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Abstract

In this paper, we introduce new bounds on the sys-
tem throughput and response time of closed, single-
class BCMP queueing networks with load-dependent
stations. Under the assumption that stations rela-
tive service rates are non-decreasing functions of their
queue lengths, the bounds derive from the monotonic-
ity of system throughput and queue-lengths and exploit
the asymptotic equivalence that exists between closed
and open single-class BCMP networks when the num-
ber of jobs N populating a closed network grows to
infinity. The bounds can be applied when N is suffi-
ciently large and the minimum N which allows their
use is given. Experimental results present scenarios in
which the proposed bounds significantly improve the ac-
curacy of existing techniques and we analytically show
that they are always more accurate than the popular
balanced job bounds when N is greater than a given
threshold. 1

I. Introduction

Closed, single-class, BCMP queueing networks
models [3] are a powerful, robust tool which in the
last decades has been widely adopted to analytically
evaluate the performance of computer and communica-
tion systems (see, e.g., [5], [13], [31] for recent works).
Their effectiveness is due to the good compromise they
provide between the accuracy and the computational
effort needed by the model solution. The continu-
ous, on-line solution of such queueing network models
is often required in the management of modern data
centers which, to achieve the best performance, itera-
tively solve several complex models. In fact, modern
computer systems are highly dynamic, self-optimizing,
self-configuring [4], [9], [1], and in such frameworks,

1 This work has been accomplished thanks to the technical and
financial support of Neptuny.

the efficient solution of several queueing network mod-
els is required whenever the system changes in order to
find the best system configuration which optimizes per-
formance indices and guarantees given quality of ser-
vice constraints. The fulfillment of quality constraints
and the optimization of performance indices can be
approached through the formulation of non-linear op-
timization problems [1], [2], [5] which make a large use
of performance indices in their objective functions and
constraints. In such optimization problems, an on-line
evaluation of performance indices significantly reduces
the computational requirements. Unfortunately, no
exact on-line solution algorithm is known for the whole
class of closed, single-class BCMP queueing networks.

The bounding analysis of closed queueing networks
can support the above requirements because it is aimed
to provide computationally simple formulas which
bound performance indices giving the qualitative be-
havior of the system. Given that in general it is dif-
ficult to analytically evaluate which bounds are the
tightest ones, the efficiency of this analysis is such that
a number of bounding techniques can be simultane-
ously executed when evaluating the qualitative behav-
ior of a system and, a posteriori, the tightest one can
be chosen with a small computational effort. Clearly,
if an upper (lower) bound is needed, then the lowest
(highest) bound computed provides the best accuracy.

Many works have been developed in the literature
supporting the bounding analysis of single-class, closed
BCMP networks with Load-Independent (LI), or fixed-
rate, stations [12], [32], [16], [10], [17], [29], [30], [14],
[8], [7] but little appeared about networks with Load-
Dependent (LD) stations. This type of station is useful
to model a service center where its processing speed
depends on its queue length and it is used in many
applications. For instance, LD stations can repre-
sent multiple-server queues or flow-equivalent stations
[6] which are used for the hierarchical modeling of
large/multitiered networks. LD stations are also used
to model, with a single station, the behavior of a sub-



system which is difficult to treat analytically. In this
case, the parameterization of the processing speeds
is approached through measurements or simulations.
Unfortunately, the exact analysis of BCMP networks
with LD stations becomes more difficult and the tem-
poral computational requirement is O(MN2) where N
is the number of jobs populating the network and M
is the number of service stations [6] (recall that for
networks with LI stations only this requirement drops
to O(MN)). Moreover, current solution algorithms
exhibit numerical instabilities that strongly affect the
accuracy of the solution and eventually yield unfeasi-
ble solutions, e.g. negative throughputs [23]. We em-
phasize that even single-class networks can give rise to
numerical instabilities. A bounding analysis is aimed
to overcome these drawbacks.

