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Abstract

We introduce a new framework supporting the bottleneck analysis of closed, multiclass BCMP queueing networks

in the limiting regime where the number of jobs proportionally grows to infinity while keeping fixed other input

parameters. First, we provide a weak convergence result forthe limiting behavior of closed queueing networks, which

is exploited to derive a sufficient and necessary condition establishing the existence of a single bottleneck. Then, we

derive the new framework proposing efficient algorithms for the identification of queueing networks bottlenecks by

means of linear programming. Our analysis reduces the computational requirements of existing techniques and, under

general assumptions, it is able to handle load-dependent stations. We also establish a primal-dual relationship between

our approach and a recent technique. This connection lets usextend thedual to deal with load-dependent stations,

which is non-intuitive, and provides a unified framework forthe enumeration of bottlenecks. Theoretical and practical

insights on the asymptotic behavior of multiclass networksare shown as application of the proposed framework.

Key words: Multiclass Queueing Networks, Bottleneck Analysis, Asymptotic Analysis, Weak Convergence, Linear

Programming, Duality

1. Introduction

The most critical resources affecting the performance of IT (Information Technology) systems are the congestion

points, commonly known as bottlenecks. Such congestion points limit the overall network performance and represent

the resources a designer must invest to obtain significant improvements. Their knowledge also provides accurate

insights on the performance behavior of a system and being the number of bottlenecks much less than the total

number of resources, such behavior can be obtained with a limited computational effort. However, the problem of

their identification is non-trivial because they can shift across different resources depending on a number of factors,

e.g., the mix of workloads. Moreover, modern computer systems are dynamic, self-configuring, self-optimizing and,

within this framework, fast and non-intrusive identification techniques are required.
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During the last decades, closed queueing network models [7]have been widely used in the literature to perform

bottleneck analyses. In particular, a number of works have been proposed regarding the analysis of closed, BCMP

queueing networks [5] because they are a robust tool able to accurately capture the performance behavior of service

systems and accomplish capacity planning studies; see, e.g., [32, 24, 11, 17]. While for singleclass BCMP models

the analysis is well-known and requires little computational effort, e.g., [3, 22], no simple analysis exists for the

more difficult case of models with multiple classes of jobs. In this setting, bottleneck analyses are usually performed

in some limiting regime where some input parameters grow to infinity, e.g., the number of jobs or stations; see

[28, 16, 6, 15, 3, 4]. In [31] it is presented a survey of such techniques aimed to identify the bottlenecks associated

to a fixed mix of jobs. These techniques are based on the solution of non-linear optimization problems deriving either

from the stationary distribution of network states [5] or the MVA equations [30]. A more recent, extensive survey can

be also found in [33]. A new type of identification technique is proposed in [9] and, with respect to previous standard

techniques, the difference relies on the fact that instead of searching for the bottlenecks achievable with agivenmix of

jobs, the bottlenecks are searched with respect toall the possible mixes. In this way, one can immediately enumerate

which stations are critical if all possible scenarios are considered.

Previous analyses hold for queueing networks withload-independent(or fixed rate) stations. Accurate perfor-

mance models of real-world networks, however, are often characterized byload-dependentstations. This type of

station models a queue where its processing speed depends onthe number of jobs that it contains, and it is adopted

in several applications. For instance, load-dependent stations can be used to model the well-known multiple-server

queues or flow-equivalent stations [18] which are used in thehierarchical modeling of multitiered networks. Flow-

equivalent stations are also used to speed up the evaluationof different network alternatives for input parameters

[7] and to approximate the solution of non-BCMP networks; e.g., [10, 21, 19, 2]. See also [23] for other types of

load-dependencies. Within this more difficult setting, existing bottleneck analyses cannot be easily generalized. For

instance, in [9] the authors consider the loadings vectors (or service demands) of a closed multiclass network as points

in an Euclidean space and define the characteristic polytopeof a queueing network as the convex hull of such points.

The points belonging to the boundaries of the convex hull correspond to the network bottlenecks, and for their enu-

meration the authors essentially adopt the algorithm [25].However, this approach hardly extends to load-dependent

stations because, in this case, the characteristic polytope is not constant and its structure strongly depends on the

number and themix of jobs characterizing the population. For each populationvector, it is also difficult to obtain the

structure of this polytope because the distribution of jobsamong the stations is not a priori known and must be taken

into account (this is computationally expensive).

In this paper, we introduce a new bottleneck analysis related to the class of closed, multiclass BCMP queueing

networks with large population sizes. We consider the limiting regime where the total number of jobsN linearly

grows to infinity while keeping constant the ratioNr/N for each class of jobsr as well as the other model parameters.

Our notion of bottleneck is equal to the well-known one presented, e.g., in [4]: informally, a bottleneck is a station

which saturates its processing capacity asN → ∞. First, we introduce a weak convergence result for the limiting
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probability distribution of jobs in closed BCMP networks, which provides a necessary and sufficient condition for

the existence of a single bottleneck shared by all jobs in terms of a linear program. Then, this result is exploited to

derive new algorithms able to efficiently identify all networks bottlenecks reducing the computational requirements

of existing techniques. Our analysis is able to handle load-dependent stations and this extension does not increase

the computational requirements of the corresponding analysis related to load-independent stations. Exploiting duality

arguments, we also establish a primal-dual connection between our framework and the one presented in [9]. This

theoretical connection lets us extend thedual to networks with load-dependent stations, which is non-intuitive, and

shows the validity of our approach to queueing networks moregeneral than the BCMP ones. Even though these ap-

proaches are complementary, our mathematical formulationlets us develop more efficient algorithms. As application

example of our framework, we introduce new techniques for the identification ofglobal saturation sectors, e.g., [4].

A preliminary version of this paper can be found in [1].

The paper is organized as follows. Section 2 introduces the model under investigation, the considered limiting

regime, and a background on bottlenecks. In Section 3 we giveour first results characterizing the situations in which a

single bottleneck exists. Section 4 exploits these resultsto derive a new bottleneck analysis related to BCMP networks

with load-independent stations, and Section 5 extends the analysis to networks with load-dependent stations. Section6

establishes a primal-dual relationship with the approach [9] showing its implications. Section 7 presents an application

of the proposed framework to global saturation sectors and,finally, Section 8 draws the conclusions of this work.

