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Abstract

We introduce a new framework supporting the bottleneckyaigbf closed, multiclass BCMP queueing networks
in the limiting regime where the number of jobs proportidynarows to infinity while keeping fixed other input
parameters. First, we provide a weak convergence resuhliédimiting behavior of closed queueing networks, which
is exploited to derive a sticient and necessary condition establishing the existehaeimgle bottleneck. Then, we
derive the new framework proposinéfieient algorithms for the identification of queueing netwoHottlenecks by
means of linear programming. Our analysis reduces the ctatipoal requirements of existing techniques and, under
general assumptions, it is able to handle load-dependsittrss. We also establish a primal-dual relationship betwe
our approach and a recent technique. This connection ledgtead thedual to deal with load-dependent stations,
which is non-intuitive, and provides a unified frameworktloe enumeration of bottlenecks. Theoretical and practical
insights on the asymptotic behavior of multiclass netwanesshown as application of the proposed framework.

Key words: Multiclass Queueing Networks, Bottleneck Analysis, Asyatig Analysis, Weak Convergence, Linear

Programming, Duality

1. Introduction

The most critical resourcesfacting the performance of IT (Information Technology) sys$ are the congestion
points, commonly known as bottlenecks. Such congestiantgbmit the overall network performance and represent
the resources a designer must invest to obtain significaptawements. Their knowledge also provides accurate
insights on the performance behavior of a system and beiagqttmber of bottlenecks much less than the total
number of resources, such behavior can be obtained withigetirmomputational ffort. However, the problem of
their identification is non-trivial because they can shiftass dfferent resources depending on a number of factors,
e.g., the mix of workloads. Moreover, modern computer sgstare dynamic, self-configuring, self-optimizing and,

within this framework, fast and non-intrusive identificatitechniques are required.
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During the last decades, closed queueing network modelsap@ been widely used in the literature to perform
bottleneck analyses. In particular, a number of works haenlproposed regarding the analysis of closed, BCMP
gueueing networks [5] because they are a robust tool ablectarately capture the performance behavior of service
systems and accomplish capacity planning studies; see[&2924, 11, 17]. While for singleclass BCMP models
the analysis is well-known and requires little computagiogffort, e.g., [3, 22], no simple analysis exists for the
more dificult case of models with multiple classes of jobs. In thisisgt bottleneck analyses are usually performed
in some limiting regime where some input parameters grownfmity, e.g., the number of jobs or stations; see
[28, 16, 6, 15, 3, 4]. In [31] it is presented a survey of suahtéques aimed to identify the bottlenecks associated
to a fixed mix of jobs. These techniques are based on the aolotinon-linear optimization problems deriving either
from the stationary distribution of network states [5] oe VA equations [30]. A more recent, extensive survey can
be also found in [33]. A new type of identification technigag@roposed in [9] and, with respect to previous standard
techniques, the efierence relies on the fact that instead of searching for thiehecks achievable withgivenmix of
jobs, the bottlenecks are searched with respealitine possible mixes. In this way, one can immediately enuteera
which stations are critical if all possible scenarios anesidered.

Previous analyses hold for queueing networks Waitld-independentor fixed rate) stations. Accurate perfor-
mance models of real-world networks, however, are oftematitarized byload-dependenstations. This type of
station models a queue where its processing speed depeltids namber of jobs that it contains, and it is adopted
in several applications. For instance, load-dependetibstacan be used to model the well-known multiple-server
gueues or flow-equivalent stations [18] which are used irhikearchical modeling of multitiered networks. Flow-
equivalent stations are also used to speed up the evaluatidifterent network alternatives for input parameters
[7] and to approximate the solution of non-BCMP networks;,. €10, 21, 19, 2]. See also [23] for other types of
load-dependencies. Within this morefdiult setting, existing bottleneck analyses cannot beyegsiheralized. For
instance, in [9] the authors consider the loadings vectarsdrvice demands) of a closed multiclass network as points
in an Euclidean space and define the characteristic polytbagueueing network as the convex hull of such points.
The points belonging to the boundaries of the convex hullespond to the network bottlenecks, and for their enu-
meration the authors essentially adopt the algorithm [Bjwever, this approach hardly extends to load-dependent
stations because, in this case, the characteristic pa@yigopot constant and its structure strongly depends on the
number and thenix of jobs characterizing the population. For each populatextor, it is also diicult to obtain the
structure of this polytope because the distribution of jatv®ng the stations is not a priori known and must be taken
into account (this is computationally expensive).

In this paper, we introduce a new bottleneck analysis reélaighe class of closed, multiclass BCMP queueing
networks with large population sizes. We consider the Iingitegime where the total number of jobklinearly
grows to infinity while keeping constant the ratip/N for each class of jobsas well as the other model parameters.
Our notion of bottleneck is equal to the well-known one pnésd, e.g., in [4]: informally, a bottleneck is a station

which saturates its processing capacity\Nas» . First, we introduce a weak convergence result for the iimgit
2



probability distribution of jobs in closed BCMP networkshieh provides a necessary andfaient condition for

the existence of a single bottleneck shared by all jobs imsesf a linear program. Then, this result is exploited to
derive new algorithms able tdfeiently identify all networks bottlenecks reducing the gartational requirements

of existing techniques. Our analysis is able to handle ldaglendent stations and this extension does not increase
the computational requirements of the corresponding aisatglated to load-independent stations. Exploitingitipal
arguments, we also establish a primal-dual connectiondsrivour framework and the one presented in [9]. This
theoretical connection lets us extend theal to networks with load-dependent stations, which is noniive, and
shows the validity of our approach to queueing networks ngereeral than the BCMP ones. Even though these ap-
proaches are complementary, our mathematical formuléisrus develop moreigcient algorithms. As application
example of our framework, we introduce new techniques feridentification ofglobal saturation sectore.qg., [4].

A preliminary version of this paper can be found in [1].

The paper is organized as follows. Section 2 introduces théetunder investigation, the considered limiting
regime, and a background on bottlenecks. In Section 3 weagivéirst results characterizing the situations in which a
single bottleneck exists. Section 4 exploits these retulierive a new bottleneck analysis related to BCMP networks
with load-independent stations, and Section 5 extendsthlysis to networks with load-dependent stations. Se&tion
establishes a primal-dual relationship with the appro8fkHowing its implications. Section 7 presents an appbcat

of the proposed framework to global saturation sectors famally, Section 8 draws the conclusions of this work.

