit the dependence on ω and treat

quantities x(t) and XN (t) as random variables.
Let

Γε,Ni,j (t)
def
=

1

εN

Nλ(N(t+ε))∑
n=Nλ(Nt)+1

1{RNj (tN,λ−n )=0}F
N
i,j+1,n

d∏
p=1

I(V
p
n )

(1−ZNj+1(t
N,λ−
n ),1]︸ ︷︷ ︸

def
= Yn,N

(79)

For all n, the random variable Yn,N is Fn-measurable where Fn
def
= {XN (tN,λ−n ), V 1

n , . . . , V
d
n , Un,Wn}, and

E[Yn,N |Fn \Wn] = 1{RNj (tN,λ−n )=0}
XN
i,j+1(tN,λ−n )−MN

i,j+1,n

XN
·,j+1(tN,λ−n ) +M

N

j+1,n −M
N
j+1,n

d∏
p=1

I(V
p
n )

(1−ZNj+1(t
N,λ−
n ),1]

(80)

because we recall that the 0-1 random variable FNi,j,n is one if and only if
(
XN
·,j(t

N,λ−
n ) +M

N

j,n−M
N
j,n

)
Wn ∈(∑i−1

k=0X
N
k,j(t

N,λ−
n )−MN

k,j,n,
∑i
k=0X

N
k,j(t

N,λ−
n )−MN

k,j,n

]
, by definition (17), with Wn uniform over [0,1]; the

set Fn \Wn denotes the set Fn with Wn removed.

Let Zn,N
def
= Yn,N − E[Yn,N |Fn \Wn]. Then, E[Zn,N |Fn \Wn] = 0 and |Zn,N | ≤ 2, and applying the

Azuma–Hoeffding inequality, we get

P

(
1

N

∣∣∣∣∣
N∑
n=1

Zn,N

∣∣∣∣∣ > δ

)
≤ 2 exp

(
− (Nδ)2

8N

)
(81)

for any δ > 0. Since
∑
N exp

(
−Nδ2/8

)
< ∞, an application of the Borel–Cantelli lemma shows that

1
N

∑N
n=1 Zn,N → 0 almost surely. In particular,

lim
N→∞

Γε,Ni,j (t)− 1

Nε

Nλ(N(t+ε))∑
n=Nλ(Nt)+1

E[Yn,N |Fn \Wn] = 0 (82)

almost surely.
Now, we fix ω ∈ C and use (80) and Lemma 3 to obtain that for any ε > 0

lim
k→∞

1

εNk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

E[Yn,Nk |Fn \Wn]

≤ lim
Nk→∞

1

εNk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

1{
R
Nk
j (t

Nk,λ−
n )=0

}xi,j+1(t) + Cε

x·,j+1(t)− Cε

d∏
p=1

I(V
p
n )

(1−ZNkj+1(t
Nk,λ−
n ),1]

Replacing ε by −ε in the last fraction term, the previous inequality can be reversed and letting ε ↓ 0, we
obtain

lim
ε↓0

lim
k→∞

1

εNk

Nλ(Nk(t+ε))∑
n=Nλ(Nkt)+1

E[Yn,Nk |Fn \Wn] = Rj(t)
xi,j+1(t)

x·,j+1(t)
. (83)

Finally, (82) and (83) give (36).
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