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Combining Size-Based Load Balancing with
Round-Robin for Scalable Low Latency

Jonatha Anselmi

Abstract—When dispatching jobs to parallel servers, or queues, the highly scalable round-robin (RR) scheme reduces the variance of
interarrival times at all queues to a great extent but has no impact on the variances of service processes. Contrariwise, size-interval
task assignment (SITA) routing has little impact on the variances of interarrival times but makes the service processes as deterministic
as possible. In this paper, we unify both ‘static’ approaches to design a scalable load balancing framework able to control the variances
of the arrival and service processes jointly. It turns out that the resulting combination significantly improves performance and is able to
drive the mean job delay to zero in the large-system limit; it is known that this property is not achieved when both approaches are
considered separately. Within realistic parameters, we show that the optimal number of size intervals that partition the support of the
job size distribution is small with respect to the system size. This enhances the applicability of the proposed load balancing scheme at
a large scale. In fact, we find that adding a little bit of information about job sizes to a dispatcher operating under RR improves
performance a lot. Under the optimal scaling of size intervals and assuming highly variable job sizes, numerical simulations indicate
that the proposed algorithm is competitive with the (less scalable) join-the-shortest-workload algorithm even when the system size
grows large.

Index Terms—Dispatching policies, size-based routing, performance, asymptotic optimality
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1 INTRODUCTION

A FUNDAMENTAL result from the queueing systems lit-
erature states that the mean (steady-state) waiting time

experienced by customers, or jobs, joining a GI/GI/1 queue
operating under the first-come first-served (FCFS) schedul-
ing discipline, or any other discipline which does not affect
the distribution of the number of jobs in the queue at any
time [1], is upper bounded by

λ

2

σ2
A + σ2

S

1− ρ
, (1)

where λ > 0 is the mean input traffic rate, ρ ∈ [0, 1) is the
system load and σA and σS are the standard deviations of
interarrival times and job sizes, respectively [2]. This bound
also applies to the mean (steady-state) workload seen at the
arrival times of a GI/GI/1 queue operating under any work-
conserving scheduling discipline; the reader unfamiliar with
queueing terminology may refer to Section 1.3.

When considering the problem of assigning incoming
jobs to multiple parallel queues (each job needs to be routed
to exactly one queue), then a natural objective would consist
in designing a dispatching system able to minimize the
numerator σ2

A+σ2
S associated to each queue. Intuitively, this

is equivalent to say that the arrival and service processes at
each queue should be made as deterministic as possible. It is
well known and not surprising that congestion phenomena
are due to fluctuations in both processes [3].

On one extreme, the highly scalable round-robin (RR)
scheme, which sends jobs to queues in a cyclic fashion, re-
duces the variance of interarrival times at all queues (σ2

A) to
a great extent but has no impact on the variances of service
processes (σ2

S) [4]. On another extreme, a form of size-based

• J. Anselmi is with INRIA Bordeaux Sud Ouest, Team: CQFD, 33405
Talence, France and Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP,
LIG, 38000 Grenoble, France. E-mail: jonatha.anselmi@inria.fr

routing referred to in the literature as Size-Interval Task
Assignment (SITA) routing, where each queue only accepts
jobs of size belonging to a given interval, has little impact on
the variances of interarrival times but can make the service
processes as deterministic as possible [5]. Of all the dispatch-
ing strategies that have been proposed in the literature, both
ideas are among the most effective ones for minimizing
the variances of the arrival or service processes separately.
However, each of both ideas does not take into account
the benefits of the other. The main objective of this paper
stands in combining these two static approaches to design
a dispatching scheme able to minimize the variances of the
arrival and service processes jointly, specifically σ2

A + σ2
S .

Motivated by the huge sizes of real systems, our main goal is
to understand whether it is possible to achieve zero latency in
the large-system limit, that is the limiting regime where the
network demand (average job arrival rate) grows to infinity
proportionally with the capacity of processing resources. It
is well known that this property is not obtained when RR
and SITA are applied separately [6], [7].

1.1 SITA Routing and the “Zero-delay” Property
The development of load balancing schemes for parallel
systems has a long history and several approaches continue
to emerge in the literature, especially due to the constant
introduction of new technologies. The celebrated join-the-
shortest-queue (JSQ) and join-the-shortest-workload (JSW)
algorithms, which respectively send each incoming job to
the queue having the least number of jobs and workload
(with ties broken randomly), are optimal, in a wide sense,
under some assumptions [8], [9] but their applicability is
often debated because of their little scalability, in part due
to the high communication overhead between the queues
and the dispatcher(s). We notice that both JSW and JSQ are
not optimal within the assumptions that we will consider.
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Given the size of real systems, much of the literature is
currently investigating the problem of designing algorithms
with a vanishing delay in the large-system limit described
above but with a scalable communication overhead between
the queues and the dispatcher(s) [7]. We refer to such
algorithms as “asymptotically optimal”. Load balancing
schemes known to possess this property are the power-
of-d-choices algorithm [10] when d, the number of queues
to contact any time a new job arrives, grows to infinity
with the system size [11], the power-of-d-choices algorithm
with memory [12] provided that d > 1

1−λ , the join-the-idle-
queue (JIQ) algorithm [13], [14] and other similar pull-based
approaches [7]. Essentially, these dynamic algorithms try to
mimic the behavior of JSQ/JSW but with less information
and for this reason it is to be expected that their performance
can not be better than the one achieved by JSQ/JSW.

Remark 1. The load balancing algorithm proposed in this paper
is of a different nature: it does not mimic the behavior of JSQ/JSW,
it will be scalable and asymptotically optimal, and numerical
simulations show that under certain conditions it outperforms
JSW even when the system size is large.

SITA policies, defined in Section 2.3, are static dispatch-
ing rules and it is well known that they can outperform
JSQ/JSW; see [5], [15], [16], [17], [18], [19], though the
results in these references refer to “small” systems (e.g.,
with less than ten servers). The basic idea is that each
server is assigned all jobs whose sizes belong to a distinct
and continuous interval, and this can be achieved in sev-
eral ways depending on the underlying architecture. For
instance, each job may submit to the first level dispatcher
an upper bound on its duration (as in, e.g., supercomputing
systems) or the dispatcher may know a priori the identities
of the servers hosting jobs of a given size (as in, e.g., web
file transfers or content-aware load balancing [20], [21]), or
the dispatcher may or may not be able to directly observe
job sizes [16], [18], [22], [23]. The main reason for their
performance benefits is commonly attributed to their ability
to isolate small jobs from long ones, a phenomenon that
does not necessarily occur with, e.g., JSW/JSQ. A compre-
hensive analytical comparison between SITA policies and
JSW is shown in [19], where the authors exhibit several
scenarios where one approach is better than the other. In
such comparison, the system size is kept constant and the
coefficient of variation of job sizes grows to infinity.

In contrast, in our approach we let the job size variability
be fixed and let the system size grow to infinity. Within
this framework, it has been shown that SITA policies are
not asymptotically optimal in the sense above [6], see also
[24], and thus eventually outperformed by the dynamic
algorithms above in the large-system limit. The main ob-
jective of this work is to fill this gap. Towards this purpose,
we enhance SITA policies with some RR routing to design
a scalable dispatching system remaining competitive with
JSW even for moderate to large system sizes.

1.2 Contribution

We view SITA and RR routings as two extreme points of a
more general framework where each job is initially routed to
one out of dK virtual second level dispatchers according to
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Fig. 1. Architecture of the proposed dispatching system.

some SITA policy and each second level dispatcher applies
RR to a set of (approximately) K/dK different queues,
with K being the overall number of queues (see Figure 1).
Therefore, dK corresponds to the number of intervals that
partition the support of the job size probability distribution
and represents our control on the variances of both the
service and arrival processes.

