
BOUNDING THE PARTITIONFUNCTION OF BCMP MULTICLASSQUEUEING NETWORKSJ. Anselmi, P. CremonesiPolitenio di Milano, DEIMilano, Italyjonatha.anselmi�polimi.itIn this paper, we provide an inequality whih bounds from above the partition fun-tion of multilass, losed BCMP queueing networks. The inequality basially derivesfrom the integral representation of the partition funtion and from the Holder's inequal-ity. It essentially states that the partition funtion of a losed, multilass network anbe upper bounded by a produt of partition funtions related to singlelass networks.Hene, its omputation is e�ient even for very large models. The inequality is im-portant from a theoretial point of view and provides a way to estimate the minimumamount of memory that exat solution algorithms implementations should alloate toavoid numerial instabilities.Keywords: BCMP queueing networks, multilass, partition funtion, normalizingonstant, bound, Holder's inequality1. INTRODUCTIONDuring the last deades, losed BCMP queueing networks [1℄ have been widelyadopted to analytially evaluate the performane of omputer and ommuniation sys-tems. Suh networks extend the Gordon-Newell networks [5℄ to multilass networks, i.e.networks with jobs of di�erent types, more types of servie disiplines and more generalservie times probability distributions. BCMP networks have the so alled produt-formsolution whih essentially means that the stationary probabilities of the states of theunderlying Markov hain haraterizing a BCMP queueing network an be expressedthrough the produt of a number of simple terms related to network stations up to amultipliative onstant, alled partition funtion, whih normalizes produt terms.The problem of the e�ient omputation of suh partition funtion is a well-knowndi�ult problem that attrated the attention of many researhers during the last threedeades and a number of works have been proposed, see e.g. [9, 8, 4℄. However, inthe general ase they all exhibit numerial instabilities and this is mainly due to thefat that most of them are based on the partition funtion omputation. We emphasizethat even mean value approahes suh as [8℄ are numerially unstable as long as Load-Dependent (LD) stations, i.e. stations with proessing speeds variable with the numberof jobs in their queues, are onsidered. These numerial instabilities strongly a�et1



the auray of the solution and eventually yield unfeasible solutions, e.g. negativethroughputs, [8℄.In this paper, we provide an inequality related to the partition funtion of losed,multilass BCMP queueing network models. The inequality follows algebraially fromthe integral representation of the partition funtion [7℄ and the Holder's inequality. Theinequality bounds from above the partition funtion of a multilass network in terms of
R partition funtions related to singlelass models where R is the number of ustomerslasses. It an be used to estimate the magnitude of the partition funtion itself as wellas the preision size that urrent implementations of existing algorithms should alloateto avoid numerial instabilities.2. MULTICLASS, CLOSED BCMP NETWORKS2.1. Notation. We onsider losed, multilass BCMP queueing network models[1℄. The network is omposed of M stations and the jobs irulating in the network arepartitioned into R lasses. Stations are either load-dependent (LD) or load-independent(LI), i.e. their servie speed an depend on the number of jobs in their queue or not.An In�nite Server (also known as pure delay) station is introdued and it is indexed by
0. If not otherwise spei�ed, indies i and j will range from 0 to M indexing networkstations.The evolution of a BCMP network is markovian and we denote by nir ≥ 0 thenumber of lass-r jobs in station i observed in a given instant, by ni = [ni1, . . . , niR]the assoiated population vetor in station i, by ni = ni1 + . . . + niR the total numberof jobs in i, and by matrix ~n = [n0,n1, . . . ,nM ]′ an aggregate state of the underlyingMarkov hain of the queueing network.We also denote by
• Nr, the (onstant) number of lass-r jobs irulating in the network,
• N = (N1, N2, . . . , NR), the population vetor,
• N = N1 + N2 + . . . + NR, the total number of jobs without lass distintion.
• π(~n), the network stationary probabilities of being in state ~n,
• πi(ni), the stationary probability of having ni jobs in station i,
• ρir ≥ 0, i ≥ 1, is the mean loading of station i for lass-r jobs (also known as rela-tive utilization, or servie demands) and for a losed BCMP network it representsthe average time spent by a lass-r job at station i during its full exeution whenusing the network alone and visiting a referene station, say station 1, one.
• ρ0r ≥ 0, the mean lass-r �think� time spent in the In�nite Server station,
• er, the size-R orthogonal unit vetor in diretion r.Let also xi : N \ {0} → R

+, i ≥ 1, be an arbitrary positive funtion of the numberof jobs whih visit i. xi(n) represents the LD rate of servie of i when there are njobs in i relative to the servie rate when n = 1, i.e. xi(1) = 1. Analogously, let
yir : N \ {0} → R

+, i ≥ 1, be the LD rate of servie of lass-r jobs in station i asfuntion of the total number of jobs it ontains relative to the lass-r servie rate of
i when exatly one (lass-r) job is present, i.e. yir(1) = 1. It is well-known that the2



model disussed above with stations providing suh types of load-dependenies satis�esthe BCMP assumptions [1℄. For simpliity, we say that station i provides a type 1load-dependene if its load-dependene is a funtion of the total number of jobs in i.Analogously, station i provides a type 2 load-dependene if its load-dependene is afuntion of only the number of jobs in i of a spei� lass.2.2. Produt-form Solution. As long as losed BCMP networks with LI stationsand a delay are onsidered, it is known that the stationary probabilities are given bythe following produt-form formula [1℄
π(~n) = G−1(N)
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and the partition funtion (3) must be modi�ed aordingly to make all (5) sum to one.It is evident that the partition funtion omputation through the diret summa-tion (3) is impratial from both a omputational and numerial point of view.3. INEQUALITYGiven a losed, multilass BCMP network, we �rst make the following replaements
ρir ←

{

ρir/ infn xi(n) if i is type-1 load-dependent
ρir/ infn yir(n) if i is type-2 load-dependent (6)3



Within replaements (6), it is lear that the resulting queueing network is omposedof only LI stations and the new value of the partition funtion bounds from above theoriginal one.The following integral representation of the partition funtion has been shown in [7℄
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H(r,u)Nre−(u1+...+uM )du (7)where H(r,u) = ρ0r + ρ̃1ru1 + · · ·+ ρ̃MruM . The expression (7) an be rewritten as
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du (8)where βr = Nr/N . Given that, by de�nition, ∑r βr = 1, we an now apply the Holder'sinequality. This yields
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. (9)Now, multiplying and dividing by N !βr eah right-hand produt term of (9), we obtain
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]βr (10)and we note that the expression in the brakets an be interpreted as the integralrepresentation of the partition funtion of a singlelass network populated by N lass-rjobs only. Hene, (10) an be rewritten as
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βr (11)and the upper bound on the partition funtion of a losed, multilass BCMP queueingnetwork is provided.We remark that the value of G(Ner) an now be easily omputed exploiting single-lass algorithms [6, 3℄. For instane, assuming ρ0r = 0 and ρ̃ir 6= ρ̃jr for all i 6= j, fromthe Koenigsberg's formula [6, 2℄
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(12)it follows
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. (13)whih provides an estimate of the order of magnitude of G(Ner) (exploiting the theoryof residues, an analogous result an be obtained even in the ase where ρ̃ir = ρ̃jr forsome i and j [2℄). Thus, it follows that we an e�iently obtain an upper bound on themagnitude of G(N). 4
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