
BOUNDING THE PARTITIONFUNCTION OF BCMP MULTICLASSQUEUEING NETWORKSJ. Anselmi, P. CremonesiPolite
ni
o di Milano, DEIMilano, Italyjonatha.anselmi�polimi.itIn this paper, we provide an inequality whi
h bounds from above the partition fun
-tion of multi
lass, 
losed BCMP queueing networks. The inequality basi
ally derivesfrom the integral representation of the partition fun
tion and from the Holder's inequal-ity. It essentially states that the partition fun
tion of a 
losed, multi
lass network 
anbe upper bounded by a produ
t of partition fun
tions related to single
lass networks.Hen
e, its 
omputation is e�
ient even for very large models. The inequality is im-portant from a theoreti
al point of view and provides a way to estimate the minimumamount of memory that exa
t solution algorithms implementations should allo
ate toavoid numeri
al instabilities.Keywords: BCMP queueing networks, multi
lass, partition fun
tion, normalizing
onstant, bound, Holder's inequality1. INTRODUCTIONDuring the last de
ades, 
losed BCMP queueing networks [1℄ have been widelyadopted to analyti
ally evaluate the performan
e of 
omputer and 
ommuni
ation sys-tems. Su
h networks extend the Gordon-Newell networks [5℄ to multi
lass networks, i.e.networks with jobs of di�erent types, more types of servi
e dis
iplines and more generalservi
e times probability distributions. BCMP networks have the so 
alled produ
t-formsolution whi
h essentially means that the stationary probabilities of the states of theunderlying Markov 
hain 
hara
terizing a BCMP queueing network 
an be expressedthrough the produ
t of a number of simple terms related to network stations up to amultipli
ative 
onstant, 
alled partition fun
tion, whi
h normalizes produ
t terms.The problem of the e�
ient 
omputation of su
h partition fun
tion is a well-knowndi�
ult problem that attra
ted the attention of many resear
hers during the last threede
ades and a number of works have been proposed, see e.g. [9, 8, 4℄. However, inthe general 
ase they all exhibit numeri
al instabilities and this is mainly due to thefa
t that most of them are based on the partition fun
tion 
omputation. We emphasizethat even mean value approa
hes su
h as [8℄ are numeri
ally unstable as long as Load-Dependent (LD) stations, i.e. stations with pro
essing speeds variable with the numberof jobs in their queues, are 
onsidered. These numeri
al instabilities strongly a�e
t1



the a

ura
y of the solution and eventually yield unfeasible solutions, e.g. negativethroughputs, [8℄.In this paper, we provide an inequality related to the partition fun
tion of 
losed,multi
lass BCMP queueing network models. The inequality follows algebrai
ally fromthe integral representation of the partition fun
tion [7℄ and the Holder's inequality. Theinequality bounds from above the partition fun
tion of a multi
lass network in terms of
R partition fun
tions related to single
lass models where R is the number of 
ustomers
lasses. It 
an be used to estimate the magnitude of the partition fun
tion itself as wellas the pre
ision size that 
urrent implementations of existing algorithms should allo
ateto avoid numeri
al instabilities.2. MULTICLASS, CLOSED BCMP NETWORKS2.1. Notation. We 
onsider 
losed, multi
lass BCMP queueing network models[1℄. The network is 
omposed of M stations and the jobs 
ir
ulating in the network arepartitioned into R 
lasses. Stations are either load-dependent (LD) or load-independent(LI), i.e. their servi
e speed 
an depend on the number of jobs in their queue or not.An In�nite Server (also known as pure delay) station is introdu
ed and it is indexed by
0. If not otherwise spe
i�ed, indi
es i and j will range from 0 to M indexing networkstations.The evolution of a BCMP network is markovian and we denote by nir ≥ 0 thenumber of 
lass-r jobs in station i observed in a given instant, by ni = [ni1, . . . , niR]the asso
iated population ve
tor in station i, by ni = ni1 + . . . + niR the total numberof jobs in i, and by matrix ~n = [n0,n1, . . . ,nM ]′ an aggregate state of the underlyingMarkov 
hain of the queueing network.We also denote by
• Nr, the (
onstant) number of 
lass-r jobs 
ir
ulating in the network,
• N = (N1, N2, . . . , NR), the population ve
tor,
• N = N1 + N2 + . . . + NR, the total number of jobs without 
lass distin
tion.
• π(~n), the network stationary probabilities of being in state ~n,
• πi(ni), the stationary probability of having ni jobs in station i,
• ρir ≥ 0, i ≥ 1, is the mean loading of station i for 
lass-r jobs (also known as rela-tive utilization, or servi
e demands) and for a 
losed BCMP network it representsthe average time spent by a 
lass-r job at station i during its full exe
ution whenusing the network alone and visiting a referen
e station, say station 1, on
e.
• ρ0r ≥ 0, the mean 
lass-r �think� time spent in the In�nite Server station,
• er, the size-R orthogonal unit ve
tor in dire
tion r.Let also xi : N \ {0} → R