If the SITA policy adopted by the first level dispatcher
is SITA-E, which equalizes the loads of all queues, and dK
grows to infinity sublinearly as K → ∞, we rely on the
upper bound (1) to show in a constructive manner that
the mean waiting time or workload converges to zero in
the large-system limit. This structural property is our main
result (Theorem 1) and is proven under mild assumptions:
essentially, interarrival times and job sizes are indepen-
dent sequences of independent and identically distributed
random variables, and queues operate under any work-
conserving scheduling discipline. The choice of SITA-E is
motivated by its optimality inside the set of SITA policies
when dK = K and K →∞ [6]; see also [24].

Then, we use Theorem 1 to determine how to scale
the control parameter dK , the number of size intervals,
to minimize the mean waiting time. If the support of the
job size distribution is bounded, we show that the optimal
scaling is asymptotic to d∗K = γ1K

1
3 , for some constant

γ1 that we explicit. Otherwise, if job sizes are Pareto dis-
tributed (with unbounded support), the optimal scaling is
asymptotic to d∗K = γ2

√
K , for some γ2 that we explicit.

This implies that the number of size intervals grows slowly
with respect to the system size, which is convenient from
a practical standpoint. In fact, we find that adding a little
bit of information about job sizes to a dispatcher operating
under RR improves performance a lot.

We also investigate the ratio between i) the minimum
of the mean waiting times achieved by RR and the optimal
SITA policy and ii) the minimum mean waiting time achiev-
able with the proposed dispatching scheme, necessarily
greater than or equal to one. When K → ∞, Theorem 1
immediately implies that such ratio grows to infinity be-
cause RR and SITA policies are not asymptotically optimal.
In Theorem 2, we show that such ratio can be arbitrarily
large even when the system size K is constant.

Finally, we have performed several simulations to assess
the performance of the proposed algorithm with respect
to the one achieved by others. When job sizes follow the
bounded Pareto distribution with shape parameter α close
to one, which is a case often found in empirical measure-
ments of computing systems [25], [26], [27], our set of
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experiments indicates that it is always possible to find a set
of dK ’s containing d∗K such that the proposed dispatching
scheme outperforms RR, SITA and more surprisingly JSW.

1.3 Queueing Theoretic Terms
For quick reference and completeness, we provide the
reader with a list of terms borrowed from queueing theory:

1) service time (of a job): the time it takes to process
the job by a server operating at full speed with no
interruptions; since all servers operate at constant
speed 1, it is equivalent to its job size;

2) waiting time (of a job): the amount of time between
the job arrival to the system and the beginning of its
processing by some server;

3) workload: the total time the single server has to work
to clear the system;

4) work-conserving scheduling discipline: a scheduling
discipline that leaves the server idle only when there
are no job to process;

5) arrival/service process (of queue i): the sequence of
interarrival/service times of jobs at i.

1.4 Organization
This paper is organized as follows. Section 2 introduces the
proposed load balancing algorithm together with modeling
assumptions, SITA policies and performance metrics of in-
terest. Section 3 is dedicated to the presentation of our main
result (Theorem 1). The optimal scaling for the number of
second level dispatchers dK is given in Section 4. Section 5
evaluates the synergies of the proposed combination of
RR and SITA policies when the system size K is fixed
(Theorem 2). Section 6 is devoted to the presentation of
numerical results. Finally, Section 7 draws the conclusions.

2 DISPATCHING MODEL

We consider the dispatching model indicated in Figure 1.
Each job initially gets access to a first level dispatcher, which
operates under a Size-Interval Task Assignment (SITA) pol-
icy (defined in Section 2.3), and then it is routed to one out
of dK second level dispatchers. The second level dispatcher
i ∈ {1, . . . , dK} applies round-robin (RR) on a set of hK,i
queues, where each queue has an infinite buffer, processes
jobs with unit rate and operates under any work-conserving
scheduling discipline (different queues may have different
disciplines). Therefore, the n-th job arriving to the second
level dispatcher i is sent to queue

(
n mod hK,i

)
+ 1 of its

set. We assume that
dK∑
i=1

hK,i = K (2)

and that each queue can only receive jobs from a specific
second level dispatcher. In particular, the second level dis-
patcher i sends jobs to queues HK,i−1 + 1, . . . ,HK,i where
HK,i

def
=
∑i
j=1 hK,j if i > 0 and HK,0

def
= 0. This implies

that the total number of queues is K .
It will be clear from the definition of SITA policies

that dK represents the number of intervals that partition
the support of the job size distribution. In the extreme
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Fig. 2. A distributed implementation of the proposed dispatching system.

cases where dK = 1 (no partitioning) and dK = K , our
dispatching model boils down to pure RR routing and pure
SITA routing, respectively.

2.1 Multiple Dispatchers
Since real systems may be composed of hundreds of servers,
it is often desirable that a load balancing algorithm is ver-
satile enough to be implemented in a decentralized manner
across multiple entry points; see, e.g., [13], [14], [28]. The
dashed box in Figure 1 provides an abstraction for the
structure of the proposed dispatching algorithm. From a
practical standpoint, first and second level dispatchers may
be all located on a centralized machine or distributed across
multiple servers (one for each dispatcher). Specifically, in
Figure 2 there are multiple first level dispatchers (M ) and
each of them adopts the same SITA policy and communicate
with all the dK second level dispatchers (deployed on
different machines). Under some assumptions, e.g., Poisson
arrival processes at first level dispatchers, it can be shown
analytically that this distributed implementation provides
the same performance of its counterpart with only one first
level dispatcher, provided that

∑M
i=1 λi = λ. This flexibility

makes the proposed dispatching scheme more versatile
and scalable than standard dynamic algorithms because a
distributed implementation (with multiple dispatchers) of
JSW or JSQ requires a non-negligible amount of control
messages between the queues and the dispatchers even when
the dispatchers themselves can observe job sizes. Within the same
conditions, the proposed dispatching scheme requires no
control message.

2.2 Stochastic Assumptions
We will consider a sequence of systems indexed by K ,
where the K-th system refers to the system with K queues
and dK second level dispatchers. All the random variables
that follow belong to a fixed underlying probability space.

Let (TK,n)n∈N and (Sn)n∈N be independent sequences of
independent and identically distributed random variables.
These are the driving sequences of the K-th system in the
sense that they represent the only source of randomness.
Specifically, TK,n ∈ R+ represents the interarrival time
between the (n−1)-th and the n-th jobs joining the first level
dispatcher and Sn ∈ R+ represents the size, or the service
time, of the n-th job joining the first level dispatcher. The
TK,n’s have the same distribution of a random variable TK ,
for which we assume that E[TK ] = 1

λK . The Sn’s have
the same distribution of a random variable S, which is
assumed to have a Lipschitz continuous density function
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f(x) defined on [xm, xM ), 0 < xm < xM ≤ ∞, and
such that 1

xf(x) is also Lipschitz. An important job size
distribution that satisfies these assumptions is the bounded
Pareto distribution, obtained when xM <∞ and

f(x) =
C

xα+1
, C

def
=

αxαm

1−
(
xm
xM

)α . (3)

It is well known that such distribution generates “highly
variable” job sizes and that it is often found in empirical
measurements of computing systems, especially when the
“shape” parameter α is close to one [5], [25], [26], [27].

To apply the upper bound (1), we also require that ρ def
=

λE[S] < 1, which is necessary to ensure stability.

2.3 SITA Policies
The first level dispatcher assigns jobs to second level dis-
patchers according to a SITA policy.

Definition 1. A SITA policy when the number of second level
dispatchers is dK is a cadlag, non-decreasing and surjective map-
ping R : [xm, xM ) → { 1

dK
, 2
dK
, . . . , 1} such that R−1(i/dK)

is an interval, for all i ∈ {1, . . . , dK}.