2. BCMP Model and Background on Bottlenecks

2.1. Model, Assumptions and Notation

We consider multiclass BCMP queueing networks [5]. Theedvdstations and jobs are partitioned ilRelasses.
Stations can be load-independent (LI) or load-dependddi) (I not otherwise specified, indeswill implicitly range
from 1 toR and indices and j from 1 to M indexing, respectively, network classes and stations. (€bestant)
probability that upon completing service at statianclassr job goes to statiorj is denoted byp;;,. The probability
that a class-job entering from outside visits statiorand the probability that a clasgob leaves the network after
completion at station are denoted by andpjor, respectively.

If the network is open, we denote by

¢ Aojir, the mean (constant) clasgebs arrival rate from outside to statiofit is assumed that jobs arrival process

is Poissonian),

e Ji, the mean classjobs arrival rate to stationwhich can be obtained by solving linear system
Air = Aojir + Zi /ljr Pji.r> Vi, r. (1)

If the network is closed, we denote by



¢ N, the (constant) number of clasgebs circulating in the network,
e N = (N, Na,...,NR), the total population vector,
e N =Nj;+ Nz +...+ Ng, the total number of jobs without class distinction.

The mean classservice rateof stationi is u;;, and the quantity u;, is interpreted as mean service time. Within
the BCMP assumptions, we recall that if statiois First-Come-First-Served, then the service time of elafgbs
must be exponentially distributed apd = ui2 = ... = ujr. On the other hand, if stationis Processor-Sharing,
Last-Come-First-Served, or Infinite-Server, then the phility distribution of per-class service times must have a
rational Laplace transform. The mean number of visits (edd@d relative arrival rate) of a clasgeb to stationi is

V;r and can be obtained through linear system

Vir = Poir + Zjer Pij.r, Vi, T. (2)

Since in closed networkpgi, = 0, for eachr the previous system has onl — 1 independent equations and its
solution is determined up to a multiplicative constant assg, for instancey;, = 1, Vr, e.g., [7], where 1 denotes a
reference station.

The mearoadingof stationi for classf jobs (also called relative utilization, or service demansl®;; = v /ujr,
and for a closed network it represents the average time §gentlass-job at statiori during its full execution when
using the network alone and visiting (reference) stationdeogi.e.yy, = 1. For simplicity, we initially assume that all
vectorsD; = [Djy, ..., Dig] are all diferent, i.e., there are no station indi¢esdj, j # i, such thaD;. = Dy, Vr, and
that the loading of each class and station is strictly paesith note in Section 4.1 and the duality argument introduced
in Section 6 will show that the proposed analysis holds evieenithese two latter assumptions are removed.

Letx : N —» R* be a positive function of the number of jobs which visiEunctionx;(n) represents the LD rate
of service ofi when there ar@ jobs ini relatively to the service rate whem = 1, i.e.,x(1) = 1. Analogously, let
vir : N = R* be the LD rate of service of claggebs in station as function of the total number of jobs it contains
relativeto the clasg- service rate of when exactly one (clagg-job is present, i.eyi (1) = 1. It is well-known that
the model discussed above with stations providing suchstgpéad-dependencies satisfies the BCMP assumptions

[5]. For simplicity, let

xi(n) If stationi relative service rate depends on the total number of
jobs in its queue,
zr(n) = o ) . 3)
yir(n) If stationi relative service rate depends on the number of alass-

jobs in its queue only,

For each statiom, we assume that existg (respectivelyn; ) such thatx(n) = x(n) = x for all n > n’ (yi(n) =
Yir(N}.) = yir forall n > n{ and for allr). Stations with such LD rates are knownlsited load-dependergtations,

e.g., [29, 20]. Therefore, service rates are always boumged constant. It is worth noting that this rules out
4



the existence of stations havingfinite capacity e.g., Infinite Server [5] stations. Within our purpose adntifying
bottlenecks, we note that this is not a loss of generalitabse such stations can never saturate by definition (prdvide
that a limited LD station exists). However, the theoretiesllts presented in this paper hold even when some stations
have infinite capacities, i.e., when lim, z; (n) = o, for somei. This will be cleared through notes in our proofs.
Our analysis is only based on the maditization of each station. Given a closed BCMP queueing network, we
denote byJ;(N) the mean utilization of station which we define as
UN)=1- > =(n), (4)
neSin=0
wherern(n) is the stationary probability of being in (Markovian) €&t € S = {ki, Vi, Vr : X ki = N;, Vr}, with
ki denoting the number of clasgobs in station, andn; = }, ni. When considering open networks, we omit the
dependency ol and, analogously, we have
U=1- > =(n). (5)
neNMR:n =0
Therefore, (4) and (5) can be interpreted as the “propodfdime” in which stationi is busy (in the long term) [21].
Other definitions of utilization are possible: for instapifenon-decreasing;(n) load-dependencies are considered,
then for eacn € S : n; > 0 one can multiplyr(n) for x;(n;)/x which represents the fraction of maximum processing
capacity used in state € S by stationi. The analysis presented here applies also for this furtenition which,

however, does not correspond anymore to the interpretghi@m above.

2.2. Limiting Regime

LetB = B(N) = [B1,82, . . ., Br] be thepopulation mixvector corresponding td whose components are such that
Br=N/N, > B =1 (6)
r

We study thebottleneck®f multiclass, closed queueing networks whéfinearly grows to infinity keeping constant
the population mix8. This limiting regime is aimed to deal with networks with darpopulation sizes which in

practice often occur [32] and it has been considered in, 8,4, 14].

2.3. Types of Stations and Bottlenecks

Definition 1. Within a given mix, station is calledbottleneckf and only if

lim Ui(NB)lngerse = 1 Y

In other words, a bottleneck is a station which saturategriteessing capacity & — oo. Within the considered
limiting regime, it is evident that at least one bottleneakstralways exist because jobs must accumulate infinitely in

at least one station.



As N — oo, it is well-known in the literature that jobs tend to accuatelin diferent portions of the network
depending on the population mfix In other words, dierent population mixes yield, in generalffdrent bottlenecks.
We now introduce the necessary definitions characterizieghtpes of stations and bottlenecks considered in the
remainder of the paper. The definitions given in this sectipply to networks with LI stations only. Within our
framework, these are fiicient because in Section 5 we show that the analysis of nkswaith LD stations reduces
to the analysis of networks with LI stations only, so thatythie turn, apply again (in the limit). The following
definitions can be also found in [4, 9].

A special type of bottleneck is calledhtural bottleneck

Definition 2. Within classr, the class-r natural bottleneckare the stations which satisfy (7) when the network is

loaded with class-jobs only, i.e., imposing, = 1.