In [27], the authors express bounds of a network
with LD stations in terms of bounds of a network with
only LI stations in order to apply, in turn, the exist-
ing literature referenced above. However, we observe
that this new (LI) network can be characterized by
a different bottleneck, i.e. a different station having
the highest mean service demand, and in this situa-
tion the resulting bounds can be drastically loose (it
is well-known that the stations which strongly affect
the performance of a queueing network are the bot-
tlenecks). An illustrative example of this bottleneck
shifting phenomenon is shown in the paper. Further,
the same authors provide an additional bound under
the assumption that the stations service speeds are
increasing functions of the number of jobs in their
queues. In this case, the network is again bounded by
mean of a network with only LI stations but N is suit-
ably scaled. This bound avoids the bottleneck shift-
ing phenomenon. However, the population size scaling
yields very loose bounds in many practical cases and
significantly restricts the bound applicability. In [27],
it is also shown that such bounds can be tightened if
only multiple-server stations are considered. Bounds
related to the special case of multiple-server stations
are also proposed in [28], [22], [11].

In this paper, we propose new bounds on the system
throughput and response time of single-class, closed
BCMP networks with LD stations. We assume that
the relative rate of service of each station is a non-
decreasing function of the number of jobs in its queue.
The bounds mainly follow from the monotonicity of
system throughput [26] and queue-lengths [25] and ex-
ploit the asymptotic equivalence that exists between
closed and open single-class BCMP networks when the
number of jobs populating a closed network grows to
infinity (see, e.g., [18]). The bounds can be applied
when the number of jobs in the network is greater than
or equal to a given threshold which depends on the pa-

rameters characterizing non-bottleneck stations. The
bounds overcome the bottleneck shifting phenomenon
mentioned above which can appear by applying ([27],
Theorem 3.1) and alleviate the effects of the popula-
tion size scaling of ([27], Theorem 3.2). With respect
to well-known scenarios published in the literature,
experimental results show that the proposed bounds
provide improved accuracy in many cases. When N is
sufficiently large, we prove that the throughput bound
always provides better accuracy than the popular Bal-
anced Job Bounds (BJB) [32], [17].

The structure of the paper is as follows. In Sec-
tion II we introduce the model under investigation and
the notation used in the paper. In Section III we de-
rive the bounds discussing their analytical properties
and comparing their accuracy with respect to the well-
known class of BJB bounds. In Section IV we present
some numerical results and, finally, Section V draws
the conclusions of our work.

II. Model and Notation

We consider single-class, closed BCMP queueing
networks models [3]. There are M stations and the
number of jobs circulating in the network is N . If not
otherwise specified, index i will range from 1 to M
indexing network stations.

We denote by Di the mean service demand (also
known as relative utilization [6]) at station i and we
recall that for a closed network it can be interpreted as
the total mean time spent by a job at station i when
using the network alone and visiting a reference station
exactly once.

Let xi : N → R
+ be an arbitrary non-decreasing

function. xi(n) represents the load-dependent rate of
service of i when there are n ≤ N jobs in i relative
to the service rate when n = 1, i.e. xi(1) = 1. For
instance, if in station i there are ki < ∞ identical
servers working in parallel, then the relative service
rate is defined as

xi(n) =

{

n, ∀n ≤ ki

ki, ∀n > ki.
(1)

Note that if ki = 1 then station i is a Load-
Independent (LI) station. For simplicity of notation,
we define

D∗

i (n) ≡ Di/xi(n) (2)

as the effective mean service demand required by a job
to station i when n jobs are contained in i, and

D∗

i ≡ lim
n→∞

Di/xi(n). (3)

We note that the existence of previous limit follows by
the monotonicity of xi(n). We also denote by ni ≤



N the minimum positive integer such that Di(ni) =
Di(n) = D∗

i , n = ni, . . . , N . Let also

D∗

max ≡ max
i

D∗

i (4)

and bmax be the cardinality of set

{i : D∗

i = D∗

max} , (5)

i.e. the number of stations with, in the limit, maxi-
mum service demand. We note that the stations be-
longing to set (5) can be characterized by different
load-dependencies.