Let RdK be the set of SITA policies for the K-th system
when the number of second level dispatchers is dK . The
SITA policy R ∈ RdK is a piece-wise constant function with
exactly dK − 1 points of discontinuity, and the interpre-
tation is that a controller adopting R sends a job of size
x ∈ [xm, xM ) to dispatcher dKR(x).

Given RdK ∈ RdK , let xK,i
def
= xK,i(RdK ) denote its i-

th discontinuity point, for all i = 1, . . . , dK − 1. Let also
xK,0

def
= xm, xK,dK

def
= xM . The points (xK,i)i=0,...,dK are

said thresholds, or cutoffs, for assigning jobs to second level
dispatchers. We notice that (x1, . . . , xdK−1) ∈ RdK−1 such
that xm < x1 < · · · < xdK−1 < xM uniquely constructs a
SITA policy for theK-th system. Let also SK,i

def
= SK,i(RdK )

denote a random variable having the same distribution of
the independent and identically distributed random vari-
ables representing the sizes of jobs joining the second level
dispatcher i. Then, SK,i ∈ [xK,i−1, xK,i) and after condi-
tioning we obtain

E[SjK,i] =

∫ xK,i
xK,i−1

xjf(x) dx

P(S ≤ xK,i)− P(S ≤ xK,i−1)
. (4)

2.4 Performance Metrics
Given thresholds (xK,i)i=0,...,dK , let pK,i

def
= P(S ≤ xK,i)−

P(S ≤ xK,i−1), which corresponds to the probability of
sending an incoming job to the second level dispatcher i.

Given that the arrival process at the first level dispatcher
is renewal and that the thinning of a renewal process gener-
ates a renewal process (recall that the sequences (TK,n)n∈N
and (Sn)n∈N are independent), the arrival process at each
dispatcher i is a renewal process with rate λKpK,i. Thus,
let (AK,i,n)n∈N be the sequence of i.i.d. random variables
representing the interarrival times at the second level dis-
patcher i. By construction, we notice that

AK,i,n =st AK,i
def
=

ZK,i∑
m=1

TK,m (5)

where =st denotes equality in distribution and ZK,i =
min{n > 0 : Sn ∈ [xK,i−1, xK,i)} is a random variable inde-
pendent of the TK,m’s that follows a geometric distribution
with parameter pK,i. Therefore,

Var(AK,i) = Var(TK)E[ZK,1] + Var(ZK,1)(E[TK ])2

=
Var(TK)

pK,i
+

1− pK,i
(λKpK,i)2

.

Since RR is used by second level dispatchers, the arrival
process of each queue controlled by dispatcher i is a renewal
process (possibly delayed) with rate (E[AK,i]hK,i)

−1 =
λKpK,i/hK,i. In fact, the interarrival times at each queue
controlled by i have the same distribution of the random
variable

ARRK,i
def
=

hK,i∑
n=1

AK,i,n (6)

where the AK,i,j ’s are independent and with the same
distribution of AK,i. By independence,

Var(ARRK,i) = Var(AK,i)hK,i. (7)

Let WK(dK , RdK , hK) denote the mean steady-state
workload seen by jobs at their arrival times when the
number of second level dispatchers is dK , the first level dis-
patcher adopts the SITA policy RdK ∈ RdK , and the num-
ber of queues controlled by each second level dispatcher
is hK = (hK,1, . . . , hK,dK ). In the specific case where
queues adopt the FCFS service discipline, it is known that
WK(dK , RdK , hK) also corresponds to the mean steady-
state waiting time experienced by jobs.

Since we have constructed a set of K GI/GI/1 queues,
we can use (1), specifically [2, Theorem 2], to bound from
above WK(dK , RdK , hK). Provided that the necessary and
sufficient stability condition

pK,iλK

hK,i
E[SK,i] < 1, ∀i = 1, . . . , dK (8)

is satisfied, we obtain

WK(dK , RdK , hK) (9a)
≤ WK(dK , RdK , hK) (9b)

def
=

dK∑
i=1

pK,i ×
pK,iλK

2hK,i

Var(ARRK,i) + Var(SK,i)

1− pK,iλK
hK,i

E[SK,i]
. (9c)

2.5 Problem Statement

Given dK ∈ N, a SITA policy RdK ∈ RdK and hK ∈ RdK+

such that (2) holds true, we refer to (dK , RdK , hK) as a
dispatching scheme.

Definition 2. We say that a sequence of dispatching schemes
(dK , RdK , hK)K is asymptotically optimal if

lim
K→∞

WK(dK , RdK , hK) = 0. (10)

This notion of asymptotic optimality is thus related to
the ideal situation where jobs can be always dispatched to
empty queues (in the limit). Our main objective consists in
constructing asymptotically optimal dispatching schemes.
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2.6 Summary of Notation

For quick reference, we provide a summary of the most
common symbols used to define our model and that will
be used in the following:

• K : number of queues;
• dK : number of intervals that partition the support of

the job size distribution function;
• f(x) and F (x): job size density and distribution

function, respectively;
• S: a random variable having distribution F ;
• hK = (hK,1, . . . , hK,dK ): a partition of the set of

queues;
• xm and xM : minimum and maximum job sizes;
• δ = xM/xm: job variability ratio;
• λ: overall arrival rate of jobs;
• ρ

def
= λE[S];

• RdK : set of SITA policies with dK intervals;
• R: generic SITA policy;
• pK,i(R): probability of dispatching a job to queue i

when policy R is adopted;
• (dK , RdK , hK): generic dispatching scheme;
• WK(dK , RdK , hK): mean steady-state waiting time

achieved by dispatching scheme (dK , RdK , hK);
• WK(dK , RdK , hK): the upper bound on

WK(dK , RdK , hK) given in (9);
• α: shape parameter of the Pareto distribution.

3 ASYMPTOTIC OPTIMALITY

In this section we present our main result (Theorem 1). To-
wards this purpose, we first construct the set of dispatching
schemes that we will show to be asymptotically optimal.

3.1 Balanced Subdivisions

For the distribution of queues among second level dispatch-
ers, we introduce the concept of “balanced subdivision”.

Definition 3. Given a sequence (dK)K , a balanced subdivi-
sion is a triangular array (hK,1, . . . , hK,dK )K∈N such that (2)
holds true for all K , and

hK,i =
K

dK
+ h̄K,i ∈ N, ∀K, i = 1, . . . , dK , (11)

where h̄K,i ∈ R and supK supi=1,...,dK |h̄K,i| <∞.

A balanced subdivision ensures that the number of
queues controlled by each second level dispatcher is suf-
ficiently close to K/dK . Balanced subdivisions exist; see
Section 6.1.

3.2 SITA-E

Let R∗dK ∈ RdK denote the SITA policy for the K-th system
that equalizes server loads, i.e., ensuring that

λKpK,iE[SK,i]

hK,i
= ρ, ∀i = 1, . . . , dK . (12)

Following common queueing theory parlance [5], we refer
to R∗dK as SITA-E. By definition and using (4), R∗dK is

uniquely determined by the thresholds (x∗K,i)
dK
i=0, given by

the unique solution of the following system of equations∫ x∗K,i

x∗K,i−1

xf(x)dx =
hK,i
K

E[S], ∀i = 1, . . . , dK . (13)

These can be easily precomputed by iteration, starting for
instance from x∗K,1 and using that x∗K,0 = xm. We also notice
that their computation does not require the knowledge of λ.

The following lemma connects R∗dK with some func-
tion g independent of K .

Lemma 1. Let g : [0, 1) → [xm, xM ) be the unique solution of
the initial value problem

zf(z)z′ = E[S] (14a)
z(0) = xm. (14b)

Then, x∗K,i = g
(
HK,i
K

)
, for all i = 1, . . . , dK − 1.