We note that one station can be the natural bottleneck ofiplaiitlasses. If dferent classes have distinct natural
bottlenecks, it has been shown that the bottlenecks carataigcross dierent stations depending on the population

mix, e.g., [4].
Definition 3. Stationmis calleddominatedf and only if there exists a statidnz m such that

Dir > Dy, V. (8)
The saturation ofmis prevented by and, thusm cannot become a bottleneck for any population mix.

Definition 4. Stationm s calledpotential bottleneckf and only if it is neither a natural bottleneck nor a dometht

station.

Let @ be the set ohon-dominated stations (alternatively, the set of natural goteéntial bottlenecks). The belonging
of stationi to @ is a necessary but notfficient condition for the saturation of In fact, it may happen that there is

no mix such that (in the limitY; = 1. These stations are knownmssked-f, e.g., [4].

3. Asymptotic Analysis with One Bottleneck

The following theorem establishes weak convergence oféhavior of a closed multiclass BCMP network to the

behavior of a specific open BCMP network when exactly onéostaaturates (a — o).

Theorem 1. Given populatiorN and a closed BCMP network, let N proportionally grow to irtfiniConsider the
open BCMP network obtained by the closed one removing statiand formed by the same routing probabilitigg p
outside arrival ratesSloj; = ftmrZmiBr Pmjr, Pioy = Pimr aNd @jr = Pmjr. The joint stationary probability distribution
of jobs on non-bottleneck stations weakly converges todim $tationary probability distribution of jobs on the

corresponding stations of the open network if and only ifadpen network is ergodic.
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Proof. Given in the appendix. O

Theorem 1 provides a possible exact behavior of a closedonktiw the considered limiting regime and holds
when infinite capacity stations, e.g., Infinite Server etadj are considered (see the proof in the appendix). InH8], t
convergence result presented above is shown to be in mean tlnedassumptions of i) closed queueing networks with
LI stations only and of ii) a station (say) whose per-class loadings dominate the ones of all the sthé&ons, i.e.,
Dmr > Dir, Vi # r. This case is clearly restrictive because in these netwaikghe only bottleneck for each possible
mix, i.e., no bottleneck shifting phenomena can occur. Intfs latter assumption is removed, but the analogous
result of convergence in mean relies on a conjecture.

The following corollary follows by the theorem above and\pdes a sfficient and necessary condition for the

existence of exactly one bottleneck.

Corollary 1. The open network defined in Theorem 1 is ergodic if and ontgtiio;m m of the corresponding closed

network is the single bottleneck shared by all job classes.
Proof. Given in the appendix. O

Therefore, to check whether or notis the common (single) bottleneck of a closed queueing nit\within
some fixed mix), it sfiices to check the ergodicity of the corresponding open qagustwork. It is worth noting
that checking the ergodicity of the open network is strdminard within a fixed mix: in fact, it sfiices to check

whether or not the following condition on stations utilipeis is satisfied
U<l Vizm, 9)

which corresponds to the situation whemés the common bottleneck. This issue is addressed in thefiri sections

to derive éficient algorithms for identifying bottlenecks.

4. Bottleneck Analysis

In this section, we introduce the new framework supporthganalysis of multiclass, closed BCMP queueing
networks. We assume that all stations are LI. The genet@lizéo networks with LD stations will be proposed in

next section.

4.1. A New Characterization of Bottlenecks

The loadings of the open network defined in Theorem 1 can betlgx@mputed because the equations in sys-
tem (2) become linearly independent. Let us denoté)ﬁ?/ the mean loading of statidrfor classf jobs in theopen

network when the open network is built removing statianThe quantityDi(T) can be interpreted as the total average



time spent by a classjob at stationi in the closednetwork during its full execution when using the networkredo

and visiting stationm, in the average case/(l — pmmr) times. Hence,

1
DW=~ _ 10
™ (1~ pmme)tme (10)
By definition of loadings, the following relation holds
D DBy (11)
Dy ~ D’

An important consequence of Corollary 1 is the possibilitglwaracterizing the whole set of mixes which yield
the saturation of exactly one station. Given a closed né¢wor each statiomn € @ it suffices to removen and build
the associated open network. TBepace which yields the saturation of omiyis given by imposing ergodicity in
the open network, i.e.

Z(l = Pmme)HmiBr Di(rm) =

r
Br_pm _
r
— Dy
Zg—'Dir< 1, Vied,izm

mr

(12)

r

with the conditionsy’, B; = 1,3 > 0. In the remainder of the paper, we denoteBjythe 8-space determined by the
system of inequalities (12).

We introduce the following theorem which is exploited foe ttherivation of our algorithms.

Theorem 2. If there exists a mi@ which yields the saturation of station m, then there existexs’ which yields the

saturation of only m.
Proof. Given in the appendix. O

In other words, Theorem 2 ensures thahi§aturates for some mix, then it can also saturate alone.
By Corollary 1 and Theorem 2, we immediately have the folloyvtorollary which characterizes bottleneck and

non-bottleneck stations in terms of the emptiness of a datedr constraints.
Corollary 2. B™is empty if and only if m cannot become a bottleneck.
Proof. Given in the appendix. O

Hence, eac € B™ yields the saturation ah only. If B™is empty for somen, then it means that there is no mix
which yields the saturation of ont. This situation can only happen to non-natural bottleneick&act, by definition,
a natural bottleneck saturates when the input mig jgor somer, i.e., the sizeR unit vector in directiorr. If mis
a dominated station, it is easy to see tB&t = 0. This proves, in an alternative manner, the well-known fhat a

dominated station never saturates [9].



As stated in Section 2, for simplicity we assuniegd > 0, Vi, r, i.e., all jobs visit all stations. The generalization
of (12) to the case where loadings vectors can have null caens is immediate. SuppoBg,» = 0 for some class'.
First, we note that wheN — oo andg is kept constantn cannot become eommorbottleneck if3,, > 0. In fact, the
number of jobs corresponding to clagsnust grow to infinity in some other stationfidirent fromm. This means that
if mcan be a common bottleneck, thesn must be zero, and to understand whether omnoaan become a common
bottleneck, we caregregateslasst’ jobs from the network (imposing = 0) and apply, in turn, Corollary 1. In this

case, the generalization of (12) becomes

If—rDir<1, Yied,i#m (13)

r:Dmr>0 mr

with the conditiong’.p 0B = 1.