In this paper, we assume that
∑

i:D∗

i
=D∗

max

ni < N + bmax. (6)

This assumption will be used in Section III.
Throughout the paper, we adopt the following no-

tation for output indices:
• Qi(N): mean queue length (number of jobs) of

station i,
• X(N): mean system throughput, i.e. the mean

throughput of jobs expected at an arbitrary ref-
erence station (say k),

• R(N) =
∑

i
Ri(N): mean system response time,

i.e. the mean time between two successive depar-
tures of a job performed at an arbitrary reference
station (say k).

We also denote by Qi the mean queue length of
i when the number of jobs in the network grows to
infinity, i.e. Qi ≡ limN→∞ Qi(N). It is well-known
that such limit exists. For simplicity, in the following
we will refer to model inputs and outputs dropping the
word mean.

III. The Bounds

In this section we derive bounds on the system
throughput and response time of closed, single-class
BCMP networks with LD stations.

A. Bounds Derivation

Given a closed, BCMP network, we make the fol-
lowing replacements

N ← N + bmax −
∑

i:D∗

i
=D∗

max

ni

Di(n)← D∗

i , ∀i s.t. D∗

i = D∗

max, n = 1, . . . , N.
(7)

Applying (7) to the queueing networks under investi-
gation, it is known (see [27], Theorem 3.2) that the sys-
tem throughput (respectively, response time) of the re-
sulting network bounds from below (above) the system

throughput (response time) of the original network.
Hence, to derive the bounds, we first apply transforma-
tions (7) to the input queueing network and assump-
tion (6), weaker than the one of ([27], Theorem 3.2),
ensures that the new population size is greater than
zero.

The following inequality is a direct consequence of
the monotonicity of Qi(N) [25]

∑

i:D∗

i
<D∗

max

Qi ≥
∑

i:D∗

i
<D∗

max

Qi(N)

= N −
∑

i:D∗

i
=D∗

max

Qi(N)

= N − bmaxQm(N)

(8)

where index m is such that D∗

m = D∗

max and we recall
that Qi is the queue length of station i when N →∞.
The fact that all Qi in (8) exist and are finite will be
shown at the end of this section when we will focus on
their computation. Applying the MVA recursion [24]
and taking into account that X(N) is monotonically
increasing [26], we have

Qm(N) ≤ X(N)Dm(1 + Qm(N − 1))
≤ X(N)Dm(1 + X(N)Dm(1 + Qm(N − 2)))
≤ · · ·

≤
1− (X(N)Dm)N+1

1−X(N)Dm

− 1.

(9)
Substituting (9) in (8), we obtain

Q̂ ≥ N − bmax

1− (X(N)Dm)N+1

1−X(N)Dm

+ bmax (10)

where we define

Q̂ ≡
∑

i:D∗

i
<D∗

max

Qi. (11)

After some basic algebraic manipulations, we obtain
the following polynomial in X(N)

N − Q̂−X(N)Dm(bmax + N − Q̂)+

bmax(DmX(N))N+1 ≤ 0 (12)

whose solutions provide bounds on system throughput.
The solution of (12) can be approached by exploit-
ing standard root-finding techniques, e.g. Newton’s
method, with suitable starting conditions obviously
ranging between 0 and 1/Dm. However, in order to
skip the iterations of root-finding methods and obtain
a simple formula, we consider the following expression

N − Q̂−X(N)Dm(bmax + N − Q̂)+

bmax(DmX ′(N))NDmX(N) ≤ 0 (13)



with X ′(N) denoting a generic lower bound on X(N)
which provides a computationally simple lower bound
on system throughput. In particular, rearranging (13)
the following inequality must hold

X(N) ≥ X−(N) (14)

where

X−(N) =
N − Q̂

Dm(bmax + N − Q̂)− bmax(DmX ′(N))NDm

(15)

is thus a lower bound on system throughput if N−Q̂ ≥
0.