Proof. The uniqueness of solutions of (14) follows by the
Picard–Lindelöf theorem because 1

xf(x) is Lipschitz continu-
ous by assumption. Integrating both sides of (14a) and using
a change of variable, we obtain

hK,i
K

E[S] =

∫ HK,i
K

HK,i−1
K

E[S]dx =

∫ HK,i
K

HK,i−1
K

g(x)f(g(x))dg(x)

=

∫ g
(
HK,i
K

)
g
(
HK,i−1

K

) xf(x)dx (15)

for all i = 1, . . . , dK . Then, we notice that the choice x∗K,i =
g (HK,i/K) satisfies (13).

3.3 Main Result
The following theorem is our main result and shows in a
constructive manner that is indeed possible to obtain, within
the proposed load balancing scheme, the zero-delay prop-
erty discussed in the Introduction. Essentially, this structural
property is achieved when the first level dispatcher applies
SITA-E and when (hK)K is a balanced subdivision.

Definition 4. We write f(K) ≈ g(K) if lim
K→∞

f(K)
g(K) = 1.

Theorem 1. Let (hK)K be a balanced subdivision, let g(·) be as
in Lemma 1 and assume that

dK = o(K), lim
K→∞

dK = +∞. (16)

If xM <∞, then

2

λ
(1− ρ)WK(dK , R

∗
dK , hK) (17a)

≈ dK − 1

λ2K
+KVar(TK) +

E[S]2

12d2
K

∫ 1

0

(
g′(x)
g(x)

)2
dx. (17b)

If xM =∞ and S is Pareto distributed with E[S2] <∞, then

2

λ
(1− ρ)WK(dK , R

∗
dK , hK) (18a)

≈ dK − 1

λ2K
+KVar(TK) +

1

dK

E[S]2

12(α− 1)2

π2

6
. (18b)

Therefore, if in the scenarios above

lim
K→∞

K Var(TK) = 0, (19)
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then the sequence of dispatching schemes (dK , R
∗
dK
, hK)K is

asymptotically optimal.

Proof. See Appendix A.

Some comments are in order.
The assumption (16) rules out the cases where dK = K

(pure SITA-E routing) and dK = 1 (pure RR routing), and is
necessary to ensure thatWK(dK , R

∗
dK
, hK)→ 0 asK →∞.

The RHS terms (17b) and (18b) are related to the variance
of the arrival (first two terms) and service (third term) pro-
cesses. Depending on the asymptotic behavior of Var(TK)
and dK , they indicate whether it is the variance of the arrival
or service process that eventually has a major influence on
performance.

The adoption of SITA-E is justified by its optimality inside
the set of SITA policies when dK = K and K → ∞ [6], [24].
However, it is not the optimal policy in RdK and thus other
SITA policies that improve the asymptotic estimate in (17)
may exist. We do not investigate this in this paper. One
advantage of SITA-E with respect to other SITA policies is
that the identification of the cutoffs x∗K,i does not depend
on the arrival process (see (13)).

In the case of a Poisson arrival process at the first level
dispatcher, i.e., TK is exponentially distributed with rate
λK , (19) is clearly satisfied. This is also the case if for
instance TK has a phase-type distribution where the size
of the underlying transition matrix does not depend on K .

In the proof of Theorem 1, we show that our asymptotic
approximations are related to the analysis of the sum in (48)
as K → ∞. When xM < ∞, the key observation is to
recognize that such sum is connected to a Riemann sum,
regardless of the job size distribution. The case xM = ∞ is
different and does not seem possible to construct a ‘general’
asymptotic estimate unless a particular structure on the job
size distribution is assumed.

We also observe that the system designer can actually
control the parameter dK . While letting (hK)K remain any
balanced subdivision, it is then natural to search for a dK
that minimizes WK(dK , R

∗
dK
, hK), as it would impact the

convergence speed of WK(dK , R
∗
dK
, hK) to zero as well as

the applicability of the proposed method itself at a large
scale (it is clear that the smaller dK is, the better). Finding
the optimal scaling for dK is the subject of Section 4.

In the RHS of (17), we notice that the integral

G def
=

∫ 1

0

(
g′(x)
g(x)

)2
dx (20)

does not seem to admit an explicit formula unless g(x)
takes a particular form. If job sizes follow the bounded
Pareto distribution with parameter α (see (3)), then g(x)
must satisfy the ODE z′ = zαE[S]/C with z(0) = xm.
Integrating both sides, assuming α 6= 1 and recalling that
E[S] = C (x1−α

m − x1−α
M )/(α− 1), one can first verify that

g(x) =
(
x1−α
m + x

(
x1−α
M − x1−α

m

)) 1
1−α . (21)

Then,

G =
(x1−α
M − x1−α

m )2

(1− α)2

∫ 1

0

(
x1−α
m + x

(
x1−α
M − x1−α

m

))−2
dx

(22a)

=

(
x1−α
M − x1−α

m

) (
xα−1
m − xα−1

M

)
(1− α)2

. (22b)

For the case where α = 1, we notice that G, E[S] and g are
all continuous in α.

4 OPTIMAL TRADEOFF BETWEEN SITA-E AND RR
In this section, we use Theorem 1 to determine the optimal
scaling for the number of second level dispatchers dK , or
equivalently the number of size intervals. Specifically, we
are interested in studying the optimization problem

min
dK∈{1,...,K},hK

WK(dK , R
∗
dK , hK) (23)

with respect to a sequence of systems indexed by K . In
principle, this is a difficult non-linear combinatorial opti-
mization problem and for this reason we look for efficient
and practical approximations.

For K large enough, Theorem 1 ensures that all balanced
subdivisions are asymptotically equivalent, in the sense that
W(dK , R

∗
dK
, hK) ≈ W(dK , R

∗
dK
, ĥK) as K → ∞ for any

two balanced subdivisions (hK)K and (ĥK)K , and optimal.
Thus, with respect to a sequence of systems indexed by K ,
we approximate the optimization in (23) by

min
dK∈{1,...,K}

W(dK , R
∗
dK , hK) (24)

where (hK)K is any balanced subdivision.

4.1 Bounded Support
Let us assume that xM < ∞. Since the second term in the
RHS of (17) does not depend on dK , we approximate an
optimizer of (24) by some dK ∈ {1, . . . ,K} that minimizes

dK
K

+
ρ2

12d2
K

∫ 1

0

(
g′(x)
g(x)

)2
dx. (25)

Since (25) is a strictly convex function in dK , there exists
a unique minimizer, say d∗K . Assuming dK a continuous
variable and imposing the derivative to zero, we obtain the
condition

1

K
=

ρ2

6(d∗K)3

∫ 1

0

(
g′(x)
g(x)

)2
dx, (26)

which gives

d∗K = K
1
3

(
ρ2

6

∫ 1

0

(
g′(x)
g(x)

)2
dx

) 1
3

. (27)

Remark 2. It turns out that d∗K as given in (27) provides a very
accurate approximation for the dK that solves the optimization
in (24) even when K is relatively small. This will be shown
numerically in Section 6.

Figure 3 illustrates the behavior of d∗K when λ = 0.9
and S follows the bounded Pareto distribution with shape
parameter α ∈ [ 1

2 ,
3
2 ]. We also assume xM = 105 xm and

E[S] = 1. We notice that d∗K is actually very small and
is minimized when α = 1, a value that is often found
in empirical measurements of computing systems [5], [26],
[27]. When K = 100 (respectively, K = 104) the optimal
tradeoff between SITA and RR is obtained when job sizes
are partitioned in only 12 (56) intervals. This choice of dK
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Fig. 3. Behavior of d∗K when S follows the bounded Pareto distribution.

provides much better results than the cases where SITA-E
and RR are applied separately, i.e., dK = K and dK = 1
respectively (see Section 6). Interestingly, we also observe
a symmetry around α = 1, justified by (22) and consistent
with the duality theory developed in [29].