2. BCMP Model and Background on Bottlenecks

2.1. Model, Assumptions and Notation

We consider multiclass BCMP queueing networks [5]. There areM stations and jobs are partitioned intoRclasses.

Stations can be load-independent (LI) or load-dependent (LD). If not otherwise specified, indexr will implicitly range

from 1 to R and indicesi and j from 1 to M indexing, respectively, network classes and stations. The(constant)

probability that upon completing service at stationi a class-r job goes to stationj is denoted bypi j,r . The probability

that a class-r job entering from outside visits stationi and the probability that a class-r job leaves the network after

completion at stationj are denoted byp0i,r andp j0,r , respectively.

If the network is open, we denote by

• λ0,ir , the mean (constant) class-r jobs arrival rate from outside to stationi (it is assumed that jobs arrival process

is Poissonian),

• λir , the mean class-r jobs arrival rate to stationi which can be obtained by solving linear system

λir = λ0,ir +
∑

j
λ jr p ji ,r , ∀i, r. (1)

If the network is closed, we denote by
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• Nr , the (constant) number of class-r jobs circulating in the network,

• N = (N1,N2, . . . ,NR), the total population vector,

• N = N1 + N2 + . . . + NR, the total number of jobs without class distinction.

The mean class-r service rateof stationi is µir , and the quantity 1/µir is interpreted as mean service time. Within

the BCMP assumptions, we recall that if stationi is First-Come-First-Served, then the service time of class-r jobs

must be exponentially distributed andµi1 = µi2 = . . . = µiR. On the other hand, if stationi is Processor-Sharing,

Last-Come-First-Served, or Infinite-Server, then the probability distribution of per-class service times must have a

rational Laplace transform. The mean number of visits (alsocalled relative arrival rate) of a class-r job to stationi is

vir and can be obtained through linear system

vir = p0i,r +
∑

j
v jr pi j,r , ∀i, r. (2)

Since in closed networksp0i,r = 0, for eachr the previous system has onlyM − 1 independent equations and its

solution is determined up to a multiplicative constant assuming, for instance,v1r = 1, ∀r, e.g., [7], where 1 denotes a

reference station.

The meanloadingof stationi for class-r jobs (also called relative utilization, or service demands) is Dir = vir /µir ,

and for a closed network it represents the average time spentby a class-r job at stationi during its full execution when

using the network alone and visiting (reference) station 1 once, i.e.,v1r = 1. For simplicity, we initially assume that all

vectorsDi = [Di1, . . . ,DiR] are all different, i.e., there are no station indicesi and j, j , i, such thatDir = D jr , ∀r, and

that the loading of each class and station is strictly positive. A note in Section 4.1 and the duality argument introduced

in Section 6 will show that the proposed analysis holds even when these two latter assumptions are removed.

Let xi : N → R
+ be a positive function of the number of jobs which visiti. Functionxi(n) represents the LD rate

of service ofi when there aren jobs in i relatively to the service rate whenn = 1, i.e., xi(1) = 1. Analogously, let

yir : N → R
+ be the LD rate of service of class-r jobs in stationi as function of the total number of jobs it contains

relative to the class-r service rate ofi when exactly one (class-r) job is present, i.e.,yir (1) = 1. It is well-known that

the model discussed above with stations providing such types of load-dependencies satisfies the BCMP assumptions

[5]. For simplicity, let

zir (n) =


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


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xi(n) If station i relative service rate depends on the total number of

jobs in its queue,

yir (n) If station i relative service rate depends on the number of class-r

jobs in its queue only,

(3)

For each stationi, we assume that existsn′i (respectivelyn′ir ) such thatxi(n) = xi(n′i ) = xi for all n ≥ n′i (yir (n) =

yir (n′ir ) = yir for all n ≥ n′ir and for allr). Stations with such LD rates are known aslimited load-dependentstations,

e.g., [29, 20]. Therefore, service rates are always boundedby a constant. It is worth noting that this rules out
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the existence of stations havinginfinite capacity, e.g., Infinite Server [5] stations. Within our purpose of identifying

bottlenecks, we note that this is not a loss of generality because such stations can never saturate by definition (provided

that a limited LD station exists). However, the theoreticalresults presented in this paper hold even when some stations

have infinite capacities, i.e., when limn→∞ zir (n) = ∞, for somei. This will be cleared through notes in our proofs.

Our analysis is only based on the meanutilization of each station. Given a closed BCMP queueing network, we

denote byUi(N) the mean utilization of stationi, which we define as

Ui(N) = 1−
∑

n∈S:ni=0

π(n), (4)

whereπ(n) is the stationary probability of being in (Markovian) state n ∈ S = {kir ,∀i,∀r :
∑

i kir = Nr , ∀r}, with

kir denoting the number of class-r jobs in stationi, andni =
∑

r nir . When considering open networks, we omit the

dependency ofN and, analogously, we have

Ui = 1−
∑

n∈NMR:ni=0

π(n). (5)

Therefore, (4) and (5) can be interpreted as the “proportionof time” in which stationi is busy (in the long term) [21].

Other definitions of utilization are possible: for instance, if non-decreasingxi(n) load-dependencies are considered,

then for eachn ∈ S : ni > 0 one can multiplyπ(n) for xi(ni)/xi which represents the fraction of maximum processing

capacity used in staten ∈ S by stationi. The analysis presented here applies also for this further definition which,

however, does not correspond anymore to the interpretationgiven above.

2.2. Limiting Regime

Let β ≡ β(N) =
[

β1, β2, . . . , βR
]

be thepopulation mixvector corresponding toN whose components are such that

βr = Nr/N,
∑

r

βr = 1. (6)

We study thebottlenecksof multiclass, closed queueing networks whenN linearly grows to infinity keeping constant

the population mixβ. This limiting regime is aimed to deal with networks with large population sizes which in

practice often occur [32] and it has been considered in, e.g., [3, 4, 14].

2.3. Types of Stations and Bottlenecks

Definition 1. Within a given mix, stationi is calledbottleneckif and only if

lim
N→∞

Ui(Nβ)|Nβ∈NR = 1. (7)

In other words, a bottleneck is a station which saturates itsprocessing capacity asN → ∞. Within the considered

limiting regime, it is evident that at least one bottleneck must always exist because jobs must accumulate infinitely in

at least one station.
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As N → ∞, it is well-known in the literature that jobs tend to accumulate in different portions of the network

depending on the population mixβ. In other words, different population mixes yield, in general, different bottlenecks.

