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In this paper, we provide an inequality which bounds from above the partition func-
tion of multiclass, closed BCMP queueing networks. The inequality basically derives
from the integral representation of the partition function and from the Holder’s inequal-
ity. It essentially states that the partition function of a closed, multiclass network can
be upper bounded by a product of partition functions related to singleclass networks.
Hence, its computation is efficient even for very large models. The inequality is im-
portant from a theoretical point of view and provides a way to estimate the minimum
amount of memory that exact solution algorithms implementations should allocate to
avoid numerical instabilities.
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1. INTRODUCTION

During the last decades, closed BCMP queueing networks [1] have been widely
adopted to analytically evaluate the performance of computer and communication sys-
tems. Such networks extend the Gordon-Newell networks [5] to multiclass networks, i.e.
networks with jobs of different types, more types of service disciplines and more general
service times probability distributions. BCMP networks have the so called product-form
solution which essentially means that the stationary probabilities of the states of the
underlying Markov chain characterizing a BCMP queueing network can be expressed
through the product of a number of simple terms related to network stations up to a
multiplicative constant, called partition function, which normalizes product terms.

The problem of the efficient computation of such partition function is a well-known
difficult problem that attracted the attention of many researchers during the last three
decades and a number of works have been proposed, see e.g. [9, 8, 4]. However, in
the general case they all exhibit numerical instabilities and this is mainly due to the
fact that most of them are based on the partition function computation. We emphasize
that even mean value approaches such as [8] are numerically unstable as long as Load-
Dependent (LD) stations, i.e. stations with processing speeds variable with the number
of jobs in their queues, are considered. These numerical instabilities strongly affect



the accuracy of the solution and eventually yield unfeasible solutions, e.g. negative
throughputs, [8].

In this paper, we provide an inequality related to the partition function of closed,
multiclass BCMP queueing network models. The inequality follows algebraically from
the integral representation of the partition function [7] and the Holder’s inequality. The
inequality bounds from above the partition function of a multiclass network in terms of
R partition functions related to singleclass models where R is the number of customers
classes. It can be used to estimate the magnitude of the partition function itself as well
as the precision size that current implementations of existing algorithms should allocate
to avoid numerical instabilities.

2. MULTICLASS, CLOSED BCMP NETWORKS

2.1. Notation. We consider closed, multiclass BCMP queueing network models
[1]. The network is composed of M stations and the jobs circulating in the network are
partitioned into R classes. Stations are either load-dependent (LD) or load-independent
(LI), i.e. their service speed can depend on the number of jobs in their queue or not.
An Infinite Server (also known as pure delay) station is introduced and it is indexed by
0. If not otherwise specified, indices 7 and j will range from 0 to M indexing network
stations.

The evolution of a BCMP network is markovian and we denote by n;. > 0 the
number of class-r jobs in station ¢ observed in a given instant, by n; = [n;, ..., n;g|
the associated population vector in station i, by n; = n;; + ... + n;g the total number
of jobs in 4, and by matrix i = [ng,ny,...,ny] an aggregate state of the underlying
Markov chain of the queueing network.

We also denote by

N, the (constant) number of class-r jobs circulating in the network,
N = (Ny, Ny, ..., Ng), the population vector,
N = N; + Ny + ...+ Npg, the total number of jobs without class distinction.
7(n), the network stationary probabilities of being in state 1,
mi(n;), the stationary probability of having n; jobs in station i,
pir > 0,1 > 1, is the mean loading of station i for class-r jobs (also known as rela-
tive utilization, or service demands) and for a closed BCMP network it represents
the average time spent by a class-r job at station ¢ during its full execution when
using the network alone and visiting a reference station, say station 1, once.

e po > 0, the mean class-r “think” time spent in the Infinite Server station,

e ¢, the size-R orthogonal unit vector in direction r.