4.2 Pareto Job Sizes

Let us assume that xM =∞ and that S is Pareto distributed.
Using (18) and proceeding as above, we approximate an
optimizer of (24) by some dK ∈ {1, . . . ,K} that minimizes
the strictly convex function

dK
K

+
1

dK

ρ2

12(α− 1)2

π2

6
. (28)

Imposing the derivative to zero, for the unique optimizer d∗K
we obtain

d∗K =
√
K

ρ√
2(α− 1)

π

6
. (29)

4.3 Optimal Performance and Convergence Speed

Substituting dK = d∗K + d̄K in (17), where (d̄K)K is any
uniformly bounded sequence such that d∗K + d̄K ∈ N for
all K , we obtain

2

λ
(1− ρ)WK(dK , R

∗
dK , hK) ≈ KVar(TK)− 1

λ2K

+K−
2
3

3

2λ2

(
ρ2

6

∫ 1

0

(
g′(x)
g(x)

)2
dx

) 1
3

, (30)

if xM <∞, and

2

λ
(1− ρ)WK(dK , R

∗
dK , hK) ≈ KVar(TK)− 1

λ2K

+
1√
K

√
2

6

πρ

λ2(α− 1)
(31)

if xM = ∞ and S is Pareto distributed. These formulas
provide simple approximations for the minimum steady-
state workload achievable with dispatching schemes of the
form (dK , R

∗
dK
, hK).

In the case where TK follows a phase-type distribution
having the rate of each phase proportional to K and the size
of the underlying transition matrix independent of K, then
Var(TK) = O(K−2) and W(R∗dK , d

∗
K + d̄K , hK) converges

to zero with speeds K2/3 (xM <∞) and
√
K (xM =∞).

5 SYNERGIES OF THE COMBINATION

In this section, we analytically show that the performance
gain of the proposed dispatching scheme (dK , RdK , hK)
with respect to both pure RR and SITA routings can be made
arbitrarily large regardless of the system size K . Towards
this purpose, we assume FCFS queues and, letting RRR be
the only element of R1 (the degenerate map RRR(x) = 1)
and 1 = (1, . . . , 1), we fix K and define the ratio

E(K)
def
=

min

{
WK(1, RRR,K), inf

R∈RK
WK(K,R,1)

}
inf

dK∈{1,...,K},R∈RdK ,hK
WK(dK , R, hK)

≥ 1,

that is the ratio between the minimum of the mean steady-
state waiting times achieved by RR and the optimal SITA
policy for the K-th system when dK = K and the minimum
mean steady-state waiting time achievable by the proposed
dispatching scheme, which is necessarily no less than one.

Within the setting of Theorem 1, it is not difficult to
show that the efficiency ratio E(K) → ∞ when K → ∞.
This holds true because both RR and SITA policies are not
asymptotically optimal. The following result shows that E
can grow unboundedly even in the case where the system
size K is kept constant. To achieve this, it will be sufficient
to consider a scenario where the interarrival times (TK,n)
are constant and job sizes (Sn) are highly variable.

Theorem 2. Let K ≥ 3 be fixed. Then, sup E = +∞ where the
sup is taken over the set of probability distributions of S and TK .

Proof. See Appendix B.

In Theorem 2, the case K = 2 is excluded be-
cause (d2, R2, h2) clearly boils down to either RR (d2 = 1)
or SITA (d2 = 2), in which case E = 1.

6 PERFORMANCE AND ACCURACY ASSESSMENT

Assuming that queues operate under the FCFS scheduling
discipline, in this section we present the results of several
numerical simulations aimed at showing:

• how the average long-run waiting time achieved
with (dK , R

∗
dK
, hK)K compares with the ones

achieved by join-the-shortest-workload (JSW), join-
the-idle-queue (JIQ), RR and SITA-E;

• how the performance of (dK , R
∗
dK
, hK)K varies

with dK ;
• the accuracy of d∗K as in (27), our approximation for

the optimal choice of dK developed in Section 4.

6.1 Regular Subdivisions
Our simulations have been performed under the assump-
tion that (hK) is a regular subdivision.

Definition 5. Given a sequence (dK)K , we say that the trian-
gular array ((hK,1, . . . , hK,dK ))K∈N is a regular subdivision
if (2) and (11) hold true with |h̄K,i| ∈ [0, 1].

Regular subdivisions can be constructed as follows.
First, we choose a target second level dispatcher, say i∗ ∈
{1, . . . , dK}, and let hK,i∗ = K − (dK − 1)b KdK c and hK,i =

b KdK c for all i ∈ {1, . . . , dK} such that i 6= i∗. At this point,
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if hK,i∗ > d KdK e, then necessarily hK,i∗ − d KdK e ≤ dK − 1

and we distribute the hK,i∗ − d KdK e queues in excess at
i∗ among hK,i∗ − d KdK e different second level dispatchers.
This increases the number of queues controlled by each
dispatcher i 6= i∗ at most by one.

6.2 Simulation Framework
We assume FCFS queues and that (hK)K is a regular
subdivision (see above) with hK,i nonincreasing in i (this
choice is for uniqueness and has a negligible impact). The
arrival process at the first level dispatcher is Poisson and
job sizes follow the bounded Pareto distribution with shape
parameter α ∈ [ 1

2 ,
3
2 ]. Such values of α, especially those

in [1,1.3], are realistic [5, Section 2.2]; see also [25], [26],
[27]. We assume ρ = 0.9 and that (xm, xM ) is chosen
such that E[S] = 1 and xM = 105xm. With these as-
sumptions, the thresholds of SITA-E are x∗K,i = g

(
HK,i
K

)
with g given by (21).

We have independently generated 400 sequences of the
form (T1,n(ω), Sn(ω)) for n = 1, . . . , 108, representing the
interarrival times and job sizes of 108 jobs for the base
system where K = 1; this has been done using the C
language function srand(seed), where seed = 1, . . . , 400.
The 400 sequences associated to the K-th system, K > 1,
have the form (TK,n(ω), Sn(ω))n=1,...,108 where TK,n(ω) =
KT1,n(ω). Within this coupling, both our algorithm and
JSW are compared “ω-per-ω”, i.e., within the same events.

With respect to each of the 400 sequences above and
using Lindley’s equation, we have computed the average
waiting time of jobs starting from an empty system and
without taking into account the first 4×105 jobs to eliminate
some transitory effects that may bias the results (as in [5]).
For the K-th system, we refer to such average as W JSW

K

(respectively, WSR(dk)
K ) if the load balancing algorithm used

is JSW (the dispatching scheme (dK , R
∗
dK
, hK)).

6.3 Comparison with Join-the-shortest-workload
Within the simulation setup described above, we assess
the performance of (dK , R

∗
dK
, hK) with respect to the one

achieved with JSW by measuring the ratio

RK
(
dK
K

)
def
=

W JSW
K

W
SR(dk)
K

. (32)

Remark 3. The JSW algorithm is the ideal benchmark to test the
performance of our dispatching scheme. However, this comparison
is not completely fair because as discussed in Section 2.1 JSW is
less scalable.

Since W JSW
K does not vary with dK , RK also provides

information about the performance gain of (dK , R
∗
dK
, hK)

with respect to both SITA-E (dK = K) and RR (dK = 1).
Figure 4 illustrates the average and the standard de-

viation of RK by increasing the number of second level
dispatchers dK from 1 to K , for K = 20, 50, 100 and when
α = 1. The x-axis represents dK/K and indicates our ap-
proximation for the optimal scaling, d∗K/K: A = d∗20/20 =
0.3549, B = d∗50/50 = 0.1927 and C = d∗100/100 = 0.1214.
Each point marked in both plots refers to 400 samples.