4.2. Algorithms for Bottleneck Identification

An important consequence of Corollary 2 is that we cfiitiently understand whether or not the insertion of a
new station (within an existing network) can yield signifitahanges in the overall performance, i.e., whether or not
it can become a bottleneck (for some mix a priori not knowmother consequence is that we céicgently identify

the whole set of stations (s&/) which can become bottlenecks. Formally,
@ =d\ |{m: BMis empty. (14)

To check the emptiness 8™, i.e., theB-space generated by (12), we can exploit well-known lineagmming
techniques by running, for instance, the Simplex algorif@6] which is non-polynomial with respect to the input
size but very #icient for practical purposes.

Our first analysis is summarized in Algorithm 1, whéve = {1, 2,..., M} denotes the set of network stations
indices (including the dominated ones). In this algorithma basically exploit relation (14) checking the emptindss o
B™ for each statiom. To apply linear programming techniques to (12), howeverhave to find a similar formulation
of its inequalities which includes the equality constraiiet, (15). If (15) is feasible, then we addo @’. We observe
that if it is found that (15) holds true and at least one ofriexjualities holds with the equality constraint, then it mea
that the corresponding solution mix yields the saturatiomultiple stations, and in this case we note that Theorem 2
ensures tham can also saturate alone, i.&T is non-empty. If (15) is not feasible, station cannot become a
bottleneck and this implies that to check whether or pgt m can saturate, we can verify the emptinessBof
considering, in (15)M /{m} instead ofM. Thus,mis removed fromM (Line 7). Algorithm 1 requires the solution
of M linear programs which can be solved by running the first pbatige Simplex algorithm, e.g., [26], because we
must only check their feasibility.

However, an optimization can be performed to not iterater tive whole set of stations. In fact, consider the
linear program (16) which is characterized by the same caing$ of (15) and maximizes the utilizations of the

stations whose bottlenefion-bottleneck status is not known. Within some statirnf no feasible solution exists
9



Algorithm 1 Computation ofd’
1 @ =0

2: forall me M do

3 Check the feasibility of the following set of linear condtta:
r [’)‘%:"Dirsl, YieM,i#m
Y B=1 (15)
Br =0, Vvr.
4 if (15) is feasiblehen
5: O =0 U {m};
6: else
7 M =M\ {m};
8: end if
9: end for

for (16), thenm cannot become a bottleneck and it is removed fidm Otherwise, since (16) is a maximization
program, its solution must be a vertex of the convex set ifiedtby its constraints. Such vertex is a mix in which
multiple constraints hold with the equality. Given thatlswonstraints represent the stations utilizations, we dedu
that this mix yields the saturation @t leastone station dferent fromm. This observation reveals that we can
immediately understand the “bottleneckness” of a largelmenof stations (namely|) without solving the associated

linear programs (15). This observation is exploited in Aitfon 2.

Even though program (16) lets us avoid to iterate over thelevbet of stations, it requires the execution of both
phases of the Simplex algorithm and, thus, it is IdEsient than (15). Moreover, given that it may happen, in Line 8
thatg C @', in this case (16) does not yield a running time reductiorabse no further bottlenecksfi#irent fromm
are found. Hence, we exploit variatdevhich represents the number of bottlenecks identified by different from
m and not belonging t@’ yet. A strictly positive value ok lets us avoid exactli executions of (15) performed by
Algorithm 1. If variablek becomes zero at the-th iteration, then it is likely that the values kfin the successive
iterations are very small or zero, and this would not yieldyaificant running time reduction (recall that (16) is less
efficient that (15)). Hence, after tie-th iteration, Algorithm 2 essentially behaves as Algarith.

Figures 1 and 2 illustrate the temporal requirements reduiy the approach [9] (CS) and both Algorithms 1 and 2
(respectively, Algl and Alg2) with respect to reasonabtgdanetworks. The algorithms have been implemented in
the Ampllanguage [13] and the experiments have been camidaly running the commercial llog Cplex optimization
solver v9.100 on a 933MHz Mobile Intel Pentium Il CPU. Thaadis (in seconds) are obtained by means of the Ampl
variable_total_solve_time. The experiments refer to several random models wheredkierss loadings have been

drawn from a uniform distribution ranging between 0 and 188 [9]. Ris increased from 20 to 100 with step 20
10



Algorithm 2 Computation ofd’ (improved)

1. :=0;S:=M; k:=1;
2: while S# 0 do

3:

4.

5:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

Choosame S; S:= S\ {mj};
if k> O0then

Solve the following linear program:

max Z Z%Djr

s.t.: Z'Br Di <1l VieM,i#m
r

jes r
Dmr
Zrﬁr = 1»
Br =0,

if (16) is feasiblehen

Q=0 U {m;
¢ :={i 1 X BrDir /Dmr = 1};
ki=lg\ (¢ N);
Q=D U S:=S\ ¢
else
M =M\ {m};
end if
else
if (15) is feasiblehen
O =0 U {m};
else
M =M\ {m};
end if
end if

21: end while

vr.

(16)

11



19 T T T
18| — — —CS 4
—6— Algl L7
e
% 15L —&— Alg2 P ]
2 s
j
S s
3 2
S 12 g
) i 4 T
g .
I re
g -7
S 9r Fs b
!/JI //
3 _-
2 ~
I 6l - ]
— 6 //
a -
= -
< ///
3;_//—9—/‘5/9—/{]
[
0 \ \ \

20 40 60 80 100

Figure 1: Computation times with #200.

and we considerel = 200 (Figure 1) andM = 300 (Figure 2). In both figures, each point is referred to trexage
of 50 models because the variance of the computation timesegligible. What we note in the figures is that our

solution technique yields significant running time redoieti in the characterization a@f up to a factor of four.

4.3. ldentification of Bottleneck Sets

Corollary 2 and Theorem 2 can be further adoptediiciently understand whether or not the stations belonging
to a given set can saturate simultaneously (for some mixis ddn be useful, for instance, to understand whether or
not a number of stations belong t@mbal saturation sectofsee [4]).

Let¢ C @ be a set of stations and let alsoe ¢. If B™ is empty, then Corollary 2 ensures timatannot become a
bottleneck and, thus, that stationssicannot saturate together. On the other hand, if they caregatsimultaneously,
then Theorem 2 ensures that exists some mix which yieldsattoeagion of onlym. Hence, we re-write system (12)
with respect to se® and statiomrm € ¢ and we assume that all the strict inequalities, keinclude equality, i.e.<.