+, i ≥ 1, be an arbitrary positive fun
tion of the numberof jobs whi
h visit i. xi(n) represents the LD rate of servi
e of i when there are njobs in i relative to the servi
e rate when n = 1, i.e. xi(1) = 1. Analogously, let
yir : N \ {0} → R

+, i ≥ 1, be the LD rate of servi
e of 
lass-r jobs in station i asfun
tion of the total number of jobs it 
ontains relative to the 
lass-r servi
e rate of
i when exa
tly one (
lass-r) job is present, i.e. yir(1) = 1. It is well-known that the2



model dis
ussed above with stations providing su
h types of load-dependen
ies satis�esthe BCMP assumptions [1℄. For simpli
ity, we say that station i provides a type 1load-dependen
e if its load-dependen
e is a fun
tion of the total number of jobs in i.Analogously, station i provides a type 2 load-dependen
e if its load-dependen
e is afun
tion of only the number of jobs in i of a spe
i�
 
lass.2.2. Produ
t-form Solution. As long as 
losed BCMP networks with LI stationsand a delay are 
onsidered, it is known that the stationary probabilities are given bythe following produ
t-form formula [1℄
π(~n) = G−1(N)

M
∏

i=0

πi(ni) (1)where
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(2)are the non-normalized probabilities of having ni jobs in station i ≥ 1 and n0 jobs inthe In�nite Server station and
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∑
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πi(ni) (3)is the partition fun
tion and the sum is taken over the state spa
e de�ned by set
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M
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} (4)(where ea
h nir is a non-negative integer). For networks with LD stations, the formulain (2) be
omes (i ≥ 1)
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for type-2 load-dependen
y (5)

and the partition fun
tion (3) must be modi�ed a

ordingly to make all (5) sum to one.It is evident that the partition fun
tion 
omputation through the dire
t summa-tion (3) is impra
ti
al from both a 
omputational and numeri
al point of view.3. INEQUALITYGiven a 
losed, multi
lass BCMP network, we �rst make the following repla
ements
ρir ←

{

ρir/ infn xi(n) if i is type-1 load-dependent
ρir/ infn yir(n) if i is type-2 load-dependent (6)3



Within repla
ements (6), it is 
lear that the resulting queueing network is 
omposedof only LI stations and the new value of the partition fun
tion bounds from above theoriginal one.The following integral representation of the partition fun
tion has been shown in [7℄
G(N) =

1
∏R

r=1 Nr!

∫

ℜ+M

R
∏

r=1

H(r,u)Nre−(u1+...+uM )du (7)where H(r,u) = ρ0r + ρ̃1ru1 + · · ·+ ρ̃MruM . The expression (7) 
an be rewritten as
G(N) =

1
∏R

r=1 Nr!

∫

ℜ+M

R
∏

r=1

[

H(r,u)Ne−(u1+...+uM )
]βr

du (8)where βr = Nr/N . Given that, by de�nition, ∑r βr = 1, we 
an now apply the Holder'sinequality. This yields
G(N) ≤

R
∏

r=1

1

Nr!

[
∫

ℜ+M

H(r,u)Ne−(u1+...+uM )du

]βr

. (9)Now, multiplying and dividing by N !βr ea
h right-hand produ
t term of (9), we obtain
G(N) ≤

R
∏

r=1

N !βr

Nr!

[

1

N !

∫

ℜ+M

H(r,u)Ne−(u1+...+uM )du

]βr (10)and we note that the expression in the bra
kets 
an be interpreted as the integralrepresentation of the partition fun
tion of a single
lass network populated by N 
lass-rjobs only. Hen
e, (10) 
an be rewritten as
G(N) ≤

R
∏

r=1

[N !G(Ner)]
βr

Nr!
=

(

N

N1, . . . , NR

) R
∏

r=1

G(Ner)
βr (11)and the upper bound on the partition fun
tion of a 
losed, multi
lass BCMP queueingnetwork is provided.We remark that the value of G(Ner) 
an now be easily 
omputed exploiting single-
lass algorithms [6, 3℄. For instan
e, assuming ρ0r = 0 and ρ̃ir 6= ρ̃jr for all i 6= j, fromthe Koenigsberg's formula [6, 2℄

G(Ner) =
M

∑

i=1

ρ̃N+M−1
ir

∏M

j=1,j 6=i(ρ̃ir − ρ̃jr)
(12)it follows

G(Ner) ≈
(maxi≥1 ρ̃ir)

N+M−1

∏M

j=1,j 6=argmaxi≥1ρ̃ir
(maxi≥1 ρ̃ir − ρ̃jr)

. (13)whi
h provides an estimate of the order of magnitude of G(Ner) (exploiting the theoryof residues, an analogous result 
an be obtained even in the 
ase where ρ̃ir = ρ̃jr forsome i and j [2℄). Thus, it follows that we 
an e�
iently obtain an upper bound on themagnitude of G(N). 4
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