First, we notice that if dK/K > 0.05, the proposed dis-
patching scheme always outperforms the best between pure
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Fig. 4. Averages and standard deviations of RK (dK/K) by increasing
dK , where A =

d∗20
20

, B =
d∗50
50

and C =
d∗100
100

. The maximum
performance gain achievable by (dK , R

∗
dK
, hK) is indeed when dK is

close to d∗K , where (dK , R
∗
dK
, hK) outperforms JSW.

RR and pure SITA routings. In addition, our approximation
for the optimal dK , i.e. d∗K , is very close to the exact dK
that maximizes RK (equivalently, that minimizes WSR(dk)

K )
and we observe that just a few size intervals help reducing
W

SR(dk)
K a lot: when moving from dK = 1 (RR) to d∗K , the

magnitude of WSR(dk)
K always reduces remarkably. We also

notice that the optimal tradeoff is achieved with a small
number of size intervals as, e.g., [d∗100] = 12.

Remark 4. The scenarios where RR and SITA routings are
considered separately are eventually outperformed by JSW as K
increases; note that E[R100(1)] = 0.39 and E[R100( 1

100 )] ≤
5 × 10−5. This is to be expected because the mean steady-state
waiting times achieved with both approaches remain bounded
away from zero in the limit where K →∞ [6], [7].

Remark 5. It is always possible to find a set of dK ’s containing
d∗K such that RK > 1, i.e., the proposed dispatching scheme
([d∗K ], R∗[d∗K ], hK) outperforms JSW.

We now illustrate the behavior of RK
(

[d∗K ]
K

)
in two

orthogonal scenarios as a function of the job size variability
while keeping the system size large but constant. In the first,
we increase the shape parameter α from 0.5 to 1.4 with
step 0.1 while keeping fixed the ratio δ

def
= xM

xm
= 105,

and in the second we fix α = 1 and let δ = 10i for
i ∈ {2, . . . , 7}. In both scenarios, we fix K = 100 and adjust
parameters to ensure that E[S] = 1; given the structure of
the bounded Pareto distribution, E[S2] clearly varies in δ
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Fig. 5. Behavior of RK

(
[d∗K ]

K

)
by varying a) the shape parameter α

and b) the variability ratio δ.

and α, and we notice that E[S2] → ∞ as δ → ∞. The
results of both scenarios are shown in Figure 5 by means
of the Matlab’s boxplot command, which indicates the
median, the 25th and 75th percentiles (the edges of the
box), the most extreme datapoints considered to be not
outliers and the outliers (red ‘+’ signs). Each box refers to
400 samples. Figure 5.a) shows that RK is very sensitive
to α and that the benefits of (d∗K , R

∗
[d∗K ], hK) increase as α

is around one, which is the case of practical interest. When
α ∈ [0.6, 1.1], (d∗K , R

∗
[d∗K ], hK) outperforms JSW but outside

that interval JSW performs better. Figure 5.b) shows that
in average RK increases in δ significantly, with RK > 1
for all δ ≥ 105. This suggests that JSW is more sensitive
to E[S2] than (d∗K , R

∗
[d∗K ], hK). We could not test for higher

values of δ due to the cost of simulation: the evidently
high variance appearing when δ = 107 comes from the
difficulty of simulating JSW, which is not able to isolate
small jobs from long ones. Contrariwise, the simulation of
(d∗K , R

∗
[d∗K ], hK) is robust as when δ = 107 we found that

E[W
SR([d∗k])
K ] = 0.849 with a small standard deviation equal

to 0.0543.

6.4 Comparison with Join-the-idle-queue
Within the simulation setup described above, we also assess
the performance of ([d∗K ], R∗[d∗K ], hK) with respect to the one
achieved with the join-the-idle-queue (JIQ) algorithm [13].
Within JIQ, an incoming job is sent to an idle queue if an idle
queue exists, otherwise to a random server. Since JIQ try to
mimic the dynamics of JSW but with less information, one
expects that our approach gives better performance gains
than the ones presented in previous section.
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Fig. 6. Behavior of RJIQ
K

(
[d∗K ]

K

)
by varying a) the shape parameter α

and b) the variability ratio δ.

Within the same settings used to obtain Figure 5, Figure 6

illustrates the behavior ofRJIQK

(
[d∗K ]
K

)
def
=

WJIQ
K

W
SR(dk)

K

. It turns

out that the resulting performance gains have qualitatively
the same shape but they are significantly amplified. For
instance, as a function of the shape parameter α, the results
in Figure 6.a) reveal a 10-fold improvement with respect to
the results in Figure 5.a). Furthermore, Figure 6.b) shows
that JIQ is much more sensitive to the job variability ratio
δ than the proposed dispatching scheme ([d∗K ], R∗[d∗K ], hK),
which performs orders of magnitude better.

6.5 An Upper Bound on the Optimal Performance

The purpose of this section is to show that our asymp-
totic estimate for WK([d∗K ], R∗[d∗K ], hK), i.e., (30), actually
provides an upper bound on the system performance. To-
wards this purpose, we evaluate by simulation the ratio
EK

def
= W∗K/W

SR([d∗k])
K . Table 1 reports the behavior of EK

by changing the job size variability parameters α and δ =
xM/xm (as done above) and shows that the simulated long-
run average waiting time achieved with our dispatching
scheme is smaller than our asymptotic estimate, as EK > 1.
We claim that this insight is robust because Table 1 shows
that standard deviations are significantly smaller than the
corresponding averages. This suggests that the analytical
formula (30) may be further used in the context of capacity
dimensioning or admission control of computer systems
where Quality-of-Service (QoS) guarantees need to be taken
in to account; see, e.g., [30].



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

δ = 105

α E100
0.6 1.1482 ± 0.015
0.8 1.1672 ± 0.026
1.0 1.3462 ± 0.049
1.2 1.3496 ± 0.090
1.4 1.2534 ± 0.155

α = 1.0
δ E100

103 1.4290 ± 0.010
104 1.3623 ± 0.022
105 1.3462 ± 0.049
106 1.3919 ± 0.079
107 1.4971 ± 0.092

TABLE 1
Averages ± standard deviations for EK by increasing the job size

variability parameters α and δ.

7 CONCLUDING REMARKS

We have unified two ‘dichotomic’ load balancing schemes,
namely Round-Robin (RR) and Size Interval Task Assign-
ment (SITA), in a single dispatching algorithm. The syn-
ergies that come out from our combination allow one to
jointly control the variances of both the arrival and service
processes overcoming the limitations of both approaches
when applied separately. We have proven that such scheme
achieves zero latency in the large-system limit, shown
that the performance gain with respect to pure RR and
SITA routings can be arbitrarily large, and numerically
shown that its performance is competitive with the join-
the-shortest-workload algorithm, which as discussed in Sec-
tion 2.1 does not possess the same scalability properties.

We also notice that the generic dispatching scheme
(dK , RdK , hK) makes job assignments with minimal com-
putational requirements: O(dK) memory cells are needed to
store the size thresholds, and for each size-x job assignment
one needs to search for the corresponding size interval to
identify the right second level dispatcher, which can be done
in O(log dK) steps with a binary search.

With respect to realistic choices for the job size distribu-
tion, we have shown in Sections 4 and 6.3 that the optimal
number of size intervals that partition the support of the job
size distribution is ‘small’. This enhances the applicability of
the proposed load balancing scheme at a large scale because
RR is known to be highly scalable and only a small number
of cutoffs need to be estimated in practice.

The proposed dispatching scheme admits a bilevel in-
terpretation where a first level dispatcher applies SITA to
a set of second level dispatchers that in turn apply RR
on non-overlapping sets of queues. If the roles of first
and second level dispatchers were inverted, the zero-delay
property in the large-system limit would not hold. This is
intuitive because even if the arrival process at the first level
dispatcher is deterministic, the second level dispatcher still
randomizes over job sizes, making the arrival process at
each queue renewal and non-deterministic.

APPENDIX A
PROOF OF THEOREM 1
Unless otherwise specified, the hidden constants in the big-
O terms that follow will not depend on i ∈ {1, . . . , dK}.