Noting that 0 ≤ DmX ′(N) < 1, as N → ∞ we
have that X−(N) approaches 1/Dm which implies that
the throughput bound is asymptotically correct. The
upper bound on system response time is trivially ob-
tained by applying Little’s law [20]. In particular,

Theorem 1: If N − Q̂ ≥ 0, then the system re-
sponse time of a closed, single-class BCMP network
is bounded from above by

R+(N) =
Dm(bmax + N − Q̂)− bmax(DmX ′(N))NDm

(N − Q̂)/N
.

(16)
In order to compute bound (16), we need a formula

for Q̂. We now show that Q̂ can be computed by ex-
ploiting algorithms for open BCMP networks which in
general are extremely efficient.

Definition 1: Two queueing networks are called
equivalent if the averages of their output performance
indices are equal.
Suppose that, given a closed BCMP network, there ex-
ists exactly one station m such that D∗

m > D∗

i , i 6= m,
i.e. bmax = 1. In this setting, it is well-known (see,
e.g., [26], [18]) that a closed, single-class BCMP net-
work with N jobs is equivalent to the open network
which is obtained by removing station m and injecting
the variable arrival rate λ(n) = 1/D∗

m(n) if the number
of jobs in the network is N−n, with N−n > 0, other-
wise 0. We note that this equivalent open network can
be alternatively seen as an open network with vari-
able arrival rate λ(n) = 1/D∗

m(n), ∀n, which drops
an incoming job whenever the number of jobs in the
network is N .

Since the steady-state probability of having N jobs
in the open network is non-null, the equivalent open
network is characterized by a non-null throughput
of dropped jobs for each finite N . However, when
N grows to infinity, the throughput of dropped jobs
must approach zero because the open queueing net-
work must be ergodic [18] and the queue length of
station i 6= m converges to a finite limit. Thus, in this

case we have that a closed network, in the limit, is
equivalent to the open network which is obtained by
removing m and injecting the constant arrival rate

λ = 1/D∗

m (17)

which represents the maximum throughput achievable
by the closed network. Hence, the value of Qi is com-
puted by applying standard algorithms of open BCMP
networks.

Taking into account (7), such equivalence holds even
when bmax > 1. In fact, we note that all the bmax iden-
tical stations i with D∗

i = D∗

max (obtained by means
of (7)) can be aggregated into a single LD station (call
it station m) with effective service demand [21]

D∗

m(n) = Di

n + bmax − 1

n
. (18)

B. Iterative Scheme

Formula (15) can be easily exploited to derive a
finite difference equation scheme. Given that both
X ′(N) and X−(N), in (15), are lower bounds on sys-
tem throughput, the accuracy of X−(N) can be re-
fined by iterating over X−(N) until a given precision
threshold (say ǫ) between two successive bound re-
finements is reached. As starting condition, one can
choose X−(N) = 0. This analysis is summarized in
Algorithm 1 where ǫ is a positive real number which
breaks the loop when the bound refinement becomes
negligible. The response time bound is then obtained

Algorithm 1 Iterative scheme for X−(N)

1: X− ← 0;
2: repeat

3: X−

prev ← X−;

4: X− ← the value of (15) with X ′(N) = X−

prev;

5: until |X−

prev −X−|/X−

prev ≤ ǫ

6: return X−;

by applying Little’s law.

Theorem 2: The sequence of lower bounds X− com-
puted in the loop of Algorithm 1 is monotonically in-
creasing for each real ǫ ≥ 0.