The situation in which all the stations belongingd#csaturate together corresponds to the situation in which the
associatedip| — 1 constraints of this system become active, i.e., the etyuadids. This holds because the left-hand
side of the-th inequality of (12) represents the utilization of statiolf the 8-space obtained by imposing the equality
for such constraints is non-empty then it means that thastsesome3 which yields the saturation of all stationsgn
simultaneously and vice versa.

Algorithm 3 summarizes the analysis required to understahnether or not stations ip can simultaneously
saturate together (for some mix). This algorithm can ben&rradopted toféciently speed up the characterization

of @’. In fact, if it is possible to guess a set of stations which senultaneously saturate, then we can apply
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Figure 2: Computation times with #800.

Algorithm 3 Can stations i saturate simultaneously?
1. Choosane ¢;

2: Check the feasibility of the following set of linear congéirta:

B Di <1l Vied, i¢o
T Dmr
- Dmr a7
Zrlgr = 1»
Br =0, Vr

3: if (17) is feasiblehen
4: return “Yes”,
5: else
6: return “No”;
7: end if
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Algorithm 3 to dficiently understand if they actually do, and, in this caskstaltions belonging to the guess are
part of®’. This reduces the number of linear programs to solve for kiaeacterization ofd’. Such guesses can be
derived by exploiting ordering properties of the loadingtees. In fact, assume that the station loadiBgs. .., Dy

are ordered according to the magnitude of class-1 loadidgdong as two-class networks are considered, stations
andj cannot saturate together (for some mix) if statida a bottleneck, wherBi; < Dy1 < Dj1 [4]. In other words,
once it is understood thatis a bottleneck, we can avoid to check for the simultaneowsaton ofi andj, i.e., the

sete¢ = {i, j} is not part of the possible guesses.

5. Load-dependent Stations

When LD stations are considered, the bottleneck identifinatecomes more flicult to analyze because the
network loadings are not fixed and their expected value isanptiori known and varies witl according to the
probability distribution of jobs among the queues. It is & that the expected loadings at statiabtained with two
different mixes can be veryftirent even whehl — .

Within our framework, the analysis presented in previousise can be extended to the mordidult setting of
LD stations, i.e., stations characterized by a processiegdthat depends on their queue length.

By Corollary 1, we note thanis the common bottleneck of the network if it is satisfied tleagralization of the

system of inequalities (12), which makes ergodic the opéwaor defined in Theorem 1, i.e.
U=1-7m0)<1 Vied,i+m (18)

> Br = 1,5 > 0, wherer;(0) denotes the stationary probability of having no jobstatisni of the open network
defined in Theorem 1.
Let us first assume that the load-dependency of networlostatiepends on the total number of jobs in their

gueues. Applying the BCMP theorem [5], we have

(NV-1 — (ZrﬁerDir/Dmr)ni
"0 _mzz() Mg, x® (19)

Since the inequalities of system (18) are non-linegs,ithe characterization @™ appears more flicult in the case
of LD stations. However, by noting that (18) is satisfied iflaanly if (19) converges, it is easy to see that (18) is

satisfied if and only if

Xm Di :
Uoi = Z,Br oy <Lieo\m, (20)

> Br = 1,8 > 0, and we note that this system is composed of linear constranly. Thus, the geometric structure
of B™ becomes surprisingly equivalent to the one presented fstdtlons. However, we note that the terms on the

left-hand side of (20§lo notrepresent stations utilizations as in the LI case, i.e.,

Ugj # Ui, ie @\ {m}, (21)
14



and, thus, their interpretation isftérent. From the utilization law, e.g., [21], we note thabislt)y; can be interpreted
as the utilization of stationif we assume thatis LI with loadingsD;; /x;. This interpretation is in agreement with the
intuitive rationale that as the input mix approaches thenbanyUy; = 1 of B™, the queue length (number of jobs) of
stationi grows to infinity and, thus, the average number of jobs is atraorely greater tham which implies that the
expected loadings dfare almost surely given by, /.

When the load-dependency wfdepends on the per-class number of jobs in its queue, wendtitaianalogous

result. Inequalities (18) must still hold true and, apptythe BCMP theorem [5], in this case we have

B (,Br)/mrDlr/Dmr) "
mi(0)™ nZO n,;o:w i H mie! 1oy Vi (1) (22)
2 M =ny

Noting that i) (18) is satisfied if and only if (22) converg@syi (t) = yir for suficiently larget, and iii) (22) can be
expressed in terms of a geometric series by applying multiabarguments, we have that (18) is satisfied if and only
if

Zﬁr[y;”’ O <1 e\ m), (23)

> Br = 1,8 = 0 is satisfied.

As stated for (20), we note again that the inequalities ir) €2Binot be understood as stations utilizations as in the
LI case. Their interpretation is the same shown above.

Thus, even in the case of LD stations, sBfscan be described in terms of linear constraints even thougjh t
physical rationale is diierent. Taking into account (20) and (23), Algorithms 1, 2 8mzhn be applied again at the
same computational cost. Therefore, the experimentaltsestuown in previous section also hold for stations with

any of the considered load-dependencies.

6. Interpretation of Our Results

Exploiting duality arguments, we now establispramal-dualrelationship between our approach and the one pre-
sented in [9]. This theoretical connection states that bratheworks are complementary and, as a first consequence,

lets us easily prove that tltual holds even when LD stations are considered, which is nantive.

6.1. Primal-Dual Interpretation

To establish whether or not stationcan become a bottleneck (for some mix), we recall that ourcgmh proposes
to check the feasibility of (15) by means of Corollary 2. Oa tther hand, the approach [9] states thatn become
a bottleneck (for some mix) if and only if the following linearogram is infeasible

Z Vi LDy 21,

i#m
Zi;&m vi=1

vi>0, Vi,izm
15

(24)



which derives from thgeometricobservation that a station can become a bottleneck if andibité loading vector
is an extreme point of the convex hull generated byNhB-dimensional point®;. In contrast, our approach derives
from the observation that a station can become a bottlefi@idionly if there exists a mix which makes ergodic the
open network defined in Theorem 1, i.BT # 0.

The structure of linear programs (15) and (24) is similar sugigests the existence opemal-dualrelationship.
Since this relationship is defined only foptimizationproblems [26] (note that (15) and (24) are feasibility pesbs),

let us consider the following variant of (15)

max Vv

s.t. Zﬂ—'D"+vs 1, Vi,i#m
 Dmr (25)
Zrﬂr =1,

Br=0,v>0, vr,

which introduces variablg. Such variable can be interpreted as the measure of nonutiigdtion at the most
loaded non-bottleneck statian m. Let v* be the optimal solution of (25). With respect to (25), we iiptetv*

as thepower of bottleneckm because it measures the maximurfietence between the asymptotic utilizationnof
(which is 1) and the most utilized stationfidirent fromm. In other words, it is a worst-case measure of how much
m prevents non-bottleneck stations from working at the maximof their capabilities. Since (25) is a maximization
problem andv must be non-negative, we have > 0 if and only if (15) admits a feasible solution (this is ereslir
By Theorem 2). This observation establishes the logicaivatpnce between (15) and (25) to understanah ifan
become a bottleneck.