Let g(x) be as in Lemma 1,

Mj(x)
def
=

∫
xjf(x)dx, (33)

and H̄K,i
def
= HK,i/K.

We treat the cases xM < ∞ and xM = ∞ separately.
First, let us assume that xM <∞.

We notice that

Mj(x
∗
K,i)−Mj(x

∗
K,i−1) (34a)

= Mj

(
g
(
H̄K,i

))
−Mj

(
g
(
H̄K,i−1

))
(34b)

=
hK,i
K E[S] gj−1

(
H̄K,i

)
− 1

2

(
hK,i
K

)2
E[S](j − 1)gj−2

(
H̄K,i

)
g′
(
H̄K,i

)
+

1

3!

(
hK,i
K

)3
E[S](j − 1)gj−3

(
H̄K,i

)
×
(

(j − 2)
(
g′
(
H̄K,i

))2
+ g

(
H̄K,i

)
g′′
(
H̄K,i

))
+O

(
h4
K,i

K4

)
. (34c)

In (34b) we have used Lemma 1. In (34c) we have used a
Taylor expansion of Mj(g(·)) in H̄K,i together with

d
dxMj(g(x)) = (g(x))

j
f (g(x)) g′(x) = E[S]gj−1(x)

(35a)
d2

dx2Mj(g(x)) = E[S](j − 1)gj−2(x)g′(x) (35b)
d3

dx3Mj(g(x)) = E[S](j − 1)gj−3(x)

×
(
(j − 2)(g′(x))2 + g(x)g′′(x)

)
, (35c)

where the second equality in (35a) follows by the definition
of g(x) given in Lemma 1, and that g is twice differentiable.

Now, substituting (13) in (9), we obtain

WK(dK , R
∗
dK , hK)

=
λ

2

1

1− ρ

dK∑
i=1

K

hK,i
p2
K,i

(
Var(ARRK,i) + Var(SK,i)

)
(36)

where, using (4) and (7),

pK,i = M0(x∗K,i)−M0(x∗K,i−1) (37)

Var(ARRK,i) = hK,i

(
Var(TK)− 1

λ2K2

pK,i
+

1

(λKpK,i)2

)
(38)

Var(SK,i) =
M2(x∗K,i)−M2(x∗K,i−1)

pK,i
(39)

−
(M1(x∗K,i)−M1(x∗K,i−1))2

p2
K,i

. (40)

For the variances of the interarrival times, we obtain
dK∑
i=1

Kp2
K,i

hK,i
Var(ARRK,i) =

dK∑
i=1

KpK,iVar(TK)− pK,i
λ2K

+
1

λ2K

=
dK
λ2K

+KVar(TK)− 1

λ2K
(41a)

and for the variances of the service processes, we obtain

p2
K,iVar(SK,i) = −

(
M1(x∗K,i)−M1(x∗K,i−1)

)2
+(

M0(x∗K,i)−M0(x∗K,i−1)
) (
M2(x∗K,i)−M2(x∗K,i−1)

)
(42)

where, using (34) and that (hK) is a balanced subdivision,

(M1(x∗K,i)−M1(x∗K,i−1))2 =
(

E[S]hK,i
K +O

(
1
d4K

))2

=
E[S]2h2

K,i

K2 +O
(

1
d5K

)
(43)
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and
1

E[S]2

∏
j∈{0,2}

(
Mj(x

∗
K,i)−Mj(x

∗
K,i−1)

)
=

(
hK,i
K

1
g(H̄K,i)

+ 1
2

(
hK,i
K

)2
g′(H̄K,i)

g2(H̄K,i)

− h3
K,i

3!K3

g(H̄K,i)g
′′(H̄K,i)−2(g′(H̄K,i))

2

g3(H̄K,i)
+O

(
1
d4K

))
×(

hK,i
K g(H̄K,i)− 1

2

(
hK,i
K

)2
g′(H̄K,i)

+
h3
K,i

3!K3 g
′′(H̄K,i) +O

(
1
d4K

))

=
h2
K,i

K2 + 1
12

(
g′(H̄K,i)

g(H̄K,i)

)2 (
hK,i
K

)4
+O

(
1
d5K

)
. (44)

Therefore, using (43) and (44) in (42) we obtain

dK∑
i=1

K

hK,i
p2
K,iVar(SK,i) (45a)

=
dK∑
i=1

E[S]2

12

(
g′(H̄K,i)

g(H̄K,i)

)2 (
hK,i
K

)3
+O

(
K
hK,i

1
d5K

)
(45b)

= O
(

1
d3K

)
+ E[S]2

12

(
1
dK

+O( 1
K )
)2

dK∑
i=1

hK,i
K

(
g′(H̄K,i)

g(H̄K,i)

)2

(45c)

= O
(

1
d3K

)
+
(

E[S]2

12d2K
+O

(
1

dKK

))(∫ 1

0

(
g′(x)
g(x)

)2
dx

+O
(

1
dK

))
(45d)

= O
(

1
d3K

)
+ E[S]2

12d2K

∫ 1

0

(
g′(x)
g(x)

)2
dx+O

(
1

KdK

)
. (45e)

In (45d), we have used that
(
g′(x)
g(x)

)2
is differentiable and

Lipschitz (and thus Riemann integrable), and a crude error
bound for Riemann sums, i.e.,

dK∑
i=1

hK,i
K

(
g′(H̄K,i)

g(H̄K,i)

)2
≤
∫ 1

0

(
g′(x)
g(x)

)2
dx

+
1

2
max
x∈[0,1]

∣∣∣∣ d

dx

(
g′(x)
g(x)

)2
∣∣∣∣× max

i=1,...,dK

hK,i
K .

The Lipschitz property holds true because using that g(x) is
increasing with g(0) = xm > 0 (by definition) we obtain

1

2

∣∣∣∣ d

dx

(
g′(x)
g(x)

)2
∣∣∣∣ = g′(x)

g3(x) |g
′′(x)g(x)− (g′(x))2|

≤ Lg
x3
m
|g′′(x)|xM +

L3
g

x3
m

=
LgxM
x3
m

E[S]
|g′f(g)− gf ′(g)g′|

g2f2(g)
+

L3
g

x3
m

≤ L2
gxM
x5
m

E[S]

max
x∈[xm,xM ]

f(x) + xmLf

min
x∈[xm,xM ]

f2(x)
+

L3
g

x3
m
<∞

where Lf and Lg are the Lipschitz constants of g and f ,
respectively. In the penultimate inequality, we have used

that minx∈[xm,xM ] f
2(x) > 0, which holds true because

otherwise 1
xf(x) would not be Lipschitz.

Finally, combining (41a) and (45) in (36), we obtain (17)
and the asymptotic optimality of (dK , R

∗
dK
, hK) follows

by the scaling assumptions on Var(TK) and dK , i.e. (19)
and (16).

We now assume that xM = ∞ and that S is Pareto
distributed with E[S2] < ∞. We recall that E[S2] < ∞ if
and only if α > 2. In this case,

Mj(x) =

∫
xj
αxαm
xα+1

dx = αxαm
xj−α

j − α
(46)

and using that E[S] = αxm
α−1 , g satisfies g−αg′ =

x1−α
m /(α− 1) with g(0) = xm. Integrating both sides, we

obtain

g(x) = xm(1− x)
1

1−α . (47)

What remains to show is the limit behavior of
dK∑
i=1

K

hK,i
p2
K,iVar(SK,i). (48)

Here, we notice that the Taylor’s expansion (34) fails at i =
dK because in this case limx↑1 g(x) = +∞, and therefore
that the Riemann sum (45c) may diverge; indeed, by letting
xM → ∞ in (22), we notice that such sum diverges. In the
following, we show that such sum converges if scaled by
dK/K , though this observation depends on the particular
structure of the Pareto distribution.