Proof : Let a = N − Q̂ and b = Dm(bmax + N − Q̂).
Let also X−

t be the value of X− computed at the t-
th iteration of Algorithm 1. The theorem statement
can be proved by induction on t. The base case is
immediately true because

X−

1 =
a

b
> 0 = X−

0 . (19)



As induction hypothesis, assume that X−

t > X−

t−1,

t ≥ 1. Since, for each t ≥ 1, 0 ≤ DmX−

t ≤ 1,
b > bmax(DmX−

t−1)
NDm and bmax(DmX−

t−1)
NDm <

bmax(DmX−

t )NDm, the following inequality which
proves the induction step holds

X−

t+1 =
a

b− bmax(DmX−

t )NDm

>

a

b− bmax(DmX−

t−1)
NDm

= X−

t . (20)

�

Since each X− computed in the loop of Algorithm
1 must be less than 1/Dm, the following corollary is
straightforward.

Corollary 1 (of Theorem 2) The sequence of lower
bounds X− computed in the loop of Algorithm 1 with
ǫ = 0 is convergent.
This also means that Algorithm 1 halts in a finite num-
ber of steps.

C. Computational Complexity

The term which mainly affects the computation of
(15) is Q̂ ≡

∑

i:D∗

i
<D∗

max

Qi. Since Q̂ represents the

number of jobs of the open BCMP network discussed
in Section A when N → ∞, it can be computed by
applying existing efficient algorithms for open BCMP
networks [18]. In particular, since the queue length of
each open network station requires, in the worst case,
O(N) steps [6], the computation of (15) is O((M −
bmax)N). The temporal computational complexity of
Algorithm 1 is, thus,

O((M − bmax)N + “#inner iterations”) (21)

where “#inner iterations” denotes the number of it-
erations perfomed by the repeat-until loop. However,
we notice that for many load-dependencies of prac-
tical interest there exist simple closed-form formu-
las which can significantly reduce this computational
bound, e.g. constant/linear piece-wise LD stations,
load-dependencies of delay stations (Infinite Servers),
Heffes stations [15], multiple-server stations, limited
queue-dependent stations [23], [18], etc. For instance,
assuming the Heffes load-dependence for station i, i.e.

D∗

i (n) = Di

n + ci

n
, ci > 0, (22)

it is possible to show that

Qi = (ci + 1)
λDi

1− λDi

(23)

where λ is given by (17).

D. Comparison with BJB Bounds

We now compare the tightness of the proposed
throughput bound with respect to the popular BJB
lower bounds [32], [17]. It is known that these latter
bounds refer to BCMP networks with LI and/or delay
stations only. We recall that the BJB bound expres-
sion is given by [17]

X−

BJB
(N) =

N

Z + D + Dmax(N − 1)−DmaxX ′(N − 1)Z
(24)

where D ≡
∑

i
Di, X ′(N − 1) is a (generic) lower

bound on X(N) and Z is the sum of the service de-
mands of all the delay stations. Since

X−

BJB
(N) ≤

N

D + Dmax(N − 1)
, (25)

the proposed bound (15) is tighter than (24) if (suffi-
cient condition)

N

D + Dmax(N − 1)
<

N − Q̂

Dmax(N − Q̂ + bmax)
(26)

which holds true if and only if

N >
Q̂(D −Dmax)

D −Dmax(bmax − 1)
. (27)

Since the right-hand term of (27) is positive and does
not depend on N , this means that the proposed bound
(15) eventually becomes always tighter than the BJB
bound (24). Note that if bmax = 2, then (27) reduce

to N > Q̂ which implies that (15) provides improved
accuracy whenever it can be applied.

IV. Experimental Results

In this section, we numerically compare the accu-
racy of the proposed bound (15) with respect to exist-
ing bounds in some scenarios. A preliminary accuracy
evaluation of this bound has been already carried out
analytically in the previous section.