We now introduce the necessary definitions characterizing the types of stations and bottlenecks considered in the

remainder of the paper. The definitions given in this sectionapply to networks with LI stations only. Within our

framework, these are sufficient because in Section 5 we show that the analysis of networks with LD stations reduces

to the analysis of networks with LI stations only, so that they, in turn, apply again (in the limit). The following

definitions can be also found in [4, 9].

A special type of bottleneck is callednatural bottleneck.

Definition 2. Within classr, theclass-r natural bottlenecksare the stations which satisfy (7) when the network is

loaded with class-r jobs only, i.e., imposingβr = 1.

We note that one station can be the natural bottleneck of multiple classes. If different classes have distinct natural

bottlenecks, it has been shown that the bottlenecks can migrate across different stations depending on the population

mix, e.g., [4].

Definition 3. Stationm is calleddominatedif and only if there exists a stationi , m such that

Dir > Dmr, ∀r. (8)

The saturation ofm is prevented byi and, thus,m cannot become a bottleneck for any population mix.

Definition 4. Stationm is calledpotential bottleneckif and only if it is neither a natural bottleneck nor a dominated

station.

LetΦ be the set ofnon-dominated stations (alternatively, the set of natural andpotential bottlenecks). The belonging

of stationi to Φ is a necessary but not sufficient condition for the saturation ofi. In fact, it may happen that there is

no mix such that (in the limit)Ui = 1. These stations are known asmasked-off, e.g., [4].

3. Asymptotic Analysis with One Bottleneck

The following theorem establishes weak convergence of the behavior of a closed multiclass BCMP network to the

behavior of a specific open BCMP network when exactly one station saturates (asN → ∞).

Theorem 1. Given populationN and a closed BCMP network, let N proportionally grow to infinity. Consider the

open BCMP network obtained by the closed one removing station m and formed by the same routing probabilities pi j,r ,

outside arrival ratesλ0 j,r = µmrzmrβr pm j,r , pi0,r = pim,r and p0 j,r = pm j,r . The joint stationary probability distribution

of jobs on non-bottleneck stations weakly converges to the joint stationary probability distribution of jobs on the

corresponding stations of the open network if and only if theopen network is ergodic.
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Proof. Given in the appendix.

Theorem 1 provides a possible exact behavior of a closed network in the considered limiting regime and holds

when infinite capacity stations, e.g., Infinite Server stations, are considered (see the proof in the appendix). In [3], the

convergence result presented above is shown to be in mean under the assumptions of i) closed queueing networks with

LI stations only and of ii) a station (saym) whose per-class loadings dominate the ones of all the otherstations, i.e.,

Dmr > Dir , ∀i , r. This case is clearly restrictive because in these networksm is the only bottleneck for each possible

mix, i.e., no bottleneck shifting phenomena can occur. In [4], this latter assumption is removed, but the analogous

result of convergence in mean relies on a conjecture.

The following corollary follows by the theorem above and provides a sufficient and necessary condition for the

existence of exactly one bottleneck.

Corollary 1. The open network defined in Theorem 1 is ergodic if and only if station m of the corresponding closed

network is the single bottleneck shared by all job classes.

Proof. Given in the appendix.

Therefore, to check whether or notm is the common (single) bottleneck of a closed queueing network (within

some fixed mix), it suffices to check the ergodicity of the corresponding open queueing network. It is worth noting

that checking the ergodicity of the open network is straightforward within a fixed mix: in fact, it suffices to check

whether or not the following condition on stations utilizations is satisfied

Ui < 1, ∀i , m, (9)

which corresponds to the situation wherem is the common bottleneck. This issue is addressed in the following sections

to derive efficient algorithms for identifying bottlenecks.

4. Bottleneck Analysis

In this section, we introduce the new framework supporting the analysis of multiclass, closed BCMP queueing

networks. We assume that all stations are LI. The generalization to networks with LD stations will be proposed in

next section.

4.1. A New Characterization of Bottlenecks

The loadings of the open network defined in Theorem 1 can be exactly computed because the equations in sys-

tem (2) become linearly independent. Let us denote byD(m)
i,r the mean loading of stationi for class-r jobs in theopen

network when the open network is built removing stationm. The quantityD(m)
i,r can be interpreted as the total average
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time spent by a class-r job at stationi in theclosednetwork during its full execution when using the network alone

and visiting stationm, in the average case, 1/(1− pmm,r) times. Hence,

D(m)
mr =

1
(1− pmm,r)µmr

. (10)

By definition of loadings, the following relation holds

Dir

D jr
=

D(m)
ir

D(m)
jr

. (11)

An important consequence of Corollary 1 is the possibility of characterizing the whole set of mixes which yield

the saturation of exactly one station. Given a closed network, for each stationm ∈ Φ it suffices to removemand build

the associated open network. Theβ-space which yields the saturation of onlym is given by imposing ergodicity in

the open network, i.e.
∑

r

(1− pmm,r)µmrβr D
(m)
ir =

∑

r

βr

D(m)
mr

D(m)
ir =

∑

r

βr

Dmr
Dir < 1, ∀i ∈ Φ, i , m

(12)

with the conditions
∑

r βr = 1, βr ≥ 0. In the remainder of the paper, we denote byBm theβ-space determined by the

system of inequalities (12).

We introduce the following theorem which is exploited for the derivation of our algorithms.

Theorem 2. If there exists a mixβ which yields the saturation of station m, then there exists amixβ′ which yields the

saturation of only m.

Proof. Given in the appendix.

In other words, Theorem 2 ensures that ifm saturates for some mix, then it can also saturate alone.

By Corollary 1 and Theorem 2, we immediately have the following corollary which characterizes bottleneck and

non-bottleneck stations in terms of the emptiness of a set oflinear constraints.

Corollary 2. Bm is empty if and only if m cannot become a bottleneck.

Proof. Given in the appendix.