Now,
dK−1∑
i=1

K

hK,i
p2
K,iVar(SK,i) (49a)

=
dK−1∑
i=1

E[S]2

12

(
g′(H̄K,i)

g(H̄K,i)

)2 (
hK,i
K

)3
+O

(
K
hK,i

1
d5K

)
(49b)

= O
(

1
d3K

)
+
dK−1∑
i=1

E[S]2

12(α−1)2
1

(1−H̄K,i)2

(
hK,i
K

)3
, (49c)

In (49b), we have used (43) and (44) in (42); in (49c), we have
used (46) and (47).

Letting h̄ def
= supK supi |h̄K,i|, for all K sufficiently large

dK−1∑
i=1

1
(1−H̄K,i)2

(
hK,i
K

)2
=
dK−1∑
i=1

(
hK,i

K −HK,i

)2

=
dK−1∑
i=1

(
hK,i∑dK

j=i+1 hK,j

)2

≤
dK−1∑
i=1

 K
dK

+ h̄

(dK − i)
(
K
dK
− h̄

)
2

=

(
K
dK

+ h̄
K
dK
− h̄

)2 dK−1∑
i=1

1

(dK − i)2
≈
dK−1∑
i=1

1

i2
≈ π2

6
.

Replacing h̄ by −h̄ in the last inequality, we obtain

dK−1∑
i=1

K

hK,i
p2
K,iVar(SK,i) ≈

1

dK

E[S]2

12(α− 1)2

π2

6
.

To prove (18), it remains to show that the last term in (48)
converges to zero (here, we use that E[S2] <∞). Since

p2
K,dKVar(SK,dK ) ≤ p2

K,dKE[S2
K,dK ]
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=
∏

j∈{0,2}

(
Mj(x

∗
K,dK )−Mj(x

∗
K,dK−1)

)
= (1− H̄K,dK−1)

α
α−1 × αx

2
m(1− H̄K,dK−1)

α−2
α−1

α− 2

=
(
hK,dK
K

)2
α
x2
m

α−2 ≈
1
d2K
α
x2
m

α−2

we obtain K
hK,dK

p2
K,dK

Var(SK,dK ) = O( 1
dK

)→ 0 as desired.

APPENDIX B
PROOF OF THEOREM 2
Let W (A,B) denote the mean steady-state waiting time
experienced by jobs in a GI/GI/1 queue where interarrival
and service times are equal in distribution to random vari-
ables A and B, respectively.

Let us assume that TK = 1
λK , 1

2 < λ < 2
3 , and that

S = x1I{U≤p} + x2I{U>p} (50)

where U is uniformly distributed over [0, 1] and p ∈ [0, 1].
We also assume that x1 = 1

p and x2 = 1√
1−p , which implies

E[S] = x1p+ x2(1− p) = 1 +
√

1− p

Var(S) = x2
1p+ x2

2(1− p)− E[S]2

=
1

p
− 1 + p− 2

√
1− p. (51)

Within these conditions and also ifK ≥ 3, for the numerator
of E we can show that (see below for a proof)

lim
p↑1

min

{
WK(1, RRR,K), inf

RK∈RK
WK(K,RK ,1)

}
> 0.

(52)
Within the same conditions as above and with respect to
some choice of dK and RdK , in the remainder of the proof
we show that the denominator of E converges to zero when
p ↑ 1. This will conclude the proof.

Assume that dK = 2, hK = (K − 1, 1) and that RdK ∈
RdK sends jobs of size xi to second level dispatcher i. Then,

WK(dK , RdK , hK) = pW (ARR1 , x1)+(1−p)W
(
Z2

λK , x2

)
(53)

where Z2 ∼ Geometric(1− p), ARR1 (p)
def
=
∑K−1
n=1

Z1,n

λK with
Z1,n ∼ Geometric(p) and the Z1,n’s are independent.

Applying the upper bound (1) (recall that λ < 2/3) and
using that x1 = 1

p , we obtain

W (ARR1 , x1) ≤ λKp

2(K − 1)

1

1− λK
K−1

K − 1

(λK)2

1− p
p2︸ ︷︷ ︸

=Var(ARR1 )

−−→
p↑1

0.

(54)

Now, we also develop an upper bound for W
(
Z2

λK , x2

)
;

here, we cannot use again (1) as in (54) because this
does not yield a sufficiently tight bound. Let (En)n be an
i.i.d. sequence of exponentially distributed random vari-
ables with rate λK independent of everything else. Since
Z2/λK ≤cx

∑Z2

n=1En, where ≤cx denotes the convex order

(see [31, Theorem 3.A.15]), we can apply [32, Corollary 5.2]
to obtain

W
(
Z2

λK , x2

)
≤W

(
Z2∑
n=1

En, x2

)
. (55)

Furthermore, since
∑Z2

n=1En is an exponentially distributed
random variable with rate λK(1 − p), we have bounded
W
(
Z2

λK , x2

)
in terms of an M/G/1 queue. Applying the

Pollaczek–Khinchine formula [32] to the RHS of (55) and
using that x2 = 1√

1−p , for p sufficiently large λK(1−p)x2 <
1 and

W
(
Z2

λK , x2

)
≤ λK(1− p)

2

x2
2

1− λK(1− p)x2
−−→
p↑1

λK

2
.

(56)

Finally, using (54) and (56) in (53), we obtain
that WK(dK , RdK , hK)→ 0 as p ↑ 1, as desired.

B.1 Proof of (52)

First, we notice that WK(1, RRR,K) = W ( 1
λ , S), and ap-

plying the lower bound in [33, Formula 2.51] to W ( 1
λ , S),

we obtain

WK(1, RRR,K) ≥ λ

2

Var(S)

1− λE[S]
− E[S]

2
. (57)

Given (51), limp↑1WK(1, RRR,K) > 0 if λ > 1
2 .

We now show that limp↑1 infRK WK(K,RK ,1) > 0.
Since S has not a density function, we need to adapt
the definition of SITA policy given in Definition 1 (here,
we could consider a perturbed version of the probability
distribution of our choice for S, say Fε, such that F = F0

and Fε is differentiable for all ε > 0 and apply what follows,
but we omit this for simplicity). When S is given by (50),
SITA policies have the following structure: there exists some
d < K such that the dispatcher sends jobs of size x1

(respectively, x2) randomly to all queues i ≤ d (i > d).
Therefore,

inf
RK∈RK

WK(K,RK ,1) =

min
d∈{1,...,K−1}

K∑
i=1

qiW
(
Zi
λK , x1I{i≤d} + x2I{i>d}

)
def
= WS

where qi = p
d I{i≤d} + 1−p

K−d I{i>d} and Zi ∼ Geometric(qi).
Furthermore,

WS = min
d∈{1,...,K−1}

pW
(
Z1

λK , x1

)
+ (1− p)W

(
ZK
λK , x2

)
≥ min
d∈{1,...,K−1}

pW
(
Z1

λK , x1

)
. (58a)

In order to have W
(
Z1

λK , x1

)
finite, the stability condition

λKx1 < EZ1, i.e., λ < d/K needs to be satisfied. Thus, an
optimizer of (58a) necessarily satisfies d > λK . For any d >
λK , applying again the lower bound in [33, Formula 2.51],
we obtain

pW
(
Z1

λK , x1

)
≥ p

(
λK

2EZK
Var( Z1

λK )

1− λK/d
− 1

2

(
x1 +

Var( Z1

λK )

E[Z1]/λK

))
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=
1

2λK

d− p
1− λK/d

− 1

2

(
1 +

d− p
λK

)
=
d− p
2λK

λK/d

1− λK/d
− 1

2
≥ 1

2

λK − 1

d− λK
> 0

where the last inequality follows by using that K ≥ 3 and
λ > 1

2 , and thus λK > 1.
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