As outlined in the introduction, the bounding
schemes presented in [27] bound the throughput of a
closed BCMP network with LD stations in term of
bounds of a network with only LI stations. Thus, to
obtain an on-line solution, the well-understood bound-
ing analysis of LI stations can be applied. However,
we note that these (bounded) networks with only LI
stations can be characterized by

• a different bottleneck, i.e. a different station with
highest effective service demand for large N , and
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Fig. 1. The effect of the bottleneck shifting
phenomenon on system throughput.
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• a very small population size.
Both issues can have dramatic effects on the accu-
racy of performance indices. In order to better un-
derstand the bottleneck shifting phenomenon and the
population size scaling effects from a practical point
of view, let us consider a simple three-station net-
work with D1 = 1.0, D2 = 0.8, D3 = 0.6 where
station 2 is Heffes LD with c2 = 2 and stations 1
and 3 are both LI. The bottleneck of this network
is station 1. The related network with only LI sta-
tions considered by ([27], Theorem 3.1) is character-
ized by D′

1 = 1.0, D′

2 = 2.4, D′

3 = 0.6 and we note
that in this new network the bottleneck is shifted to
station 2. The related network with only LI stations
considered by ([27], Theorem 3.2) is characterized by
D′′

1 = 1.0, D′′

2 = 0.8, D′′

3 = 0.6 and by the (scaled)
population size N = n2 − 1 = 1, and we note that
this scaling is very loose (clearly, in this case we have
X(1) = 1/(D′′

1 + D′′

2 + D′′

3 ) = 0.417). For different
N , Figure 1 illustrates the throughput bound com-
puted with one iteration of Algorithm 1 (namely A1)
and the exact system throughput of both the original
LD network (EX-LD) and of the LI network (EX-LI).
Clearly, the proposed bound (15) can be applied if

N ≥ Q̂ = (1 + c2)
0.8

1− 0.8
+

0.6

1− 0.6
= 13.5. (28)

It is evident that the bottleneck-shifting phenomenon
yields a drastically loose bound. It is clear that for
increasing values of c2 (and, thus, D′

2) the accuracy of
the resulting LI network which bounds the original one
decreases. On the other hand, the proposed bounds
are not affected by this drawback.

The scenario discussed above reveals a wide class of
networks in which our bounds improve the approach

[27]. Clearly, the fact that the proposed bound (15)
is asymptotically correct (see Section III) implies that
our approach is unaffected by the bottleneck shifting
phenomenon. The fact that we derive bounds by scal-
ing the population size only according to (7) implies
that our approach alleviates the problem of the pop-
ulation size scaling which arises ([27], Theorem 3.2).
Thus, this class of networks is composed of stations
which satisfy the following constraints

• there exists a station i such that D∗

i < D∗

max <
maxn Di(n),

• there exist a subset of non-bottleneck stations
such that the sum of all their ni is large if com-
pared to N .

We note that a pitfall of our approach is encountered
when ni is large with respect to N and i is such that
D∗

i = D∗

max. In this case, the transformation (7) intro-
duces a strong population scaling which can yield loose
bounds. However, even the approach [27] is affected
by this problem.

We now evaluate the accuracy of (15) in the well-
know scenario presented in [17]. This scenario has
been used to evaluate the accuracy of many existing
bounding techniques for BCMP networks with LI sta-
tions only. In particular, we consider the following
stress cases:

Stress case 1 : The network is unbalanced with M =
4 and the service demands are D1 = D2 = 0.1, D3 =
0.05 and D4 = 0.04, i.e. bmax = 2.

Stress case 2 : The network has the same stations of
Stress Case 1 and an additional delay station (Infinite
Server) with D5(n) = 1/n is introduced.

To evaluate the accuracy of our bounds, we intro-
duce two load-dependencies in both stress cases above.
In particular, we assume that stations 3 and 4 of all
test cases are LD stations with effective service de-
mands

Di(n) =







3Di n ≤ 10
2Di 10 < n ≤ 20
Di 20 < n

, i = 3, 4. (29)

As an example, this type of load-dependency can
model the behavior of a disk. In fact, when the
number of requests inside the waiting buffer overflows
given thresholds, the disk controller is able to optimize
the reading/writing-heads movements or exploit cache
data, and we assume that these optimizations reduce
its service demands according to the piecewise function
(29). On the other hand, if the queue length is small,
i.e. less than 10, then it is difficult to perform such op-
timizations because the requests probably require the
access to different disk sectors.