Hence, eachβ ∈ Bm yields the saturation ofm only. If Bm is empty for somem, then it means that there is no mix

which yields the saturation of onlym. This situation can only happen to non-natural bottlenecks: in fact, by definition,

a natural bottleneck saturates when the input mix iser , for somer, i.e., the size-R unit vector in directionr. If m is

a dominated station, it is easy to see thatBm = ∅. This proves, in an alternative manner, the well-known factthat a

dominated station never saturates [9].
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As stated in Section 2, for simplicity we assumedDir > 0, ∀i, r, i.e., all jobs visit all stations. The generalization

of (12) to the case where loadings vectors can have null components is immediate. SupposeDmr′ = 0 for some classr ′.

First, we note that whenN → ∞ andβ is kept constant,mcannot become acommonbottleneck ifβr ′ > 0. In fact, the

number of jobs corresponding to classr ′ must grow to infinity in some other station different fromm. This means that

if m can be a common bottleneck, thenβr ′ must be zero, and to understand whether or notm can become a common

bottleneck, we cansegregateclass-r ′ jobs from the network (imposingβr ′ = 0) and apply, in turn, Corollary 1. In this

case, the generalization of (12) becomes

∑

r:Dmr>0

βr

Dmr
Dir < 1, ∀i ∈ Φ, i , m (13)

with the conditions
∑

r:Dmr>0 βr = 1.

4.2. Algorithms for Bottleneck Identification

An important consequence of Corollary 2 is that we can efficiently understand whether or not the insertion of a

new station (within an existing network) can yield significant changes in the overall performance, i.e., whether or not

it can become a bottleneck (for some mix a priori not known). Another consequence is that we can efficiently identify

the whole set of stations (sayΦ′) which can become bottlenecks. Formally,

Φ′ ≡ Φ \ {m : Bm is empty
}

. (14)

To check the emptiness ofBm, i.e., theβ-space generated by (12), we can exploit well-known linear programming

techniques by running, for instance, the Simplex algorithm[26] which is non-polynomial with respect to the input

size but very efficient for practical purposes.

Our first analysis is summarized in Algorithm 1, whereM = {1, 2, . . . ,M} denotes the set of network stations

indices (including the dominated ones). In this algorithm,we basically exploit relation (14) checking the emptiness of

Bm for each stationm. To apply linear programming techniques to (12), however, we have to find a similar formulation

of its inequalities which includes the equality constraint, i.e., (15). If (15) is feasible, then we addm toΦ′. We observe

that if it is found that (15) holds true and at least one of its inequalities holds with the equality constraint, then it means

that the corresponding solution mix yields the saturation of multiple stations, and in this case we note that Theorem 2

ensures thatm can also saturate alone, i.e.,Bm is non-empty. If (15) is not feasible, stationm cannot become a

bottleneck and this implies that to check whether or notj , m can saturate, we can verify the emptiness ofB j

considering, in (15),M/{m} instead ofM . Thus,m is removed fromM (Line 7). Algorithm 1 requires the solution

of M linear programs which can be solved by running the first phaseof the Simplex algorithm, e.g., [26], because we

must only check their feasibility.

However, an optimization can be performed to not iterate over the whole set of stations. In fact, consider the

linear program (16) which is characterized by the same constraints of (15) and maximizes the utilizations of the

stations whose bottleneck/non-bottleneck status is not known. Within some stationm, if no feasible solution exists
9



Algorithm 1 Computation ofΦ′

1: Φ′ := ∅;

2: for all m ∈ M do

3: Check the feasibility of the following set of linear constraints:

∑

r

βr

Dmr
Dir ≤ 1, ∀i ∈ M , i , m

∑

r βr = 1,

βr ≥ 0, ∀r.

(15)

4: if (15) is feasiblethen

5: Φ′ := Φ′ ∪ {m};

6: else

7: M := M \ {m};

8: end if

9: end for

for (16), thenm cannot become a bottleneck and it is removed fromM . Otherwise, since (16) is a maximization

program, its solution must be a vertex of the convex set identified by its constraints. Such vertex is a mix in which

multiple constraints hold with the equality. Given that such constraints represent the stations utilizations, we deduce

that this mix yields the saturation ofat leastone station different fromm. This observation reveals that we can

immediately understand the “bottleneckness” of a large number of stations (namely|φ|) without solving the associated

linear programs (15). This observation is exploited in Algorithm 2.

Even though program (16) lets us avoid to iterate over the whole set of stations, it requires the execution of both

phases of the Simplex algorithm and, thus, it is less efficient than (15). Moreover, given that it may happen, in Line 8,

thatφ ⊆ Φ′, in this case (16) does not yield a running time reduction because no further bottlenecks different fromm

are found. Hence, we exploit variablek which represents the number of bottlenecks identified by (16) different from

m and not belonging toΦ′ yet. A strictly positive value ofk lets us avoid exactlyk executions of (15) performed by

Algorithm 1. If variablek becomes zero at them-th iteration, then it is likely that the values ofk in the successive

iterations are very small or zero, and this would not yield a significant running time reduction (recall that (16) is less

efficient that (15)). Hence, after them-th iteration, Algorithm 2 essentially behaves as Algorithm 1.

Figures 1 and 2 illustrate the temporal requirements required by the approach [9] (CS) and both Algorithms 1 and 2

(respectively, Alg1 and Alg2) with respect to reasonably large networks. The algorithms have been implemented in

the Ampl language [13] and the experiments have been carriedout by running the commercial Ilog Cplex optimization

solver v9.100 on a 933MHz Mobile Intel Pentium III CPU. The times (in seconds) are obtained by means of the Ampl

variable total solve time. The experiments refer to several random models where the stations loadings have been

drawn from a uniform distribution ranging between 0 and 1000as in [9]. R is increased from 20 to 100 with step 20
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Algorithm 2 Computation ofΦ′ (improved)
1: Φ′ := ∅; S := M ; k := 1;

2: while S, ∅ do

3: Choosem ∈ S; S := S\ {m};

4: if k > 0 then

5: Solve the following linear program:

max
∑

j∈S

∑

r

βr

Dmr
D jr

s.t.:
∑

r

βr

Dmr
Dir ≤ 1, ∀i ∈ M , i , m

∑

r βr = 1,

βr ≥ 0, ∀r.