We now apply duality arguments. The dual of (25) is given 5] [2

min u
Yi
S.t. =Dy +ux1 Vr
”Z’:“ O (26)
Zi;tm')’i =1,
%20, ux=0, Vi, i#m

Letu* be the optimal solution of (26). Since (26) is a minimizatwoblem andi must be non-negative, we have that
u* = 0 if and only if (24) admits a feasible solution. In other wena" > 0 if and only if m can become a bottleneck.
This observation establishes the logical equivalence éatw(24) and (26) and, thus, this proves the primal-dual

relationship between linear programs (15) and (24).

6.2. Consequences of the Primal-dual Relationship

A first, immediate consequence of the primal-dual relatigmabove follows. In [9] it is shown that (24) can be
used to understand whether or motan become a bottleneck even though we consider finite piignsssizes and

define the bottleneck as the station with highest utilizatidence, as long as LI stations are considered, the duality
16



relationship guarantees that even (15) can be analogodspted wherN is finite to understand whether or not
can become a bottleneck.

A second immediate consequence of this duality is that dvemptoposed framework is able to handle the case
where stations can share the same loading vector (as theldes), i.e.Dy, = Dm, component-wisely. In this case,
the sum in (24) is taken over stationg my, m and (15) modifies accordingly.

A third immediate consequence of this duality is the appilids of the proposed approach to queueing networks
requiring fewer assumptions than BCMP networks. In fact) {2 derived by means of the utilization law only [21]

and, thus, it applies to more general networks.

6.2.1. LD Stations

We remark that the approach [9] deals with networks with Btistis only. Its extension to LD stations appears
difficult to derive because the convex hull of the loading vectorthis case, is not constant and its structure depends
ong. For eaclp, the points of the characteristic polytope of a queueingiagk cannot be easily obtained because the
expectedoadings at stations are not a priori known. However, exiplgithe duality relationship discussed in previous
section, such analysis must hold even when LD stations arsidered (a®l — o). In fact, in our framework we can
always express linear program (25) with respect to inetiealf20) or (23), and, applying the same duality argument

to this program, we obtain that the dual must hold true. Feistike of conciseness, this is given by

Zmr Dir
i —=>1 Vr,
Z% Dmr Zr

Zi;tm)’i = 1»
vi=>0, Vi,i#m

i#=m

(27)

wherez; is the limit value of (3). As (24), linear program (27) revagsimplies that the analysis [9] (non-intuitively)

extends to LD stations if it is considered the (fixed) convel bf points [Di1/za1, . . ., Dir/Zr]-

7. Global Saturation Sectors

In this section, we show an application of the proposed fraonke related to the identification gfobal saturation
sectors(GSS) [4], i.e., connected sets of mixes which yield thersditon of exactlyR stations. The knowledge of
all the possible GSS of a given queueing network is impoi@ctuse it lets us obtain the mixes which maximize
the network utilization. For instance, the mixes belongm@&SS are the ones which an admission controller should
guarantee in the network to keep high the network utilizatibhas been shown [31, 4] that such sectors are polytopes
in the B-space and, thus, their structure is completely deterntigetieir vertices, e.g., [27].

We exploit set8B™ to introduce a new framework for their identification whigtngplements the one presented in
[9]. For simplicity, in the following we assume that theh station of the network is the natural bottleneck of class
jobs which is equivalent to assume that [4]

Dir > Dy, 1 #1, (28)
17



which impliesM > R.

7.1. Natural Bottlenecks

Let us consider the case in which only natural bottleneckse#urate. According to (28), this means that stations
loadings satisfy the constraint

Dy >Dyr > Dy, i#r1, j>R i <R (29)

Clearly, in this case we have
O=0' ={L2,....R (30)

which implies that the linear system (12) is composedRef 1 inequalities. Given thaB™, m € @, is non-empty
and that the expressions in (12) represent stations uiilize, we can obtain the mixes which yield the saturation of
all natural bottlenecks by imposing, in (12), the equalitmstraints. Hence, to obtain tievertices of the GSS, it
sufices to solve the linear system

Z[%Dir —LVied, i#m

I

for eachm € @. Let 8,4 be the solution of system (31). ., is afeasiblesolution, i.e., it satisfies constraints (6),

(31)

then it represents the switching point for the behavior b$taltionsi € @, i # m, i.e., the point in which the stations
belonging tod \ {m} change their bottlenegkon-bottleneck status, and it is a point in which all natl@ttlenecks
must saturate together. Note tifat, may have negative components and, in this case, the solstiuut feasible.
This means that in such cases no GSS exist®fadn the other hand, a GSS existgjf;, is a feasible solution. In
the following, we refer tagylobal switching point of nto indicate a feasible solution of linear system (31). The&sGS
is given by the polytope having as vertices all global switghpoints and its uniqueness follows by the uniqueness
of Bro-

In [4], a different linear system for calculating global switching psiistproposed. That method, widely used in
[9], requires the solution of a linear system havRfgequations an&? unknowns. On the other hand, our method
(based on the solution of systems (31)) provides a lower coatipnal complexity. In fact, it requires the solution of

R linear systems composed Rfequations an&k unknowns.

7.2. General Bottlenecks

At the cost of a higher computational complexity, the analysoposed for the natural bottlenecks case can be
extended to the more general case where (29) is relaxed lamgl|®| > R. In this case, multiple GSS can exist
[4]. Within our framework, this property is understood by tfact thatB™, in general, yields more than one global
switching point deriving from dferent sets oR — 1 constraints of (31).

To identify all the GSS, one can search for all global switghpoints associated to sel for all stationsi,

i.e., the mixes yielding the saturation Bfstations, and the GSS are given by the polytopes which aenaut by
18



grouping together the mixes yielding the saturation of #i@e set of stations. We note that when it is understood
that stationm belong sto a saturation sector yielding the saturationaifasts ing, then the global switching points
enumeration associated B, i € ¢ andi # m, can be skipped. The problem of enumerating the verticepofygope
is a well-known problem in polyhedral computation whichegarred to asertex enumeration problerience, such
enumeration can be performed exploiting existing techedge.g., [8]. However, aRincreases, i.e., the dimension
of the B-spaceB™, the computational complexity of vertex enumeration téghes makes this approach impractical.
This approach complements Algorithm 3 introduced in [9] ebhis based on thfacetenumeration problem. This
complementary approach is obviously due to the duality meuts discussed in Section 6. Both representations are
similar and well-studied in the literature [8]. However, natice that the facet approach also requires the compntatio
of the convex hull of the point®; which is computationally expensive.