Let also z; : N\ {0} — R", 7 > 1, be an arbitrary positive function of the number
of jobs which visit 7. x;(n) represents the LD rate of service of i when there are n
jobs in ¢ relative to the service rate when n = 1, i.e. x;(1) = 1. Analogously, let
yir - N\ {0} — R*, i > 1, be the LD rate of service of class-r jobs in station ¢ as
function of the total number of jobs it contains relative to the class-r service rate of
i when exactly one (class-r) job is present, i.e. y;.(1) = 1. Tt is well-known that the
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model discussed above with stations providing such types of load-dependencies satisfies
the BCMP assumptions [1]. For simplicity, we say that station i provides a type 1
load-dependence if its load-dependence is a function of the total number of jobs in i.
Analogously, station ¢ provides a type 2 load-dependence if its load-dependence is a
function of only the number of jobs in ¢ of a specific class.

2.2. Product-form Solution. As long as closed BCMP networks with LI stations
and a delay are considered, it is known that the stationary probabilities are given by
the following product-form formula [1]

M
(i) = GTH(N) [ [ mi(m) (1)
i=0
where
R ﬂir R 1nor
mi(1n;) = ny! p",J > 1, m(ng) = pO_r' (2)
r=1 Tir r=1 Tor:

are the non-normalized probabilities of having n; jobs in station ¢ > 1 and ng jobs in
the Infinite Server station and

G(N) = ZHM(H@') (3)

is the partition function and the sum is taken over the state space defined by set

S(N) = {ﬁ : inir = NT,VT} (4)

(where each n;, is a non-negative integer). For networks with LD stations, the formula
in (2) becomes (i > 1)

( R Tir

n;! Pir_ — for type-1 load-dependency,
1 Gir t=1 %1
mi(n;) = (5)
R .
Thir 1
n;! p“"' . for type-2 load-dependency
1 N2 thl yir(t)

\ r=

and the partition function (3) must be modified accordingly to make all (5) sum to one.
It is evident that the partition function computation through the direct summa-
tion (3) is impractical from both a computational and numerical point of view.

3. INEQUALITY

Given a closed, multiclass BCMP network, we first make the following replacements

(6)

o pir/ inf, x;(n) if 7 is type-1 load-dependent
Pir pir/ Inf, yi(n) if @ is type-2 load-dependent
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Within replacements (6), it is clear that the resulting queueing network is composed
of only LI stations and the new value of the partition function bounds from above the
original one.

The following integral representation of the partition function has been shown in [7]

R
_ 1 Ny —(ui+...4unr)
N = /9% Tl du (7)

r=1

where H(r,u) = po, + prru1 + -+ - + parrups. The expression (7) can be rewritten as

R
= ; N _—(u1+...4+upr) Br
G(N) = % N /WM E [H(r,u)"e |7 du (8)

where 3, = N, /N. Given that, by definition, ), = 1, we can now apply the Holder’s
inequality. This yields

Br
[ Hr, u)Ne(“1+"'+“”’)du} : (9)
R+ M

B
G(N) < [[1 N
Now, multiplying and dividing by N!? each right-hand product term of (9), we obtain

R

N!ﬁr 1 N _—(ui+...4unr) o
G(N) < H1 N {ﬁ - H(r,u)Ne (o tun du] (10)

and we note that the expression in the brackets can be interpreted as the integral
representation of the partition function of a singleclass network populated by N class-r
jobs only. Hence, (10) can be rewritten as

R

e )] R
o) < T ( _— NR) [[ove)” (1)

r=1
and the upper bound on the partition function of a closed, multiclass BCMP queueing
network is provided.
We remark that the value of G(Ne,) can now be easily computed exploiting single-
class algorithms [6, 3]. For instance, assuming po, = 0 and p;, # p;, for all ¢ # j, from
the Koenigsberg’s formula [6, 2]

M ~N+M—1

G(Ne,) =Y 0o (12)

i=1 Hj:l,j;éi(ﬁir - ﬁjr)

it follows
N+M-1

max;>1 P;
G(Ne,) =~ —; ( iz1 pir) - -
Hjil,j;éargmaxi21ﬁ”(ma’Xizl Pir — Pjr)
which provides an estimate of the order of magnitude of G(Ne,) (exploiting the theory
of residues, an analogous result can be obtained even in the case where p;, = p;, for

some ¢ and j [2]). Thus, it follows that we can efficiently obtain an upper bound on the
magnitude of G(N).

. (13)
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