(16)

6: if (16) is feasiblethen

7: Φ′ := Φ′ ∪ {m};

8: φ := {i :
∑

r βr Dir /Dmr = 1};

9: k := |φ \ (φ ∩Φ′)|;

10: Φ′ := Φ′ ∪ φ; S := S\ φ;

11: else

12: M := M \ {m};

13: end if

14: else

15: if (15) is feasiblethen

16: Φ′ := Φ′ ∪ {m};

17: else

18: M := M \ {m};

19: end if

20: end if

21: end while
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Figure 1: Computation times with M=200.

and we consideredM = 200 (Figure 1) andM = 300 (Figure 2). In both figures, each point is referred to the average

of 50 models because the variance of the computation times was negligible. What we note in the figures is that our

solution technique yields significant running time reductions in the characterization ofΦ′ up to a factor of four.

4.3. Identification of Bottleneck Sets

Corollary 2 and Theorem 2 can be further adopted to efficiently understand whether or not the stations belonging

to a given set can saturate simultaneously (for some mix). This can be useful, for instance, to understand whether or

not a number of stations belong to aglobal saturation sector(see [4]).

Let φ ⊆ Φ be a set of stations and let alsom ∈ φ. If Bm is empty, then Corollary 2 ensures thatm cannot become a

bottleneck and, thus, that stations inφ cannot saturate together. On the other hand, if they can saturate simultaneously,

then Theorem 2 ensures that exists some mix which yields the saturation of onlym. Hence, we re-write system (12)

with respect to setΦ and stationm ∈ φ and we assume that all the strict inequalities, i.e.,<, include equality, i.e.,≤.

The situation in which all the stations belonging toφ saturate together corresponds to the situation in which the

associated|φ| − 1 constraints of this system become active, i.e., the equality holds. This holds because the left-hand

side of thei-th inequality of (12) represents the utilization of station i. If theβ-space obtained by imposing the equality

for such constraints is non-empty then it means that there exists someβ which yields the saturation of all stations inφ

simultaneously and vice versa.

Algorithm 3 summarizes the analysis required to understandwhether or not stations inφ can simultaneously

saturate together (for some mix). This algorithm can be further adopted to efficiently speed up the characterization

of Φ′. In fact, if it is possible to guess a set of stations which cansimultaneously saturate, then we can apply

12
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Figure 2: Computation times with M=300.

Algorithm 3 Can stations inφ saturate simultaneously?
1: Choosem ∈ φ;

2: Check the feasibility of the following set of linear constraints:

∑

r

βr

Dmr
Dir ≤ 1, ∀i ∈ Φ, i < φ

∑

r

βr

Dmr
Dir = 1, ∀i ∈ φ, i , m

∑

r βr = 1,

βr ≥ 0, ∀r

(17)

3: if (17) is feasiblethen

4: return “Yes”;

5: else

6: return “No”;

7: end if

13



Algorithm 3 to efficiently understand if they actually do, and, in this case, all stations belonging to the guess are

part ofΦ′. This reduces the number of linear programs to solve for the characterization ofΦ′. Such guesses can be

derived by exploiting ordering properties of the loading vectors. In fact, assume that the station loadingsD1, . . . ,DM

are ordered according to the magnitude of class-1 loadings.As long as two-class networks are considered, stationsi

and j cannot saturate together (for some mix) if stationk is a bottleneck, whereDi1 < Dk1 < D j1 [4]. In other words,

once it is understood thatk is a bottleneck, we can avoid to check for the simultaneous saturation ofi and j, i.e., the

setφ = {i, j} is not part of the possible guesses.

5. Load-dependent Stations

When LD stations are considered, the bottleneck identification becomes more difficult to analyze because the

network loadings are not fixed and their expected value is nota priori known and varies withβ according to the

probability distribution of jobs among the queues. It is a fact that the expected loadings at stationi obtained with two

different mixes can be very different even whenN→ ∞.

Within our framework, the analysis presented in previous section can be extended to the more difficult setting of

LD stations, i.e., stations characterized by a processing speed that depends on their queue length.

By Corollary 1, we note thatm is the common bottleneck of the network if it is satisfied the generalization of the

system of inequalities (12), which makes ergodic the open network defined in Theorem 1, i.e.

Ui = 1− πi(0) < 1, ∀i ∈ Φ, i , m (18)

∑

r βr = 1, βr ≥ 0, whereπi(0) denotes the stationary probability of having no jobs in station i of the open network

defined in Theorem 1.

Let us first assume that the load-dependency of network stations depends on the total number of jobs in their

queues. Applying the BCMP theorem [5], we have

πi(0)−1 =
∑

ni≥0

(
∑

r βr xmDir /Dmr)ni

∏ni
t=1 xi(t)

. (19)

Since the inequalities of system (18) are non-linear inβ, the characterization ofBm appears more difficult in the case

of LD stations. However, by noting that (18) is satisfied if and only if (19) converges, it is easy to see that (18) is

satisfied if and only if

U0,i =
∑

r

βr
xm

Dmr

Dir

xi
< 1, i ∈ Φ \ {m}, (20)

∑

r βr = 1, βr ≥ 0, and we note that this system is composed of linear constraints only. Thus, the geometric structure

of Bm becomes surprisingly equivalent to the one presented for LIstations. However, we note that the terms on the

left-hand side of (20)do notrepresent stations utilizations as in the LI case, i.e.,

U0,i , Ui , i ∈ Φ \ {m}, (21)
14



and, thus, their interpretation is different. From the utilization law, e.g., [21], we note that termsU0,i can be interpreted

as the utilization of stationi if we assume thati is LI with loadingsDir /xi . This interpretation is in agreement with the

intuitive rationale that as the input mix approaches the boundaryU0,i = 1 of Bm, the queue length (number of jobs) of

stationi grows to infinity and, thus, the average number of jobs is almost surely greater thann′i which implies that the

expected loadings ofi are almost surely given byDir /xi .

When the load-dependency ofm depends on the per-class number of jobs in its queue, we obtain the analogous

result. Inequalities (18) must still hold true and, applying the BCMP theorem [5], in this case we have

πi(0)−1 =
∑

ni≥0

∑

nir≥0,∀r
∑

r nir=ni

ni!
∏

r

(βrymrDir /Dmr)nir

nir !
∏nir

t=1 yir (t) (22)

Noting that i) (18) is satisfied if and only if (22) converges,ii) yir (t) = yir for sufficiently larget, and iii) (22) can be

expressed in terms of a geometric series by applying multinomial arguments, we have that (18) is satisfied if and only

if
∑

r

βr
ymr

Dmr

Dir

yir
< 1, i ∈ Φ \ {m}, (23)

∑

r βr = 1, βr ≥ 0 is satisfied.