A different technique is derived if we note that Algorithm 3 candb@pded to diciently understand whether or not
the stations in set belong to a GSS. Let be a set of stations indices such tfggt= R drawn from®’. Provided that
a GSS exists fop, consider the linear system (31) written with respedt tostead ofd and letB,, , be its solution. If
Py is afeasible solution, then it represents a mix which yiétessaturation of all stations ihand, thus, itis a vertex
of a GSS. The remaining vertices are obtained by compyiingfor eachm € ¢. This analysis is summarized in

Algorithm 4. The drawback of this approach is that the nundfeetsy such thatg| = R grows non-polynomially. In

Algorithm 4 GSS Enumeration
1 forall pefp:pC® A |p|=R}do

2: if Algorithm 3 returns “Yes'then

3 forall me ¢ do

4: Obtaing, , by solving linear system (31);
5: end for

6: end if

7: end for

fact, it is given by(“g'). However, it is known that in practice the number of bottlekseis much less than the number
of stations, i.e.|®’| = o(M), and, therefore, this makes Algorithm #ieient in many cases of practical interest. We
also notice that Algorithm 4 computes the global switchiogfs of a GSS by solving linear systems composed of
R equations an® unknowns, i.e., (31). This algorithm sets against Alganith of [9] where global switching points

of a GSS are analogously obtained by solving a linear systenposed oR? equations an&? unknowns.

8. Conclusions

In this paper, we introduced a new bottleneck analysisedl&d closed, multiclass BCMP queueing networks.

First, we established a weak convergence result for théitighbehavior of closed networks. This provided &isient
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and necessary condition for the existence of a single Inettle Then, we proposedfeient algorithms based on
such condition able to identify all network bottlenecks haydng the computational requirements of existing solutio
techniques. Our approach is able to handle LD stations acwhittast with the great majority of the analyses related to
BCMP queueing networks (e.g., exact, approximate and hingrashalyses), this extension does not require additional
computational fort, and relies on a general assumption on relative seraies.rExploiting duality theory, we found
a unifying primal-dual connection between our approach andcent technique. This relationship established a
theoretical connection between the approaches and leteiscethe dual to LD stations. Experimental results showed
that our framework yields significant running time reduntap to a factor of four with respect to existing techniques
which are valid for LI stations only. As application of theoposed framework, we described algorithms for the

identification of global saturation sectors.
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A. Appendix

A.1. Proof of Theorem 1
We prove the statement by directly evaluating the limit &f stationary probabilities of the closed network states.
First, we consider the case of load-independent statiorsn Ehe BCMP theorem [5], the stationary probability of

M
being in state of the closed queueing networke S = {k : 3, ki = N, Vr}, is given by
i=1

M R Dnir
) =GN [ [t [ [ = (32)
i=1 r=1
where e
GIN) = >’ Hm ]‘[ (33)
keS =1 r=1
is the partition function normalizing product-form termAfithin mix 8 = [Ny/N, ..., Nr/N], we want to show that

the following relation holds true

-1
M R ﬂrDir fir 1 Z l_l l_l ﬂrDlr 1
lim z(n) = | | m! [—] — ki! [ } — (34)
N=eo Ill:rlln g Drr | 1l | 6 m =1 Drnr | Kir!

for each possibl@, which means that the joint stationary probability diaitibn of jobs among all statioris m

of the closed network weakly converges to the joint statipmaiobability distribution of jobs on the corresponding
20



stations of the open network defined in the theorem (provitiatlit exists). Rewriting the sum in (34) in terms of
geometric series (this can be done by applying the multinbtineorem), one can check that the sum on the right-hand
term of (34) converges to a positive value if and onI)Z‘,iLﬂ,Di,/Dmr < 1, ¥i # m, i.e., if and only if the open
network (with load-independent stations) defined in thetam is ergodic.

Within staten € S, letng, = M, .. ni andni, = 3R ;.. Observing thabm, = Ny — nj, andny = N - ni,, we
note that (32) can be rewritten as

-1

M M

R Gl L oy PTGl Y (35)
TT(Nr = i )! 23, keS" TT(Nr — k)t (224
r=1 r=1
where R ‘
Dy |" 1
ﬁ(k):lq!ﬂ[Dmr] o (36)

andS’ = {ny >0, Yr,i #m: Zi'\ﬂl,iim nir < N;}. Leto(k) = 1if k € 8, otherwise 0. From (35), we have

(N =/ TN =Kot

. 1 .
AR il KZ‘O olk)—— TR Ly (37)
Vrizm (N —nz)!/ rl;ll(Nr = M) il;m
Lemma 1. Letn e NM-DR_For N syficiently large, there exists € N(M-DR independent ol such that
(N-kz)! (N - ni,)!
R < R
TT(Ne = ki)t TT(Ne = n,)!
r=1 r=1
forall k : ky, > ny,.
Proof. :
Fact 1: For alr, ask;, increases,N - k,)!/TIR (N - k:, )! decreases.
Fact 2: Allk : ki, = ki, /R, Vr, maximize N — k&, ")!/TTR (N — ki, /)! for all kK’ : ki, = ke,
By Fact 1, we have
N — ki,)! N - ny,)!
Nk (N -
[T(N: - kKAr)! IT(N; - nﬁﬂr)!
r=1 r=1
ifkeT={k:ny <kj, <N, Vr}. Let
n=arg min ky. (39)
keT:k,*W:k%,Vr
Suchn always exists ilN is suficiently large. The statement follows by means of Facts 1 and 2 O
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Hence, (37) can be rewritten as

R
(N=K)Y/ TI(N =kt o
im = im Y sk = [ ?EE;+

N—oo n N—oco 1
() Kir 20:kt =P (N =ng)!/ ]’[l(Nr L% L
r=

vr,izm - (40)
(N =t/ TN =l)t o
= I
K 200K, <P, o) N — )t § N. — e )l 1:1[ fi(n)
r;’r,.#m m ( - nm)./rl;ll( r nmr)' i=m
wheren is given by previous lemma. In (40), we want to exchange thé& knd sum operators.
Given that (by means of Lemma 1)
R
(N =K'/ TT(N = ki,)!
r=1 <1 (41)

(N =)t/ TT(Ne — i)t
r=1

for all ky > 0, Vr,i # m, such that, > ny, there exists a positive functiag(k), i.e., independent o, which
dominates the argument of the first sum of (40) for eldciNamely, this is given by
M
a0 =[] ] 42)
i#m
Therefore, the dominated convergence theorem, e.g.,¢b8lres that we can exchange the limit and sum operators
of the first sum of (40) iy »0.vr.izmk;=n;, 9(K) converges, i.e., if and only if the open network is ergodic.