We note that for sufficiently large population sizes,
the load-dependency (29) preserves, in term of system



throughput, the qualitative behavior of both networks.
Thus, the tests considered are good stress cases be-
cause, despite the introduction of (29), the network
is still unbalanced [17] and because of the presence of
multiple bottlenecks [19] which slow down the conver-
gence speed of system throughput to its asymptotic
value.

With respect to stress cases described above, Fig-
ures 2 and 3 compare the throughput bound com-
puted with two iterations of Algorithm 1 (A2), the
bound computed by applying ([27], Theorem 3.1) and
([27], Theorem 3.2) (respectively, S.Y.1 and S.Y.2),
and the exact system throughput obtained by running
the mean value analysis [23] (EX). The population size
varies from 5 to 120 with step 5. The bounds ob-
tained with three iterations of Algorithm 1 have not
been shown because the accuracy improvement be-
comes negligible, namely less that 0.1%. In stress case
1 (respectively, 2), S.Y.1 and S.Y.2 have been obtained
by applying the Geometric Bounds (Generalized Geo-
metric Bounds) [8], [7] because they provide the best
accuracy at the cost of a slightly higher computational
effort than other bounding techniques for LI stations
only. In Figures 2 and 3, we see that the proposed
bound is closer to the exact throughput curve for the
majority of the population sizes which allow its use.
In contrast with S.Y.2, it provides improved accuracy
even before the convergence of the (exact) throughput
to its asymptotic value 1/D1 = 10. We also note that
S.Y.1 provides the best accuracy for small population
sizes, e.g. N ≤ 15. However, for larger population
sizes, the bottleneck shifting phenomenon makes S.Y.1
diverge to 1/(3D3).

Now, let us consider again stress cases 1 and 2 with
the following slight variation on the load-dependency
definition (29)

Di(n) =







3Di n ≤ 10
2Di 10 < n ≤ 30
Di 30 < n

, i = 3, 4. (30)

Analogously, Figures 4 and 5 compare the throughput
bound (15) with [27]. What we see is that our bound
is remarkably closer than [27] to the throughput ex-
act value (note the difference with the throughputs
of Figures 2 and 3). This improvement is due to the
fact that the new load-dependence (30) emphasizes, in
the LI network obtained by applying ([27], Theorem
3.2), the population size scaling effect, which allows
the use of S.Y.2 only when N > 60. It is clear that
this pitfall can be emphasized again by changing the
definition of (30) accordingly. Our bounds are unaf-
fected by this problem. Even in this case, our bound
provides improved accuracy before the convergence of
the throughput to its asymptotic value.

The results shown in this section provide numerical
evidence of the fact that our bound improves the accu-
racy of the approach [27] in many cases. However, we

recall that its applicability requires that N ≥ Q̂. Since
both bounding analyses are very efficient, we conclude
that, when it is required an on-line performance evalu-
ation of a system, one can simultaneously adopt both
techniques and, a posteriori, choose the tightest one
with little computational effort.

V. Conclusions

In this paper, we have proposed new bounds on the
system throughput and response time of closed, single-
class BCMP networks with load-dependent stations.
Under the assumption of non-decreasing relative ser-
vice rates, the bounds mainly derive from known an-
alytical properties of the system throughput and the
queue-lengths curves. The throughput bound has been
analytically compared to the well-known balanced job
bound and the analysis revealed that our method even-
tually becomes more accurate. We presented scenar-
ios in which our bounds provide improved accuracy
with respect to existing bounding techniques avoid-
ing the bottleneck shifting phenomenon and alleviat-
ing the problem of the population size scaling.
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