As stated for (20), we note again that the inequalities in (23) cannot be understood as stations utilizations as in the

LI case. Their interpretation is the same shown above.

Thus, even in the case of LD stations, setsBm can be described in terms of linear constraints even though their

physical rationale is different. Taking into account (20) and (23), Algorithms 1, 2 and3 can be applied again at the

same computational cost. Therefore, the experimental results shown in previous section also hold for stations with

any of the considered load-dependencies.

6. Interpretation of Our Results

Exploiting duality arguments, we now establish aprimal-dualrelationship between our approach and the one pre-

sented in [9]. This theoretical connection states that bothframeworks are complementary and, as a first consequence,

lets us easily prove that thedualholds even when LD stations are considered, which is non-intuitive.

6.1. Primal-Dual Interpretation

To establish whether or not stationmcan become a bottleneck (for some mix), we recall that our approach proposes

to check the feasibility of (15) by means of Corollary 2. On the other hand, the approach [9] states thatmcan become

a bottleneck (for some mix) if and only if the following linear program is infeasible

∑

i,m

γi

Dmr
Dir ≥ 1, ∀r,

∑

i,mγi = 1,

γi ≥ 0, ∀i, i , m,

(24)

15



which derives from thegeometricobservation that a station can become a bottleneck if and only if its loading vector

is an extreme point of the convex hull generated by theM R-dimensional pointsDi . In contrast, our approach derives

from the observation that a station can become a bottleneck if and only if there exists a mix which makes ergodic the

open network defined in Theorem 1, i.e.,Bm
, ∅.

The structure of linear programs (15) and (24) is similar andsuggests the existence of aprimal-dualrelationship.

Since this relationship is defined only foroptimizationproblems [26] (note that (15) and (24) are feasibility problems),

let us consider the following variant of (15)

max v

s.t.
∑

r

βr

Dmr
Dir + v ≤ 1, ∀i, i , m

∑

r βr = 1,

βr ≥ 0, v ≥ 0, ∀r,

(25)

which introduces variablev. Such variable can be interpreted as the measure of non-usedutilization at the most

loaded non-bottleneck stationi , m. Let v∗ be the optimal solution of (25). With respect to (25), we interpret v∗

as thepowerof bottleneckm because it measures the maximum difference between the asymptotic utilization ofm

(which is 1) and the most utilized station different fromm. In other words, it is a worst-case measure of how much

m prevents non-bottleneck stations from working at the maximum of their capabilities. Since (25) is a maximization

problem andv must be non-negative, we havev∗ > 0 if and only if (15) admits a feasible solution (this is ensured

By Theorem 2). This observation establishes the logical equivalence between (15) and (25) to understand ifm can

become a bottleneck.

We now apply duality arguments. The dual of (25) is given by [26]

min u

s.t.
∑

i,m

γi

Dmr
Dir + u ≥ 1, ∀r

∑

i,mγi = 1,

γi ≥ 0, u ≥ 0, ∀i, i , m.

(26)

Let u∗ be the optimal solution of (26). Since (26) is a minimizationproblem andu must be non-negative, we have that

u∗ = 0 if and only if (24) admits a feasible solution. In other words,u∗ > 0 if and only if m can become a bottleneck.

This observation establishes the logical equivalence between (24) and (26) and, thus, this proves the primal-dual

relationship between linear programs (15) and (24).

6.2. Consequences of the Primal-dual Relationship

A first, immediate consequence of the primal-dual relationship above follows. In [9] it is shown that (24) can be

used to understand whether or notm can become a bottleneck even though we consider finite populations sizes and

define the bottleneck as the station with highest utilization. Hence, as long as LI stations are considered, the duality
16



relationship guarantees that even (15) can be analogously adopted whenN is finite to understand whether or notm

can become a bottleneck.

A second immediate consequence of this duality is that even the proposed framework is able to handle the case

where stations can share the same loading vector (as the dualdoes), i.e.,Dm1 = Dm2 component-wisely. In this case,

the sum in (24) is taken over stationsi , m1,m2 and (15) modifies accordingly.

A third immediate consequence of this duality is the applicability of the proposed approach to queueing networks

requiring fewer assumptions than BCMP networks. In fact, (24) is derived by means of the utilization law only [21]

and, thus, it applies to more general networks.

6.2.1. LD Stations

We remark that the approach [9] deals with networks with LI stations only. Its extension to LD stations appears

difficult to derive because the convex hull of the loading vectors, in this case, is not constant and its structure depends

onβ. For eachβ, the points of the characteristic polytope of a queueing network cannot be easily obtained because the

expectedloadings at stations are not a priori known. However, exploiting the duality relationship discussed in previous

section, such analysis must hold even when LD stations are considered (asN → ∞). In fact, in our framework we can

always express linear program (25) with respect to inequalities (20) or (23), and, applying the same duality argument

to this program, we obtain that the dual must hold true. For the sake of conciseness, this is given by

∑

i,m

γi
zmr

Dmr

Dir

zir
≥ 1, ∀r,

∑

i,mγi = 1,

γi ≥ 0, ∀i, i , m,

(27)

wherezir is the limit value of (3). As (24), linear program (27) reversely implies that the analysis [9] (non-intuitively)

extends to LD stations if it is considered the (fixed) convex hull of points [Di1/zi1, . . . ,DiR/ziR].

7. Global Saturation Sectors

In this section, we show an application of the proposed framework related to the identification ofglobal saturation

sectors(GSS) [4], i.e., connected sets of mixes which yield the saturation of exactlyR stations. The knowledge of

all the possible GSS of a given queueing network is importantbecause it lets us obtain the mixes which maximize

the network utilization. For instance, the mixes belongingto GSS are the ones which an admission controller should

guarantee in the network to keep high the network utilization. It has been shown [31, 4] that such sectors are polytopes

in theβ-space and, thus, their structure is completely determinedby their vertices, e.g., [27].

We exploit setsBm to introduce a new framework for their identification which complements the one presented in

[9]. For simplicity, in the following we assume that ther-th station of the network is the natural bottleneck of class-r

jobs which is equivalent to assume that [4]

Drr > Dir , i , r, (28)
17



which impliesM ≥ R.