Given that the second sum in (40) spans a finite space andthapplying Stirling’s formula! ~ v2zn n"e™,

R
* H(Nf - n;r)!
im R(N ! -
N—ooo H(Nr B k;_knr)| (N - nm).
r=1
R
et TNy = np NNt
— k* )N-kn+3
SR i

f[l(Nf — k)N Kt (43)

-k 45 - Nl'fyﬁwrl
= lim N_kf*“%{lﬁ[ 1N—k§‘nNﬁrkmr+% N_% e

m r=1

R o
= H ﬂ r mr’
r=1 '

i.e., the terms in the second sum of (40) admit a finite lim#, s&n again exchange the limit and sum operators for
the second sum.
In (37), we observe that if we bring the limit operator inside sum, then (34) is immediately obtained by means

of (43) if and only if the open network is ergodic.
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When load-dependent stations are considered, from the Bibti*tem [5] we have (assuming the per-class load-

dependencg;)

R Dk«
GIN) = >’ ]‘[ K] ——=—— L o (44)
keS i=1 r=1 t 1y|r
and, analogously to (34), we want to show that
-1
M R

. Br Dermr/Dmr) " Br Dermr/Dmr)
lim z(n) = | | n! - ki! : (45)
N=e ::q [l[ i n =1 Yir (t) knz(),zv;,i;emI|¢I_II%1 H ir ! nt 1 Yir (t)

As for (46), we have

Nf nmr
=k T =t | 1T Yo
N'me‘N"L" 2, S e 1w (46)
A v Fion - 1T vt 58

where functiond; (see Formula (36)) now take into account for the load-depeciés ofi.
The existence of a (positive) limiting value fgg:(n), asn — o, i.e.,ymr, €nsures that the dominance argument
illustrated above can be applied again to prove the connemef (45). In fact, we first note that for &ll: ki, > 0", >

n;, (N, is given by Lemma 1), we have

Nr_n:‘nr
tl—ll Ymr(t) Ne =

N, =K, = l_[ ymr(t) (47)
tq ymr(t) t=N; =k +1

Therefore, as in (40), we can split the sum in (46) over Sats> 0 : k', > ﬁ;, ¥r,i # mpand{ky > 0 : ki, <
ﬁ;, vr,i # mj, Whereﬁ:n = maxny, t} with iy, given by Lemma 1 antl= Y, t; = ), argmin.y,, )=y, t- In the former,

we have (for sfficiently largeN;)
N, —n,

[T yoe® = v ™. (48)

t=N, =Ky +1
which implies that the dominance argument above can alspjiéed in the load-independent case, and in the latter
we have a sum spanning a finite space with each summand adpaitfinite limit. The same approach immediately
applies even for the load-dependenceThis proves the load-dependent case (45).
Itis easy to see that the above dominance argument alsoihdlts more general case where statibgsm have
a load-dependence such that Jisa, z, (n) = oo, e.g., the case of Infinite Server (IS) stations. This spplees by

means of the dominating function (42). O

A.2. Proof of Corollary 1

If the open network defined in Theorem 1 is ergodic, then we lflay the weak convergence result of Theorem 1)

1> lim 7(IN,0,....0]) > 0 (49)
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wheren([N,0,.. ., Q]) is the stationary probability of being in the closed quagenetwork statelyl, O, .. ., 0] in which
the total number of jobs in each statibg m = 1 is zero (note that assumimg= 1 is not a loss of generality). This
is suficient to conclude that liRL,., Ui(N) is strictly less than one for all# m by means of its definition, i.e., (4).
Given that, within the considered limiting regime, a botdek must always exist, this must tre

In contrast, ifm is the single bottleneck of the closed network, then alliatati # m must be such that
limnoeo Ui(N) < 1 and, in particular, we must have that (49) must hold agasumingm = 1). By means of
the weak convergence result of Theorem 1, the corresporgieg network must be ergodic (i.e., formulae (34)

and (45) must yield positive and finite values). O

A.3. Proof of Theorem 2

If mis a natural bottleneck @ yields the saturation of only, then the theorem trivially holds. iffiis a dominated
station, then a mix which yields the saturationnotannot exist. Now, consider the case in whinls a potential
bottleneck. LeB™ be the set of mixes identified by (12) which yields the sataretf onlym. SetB™ is characterized
by a number of vertices, i.e., limit points in which a numbéinequalities of (12) intersect constraip}, 3, = 1.
Let us first suppose th@gt # 0, VB € B™, i.e., m cannot be a natural bottleneck, which means Bfabelongs to
the interior of the plane identified by, 3, = 1. Clearly, if B™ is non-empty, then the theorem holds trivially.BF
is empty, to prove thain cannot become a bottleneck, suppose first Bfais non-empty.B™ is characterized bR
vertices (see (12)). These vertices represent the entnggof diferent (connected) sets of mixes which yield the
saturation of dierent sets oR stations includingn (Note that these sets cannot be equal because they denwe fro
the evaluation of dferent constraints in system (12)). In the degenerate cashigh B™ is empty, all these sets of
mixes collapse in one single (connected) set of mixes yiglthe saturation dR+ 1 stations, i.e., one station for each
vertex of B™ plusm (see pages 127-128 of [4] for a graphical example wRen2). As shown in [4] (see Section
3.1.2), this is a contradiction since it would require thiiBon of an extended version of system (19) in [4] with more
(independent) equations than unknowns. HeBE&must be non-empty. The same contradiction arises relakg t

VB e B™ B, # 0. O

A.4. Proof of Corollary 2

(=) By contradiction, let us suppose thatbehaves as a bottleneck for some mix. This means, by Thearem 2
that exists a miy8 which yields the saturation of only statiomandB™ cannot be empty.
(<) By contradiction, ifB™ is non-empty, then, by Corollary 1, there exists a mix whickes the open network

defined in Theorem 1 ergodic. This means that the only s&iistation ism. O
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