7.1. Natural Bottlenecks

Let us consider the case in which only natural bottlenecks can saturate. According to (28), this means that stations

loadings satisfy the constraint

Drr > Dir > D jr , i , r, j > R, i ≤ R. (29)

Clearly, in this case we have

Φ = Φ′ = {1, 2, . . . ,R} (30)

which implies that the linear system (12) is composed ofR− 1 inequalities. Given thatBm, m ∈ Φ, is non-empty

and that the expressions in (12) represent stations utilizations, we can obtain the mixes which yield the saturation of

all natural bottlenecks by imposing, in (12), the equality constraints. Hence, to obtain theR vertices of the GSS, it

suffices to solve the linear system






























∑

r

βr

Dmr
Dir = 1, ∀i ∈ Φ, i , m

∑

r

βr = 1
(31)

for eachm ∈ Φ. Let βm,Φ be the solution of system (31). Ifβm,Φ is a feasiblesolution, i.e., it satisfies constraints (6),

then it represents the switching point for the behavior of all stationsi ∈ Φ, i , m, i.e., the point in which the stations

belonging toΦ \ {m} change their bottleneck/non-bottleneck status, and it is a point in which all naturalbottlenecks

must saturate together. Note thatβm,Φ may have negative components and, in this case, the solutionis not feasible.

This means that in such cases no GSS exists forΦ. On the other hand, a GSS exists ifβm,Φ is a feasible solution. In

the following, we refer toglobal switching point of mto indicate a feasible solution of linear system (31). The GSS

is given by the polytope having as vertices all global switching points and its uniqueness follows by the uniqueness

of βm,Φ.

In [4], a different linear system for calculating global switching points is proposed. That method, widely used in

[9], requires the solution of a linear system havingR2 equations andR2 unknowns. On the other hand, our method

(based on the solution of systems (31)) provides a lower computational complexity. In fact, it requires the solution of

R linear systems composed ofRequations andRunknowns.

7.2. General Bottlenecks

At the cost of a higher computational complexity, the analysis proposed for the natural bottlenecks case can be

extended to the more general case where (29) is relaxed and, thus, |Φ| ≥ R. In this case, multiple GSS can exist

[4]. Within our framework, this property is understood by the fact thatBm, in general, yields more than one global

switching point deriving from different sets ofR− 1 constraints of (31).

To identify all the GSS, one can search for all global switching points associated to setsBi for all stationsi,

i.e., the mixes yielding the saturation ofR stations, and the GSS are given by the polytopes which are obtained by
18



grouping together the mixes yielding the saturation of the same set of stations. We note that when it is understood

that stationm belong sto a saturation sector yielding the saturation of stations inφ, then the global switching points

enumeration associated toBi, i ∈ φ andi , m, can be skipped. The problem of enumerating the vertices of apolytope

is a well-known problem in polyhedral computation which is referred to asvertex enumeration problem. Hence, such

enumeration can be performed exploiting existing techniques, e.g., [8]. However, asR increases, i.e., the dimension

of theβ-spaceBm, the computational complexity of vertex enumeration techniques makes this approach impractical.

This approach complements Algorithm 3 introduced in [9] which is based on thefacetenumeration problem. This

complementary approach is obviously due to the duality arguments discussed in Section 6. Both representations are

similar and well-studied in the literature [8]. However, wenotice that the facet approach also requires the computation

of the convex hull of the pointsDi which is computationally expensive.

A different technique is derived if we note that Algorithm 3 can be adopted to efficiently understand whether or not

the stations in setφ belong to a GSS. Letφ be a set of stations indices such that|φ| = Rdrawn fromΦ′. Provided that

a GSS exists forφ, consider the linear system (31) written with respect toφ instead ofΦ and letβm,φ be its solution. If

βm,φ is a feasible solution, then it represents a mix which yieldsthe saturation of all stations inφ and, thus, it is a vertex

of a GSS. The remaining vertices are obtained by computingβm,φ for eachm ∈ φ. This analysis is summarized in

Algorithm 4. The drawback of this approach is that the numberof setsφ such that|φ| = Rgrows non-polynomially. In

Algorithm 4 GSS Enumeration
1: for all φ ∈ {ϕ : ϕ ⊆ Φ′ ∧ |φ| = R} do

2: if Algorithm 3 returns “Yes”then

3: for all m ∈ φ do

4: Obtainβm,φ by solving linear system (31);

5: end for

6: end if

7: end for

fact, it is given by
(|Φ′ |

R

)

. However, it is known that in practice the number of bottlenecks is much less than the number

of stations, i.e.,|Φ′| = o(M), and, therefore, this makes Algorithm 4 efficient in many cases of practical interest. We

also notice that Algorithm 4 computes the global switching points of a GSS by solvingR linear systems composed of

Requations andRunknowns, i.e., (31). This algorithm sets against Algorithm 2 of [9] where global switching points

of a GSS are analogously obtained by solving a linear system composed ofR2 equations andR2 unknowns.

8. Conclusions

In this paper, we introduced a new bottleneck analysis related to closed, multiclass BCMP queueing networks.

First, we established a weak convergence result for the limiting behavior of closed networks. This provided a sufficient
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and necessary condition for the existence of a single bottleneck. Then, we proposed efficient algorithms based on

such condition able to identify all network bottlenecks improving the computational requirements of existing solution

techniques. Our approach is able to handle LD stations and incontrast with the great majority of the analyses related to

BCMP queueing networks (e.g., exact, approximate and bounding analyses), this extension does not require additional

computational effort, and relies on a general assumption on relative service rates. Exploiting duality theory, we found

a unifying primal-dual connection between our approach anda recent technique. This relationship established a

theoretical connection between the approaches and let us extend the dual to LD stations. Experimental results showed

that our framework yields significant running time reductions up to a factor of four with respect to existing techniques

which are valid for LI stations only. As application of the proposed framework, we described algorithms for the

identification of global saturation sectors.
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A. Appendix

A.1. Proof of Theorem 1

We prove the statement by directly evaluating the limit of the stationary probabilities of the closed network states.

First, we consider the case of load-independent stations. From the BCMP theorem [5], the stationary probability of

being in staten of the closed queueing network,n ∈ S = {k :
M
∑

i=1
kir = Nr , ∀r}, is given by

π(n) = G−1(N)
M

∏

i=1

ni !
R

∏

r=1

Dnir
ir

nir !
(32)

where

G(N) =
∑

k∈S

M
∏

i=1

ki !
R

∏

r=1

Dkir
ir

kir !
(33)

is the partition function normalizing product-form terms.Within mix β = [N1/N, . . . ,NR/N], we want to show that

the following relation holds true

lim
N→∞
π(n) =

M
∏

i=1
i,m

ni !
R

∏

r=1

[

βr Dir

Dmr

]nir 1
nir !
·

























∑

kir≥0,∀r,i,m

M
∏

i=1
i,m

ki !
R

∏

r=1

[

βr Dir

Dmr

]kir 1
kir !

























−1

(34)

for each possiblen, which means that the joint stationary probability distribution of jobs among all stationsi , m

of the closed network weakly converges to the joint stationary probability distribution of jobs on the corresponding
20



stations of the open network defined in the theorem (providedthat it exists). Rewriting the sum in (34) in terms of

geometric series (this can be done by applying the multinomial theorem), one can check that the sum on the right-hand

term of (34) converges to a positive value if and only if
∑R

r=1 βr Dir /Dmr < 1, ∀i , m, i.e., if and only if the open

network (with load-independent stations) defined in the theorem is ergodic.

Within staten ∈ S, let n∗mr =
∑M

i=1,i,m nir andn∗m =
∑R

r=1 n∗mr. Observing thatnmr = Nr − n∗mr andnm = N − n∗m, we

note that (32) can be rewritten as

π(n) =
(N − n∗m)!

R
∏

r=1
(Nr − n∗mr)!

M
∏

i=1
i,m

fi(n) ·

































∑

k∈S′

(N − k∗m)!
R
∏

r=1
(Nr − k∗mr)!

M
∏

i=1
i,m

fi(k)

































−1

(35)

where

fi(k) = ki !
R

∏

r=1

[

Dir

Dmr

]kir 1
kir !

(36)

andS′ = {nir ≥ 0, ∀r, i , m :
∑M

i=1,i,m nir ≤ Nr }. Let δ(k) = 1 if k ∈ S′, otherwise 0. From (35), we have

lim
N→∞

1
π(n)

= lim
N→∞

∑

kir≥0
∀r,i,m

δ(k)
(N − k∗m)!/

R
∏

r=1
(Nr − k∗mr)!

(N − n∗m)!/
R
∏

r=1
(Nr − n∗mr)!

M
∏

i=1
i,m

fi(k)
fi(n)
. (37)

Lemma 1. Let n ∈ N
(M−1)R. For N sufficiently large, there existsn ∈ N

(M−1)R independent ofN such that

(N − k∗M)!
R
∏

r=1
(Nr − k∗Mr )!

≤
(N − n∗M)!

R
∏

r=1
(Nr − n∗Mr )!

for all k : k∗M ≥ n∗M.

Proof. :

Fact 1: For allr, ask∗Mr increases, (N − k∗M)!/
∏R

r=1(Nr − k∗Mr )! decreases.

Fact 2: All k : k∗Mr = k∗M/R,∀r, maximize (N − k∗M
′)!/

∏R
r=1(Nr − k∗Mr

′)! for all k′ : k∗M = k∗M
′.

By Fact 1, we have
(N − k∗M)!

R
∏

r=1
(Nr − k∗Mr )!

≤
(N − n∗M)!

R
∏

r=1
(Nr − n∗Mr )!

(38)

if k ∈ T ≡ {k : n∗Mr ≤ k∗Mr ≤ Nr , ∀r}. Let

n = arg min
k∈T:k∗Mr=

k∗M
R ,∀r

k∗M . (39)

Suchn always exists ifN is sufficiently large. The statement follows by means of Facts 1 and 2.
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Hence, (37) can be rewritten as

lim
N→∞

1
π(n)

= lim
N→∞

∑

kir≥0:k∗m≥n∗m
∀r,i,m

δ(k)
(N − k∗m)!/

R
∏

r=1
(Nr − k∗mr)!

(N − n∗m)!/
R
∏

r=1
(Nr − n∗mr)!

M
∏

i=1
i,m

fi(k)
fi(n)
+

∑

kir≥0:k∗m<n∗m
∀r,i,m

δ(k)
(N − k∗m)!/

R
∏

r=1
(Nr − k∗mr)!

(N − n∗m)!/
R
∏

r=1
(Nr − n∗mr)!

M
∏

i=1
i,m

fi(k)
fi(n)
.

(40)

wheren is given by previous lemma. In (40), we want to exchange the limit and sum operators.

Given that (by means of Lemma 1)

(N − k∗m)!/
R
∏

r=1
(Nr − k∗mr)!

(N − n∗m)!/
R
∏

r=1
(Nr − n∗mr)!

< 1 (41)

for all kir ≥ 0, ∀r, i , m, such thatk∗m ≥ n∗m, there exists a positive functiong(k), i.e., independent ofN, which

dominates the argument of the first sum of (40) for eachN. Namely, this is given by

g(k) =
M

∏

i=1
i,m

fi(k)
fi(n)
. (42)

Therefore, the dominated convergence theorem, e.g., [12],ensures that we can exchange the limit and sum operators

of the first sum of (40) if
∑

kir≥0,∀r,i,m:k∗m≥n∗m g(k) converges, i.e., if and only if the open network is ergodic.

Given that the second sum in (40) spans a finite space and that,by applying Stirling’s formulan! ≈
√

2πn nne−n,

lim
N→∞

(N − k∗m)!
R
∏

r=1
(Nr − k∗mr)!

R
∏

r=1
(Nr − n∗mr)!

(N − n∗m)!

= lim
N→∞

(N − k∗m)N−k∗m+
1
2

R
∏

r=1
(Nr − k∗mr)

Nr−k∗mr+
1
2

R
∏

r=1
(Nr − n∗mr)

Nr−n∗mr+
1
2

(N − n∗m)N−n∗m+
1
2

= lim
N→∞

(

N − k∗m
N − n∗m

)
1−R

2 R
∏

r=1

















1
βr

N − k∗m
N − k∗mr

βr

















Nβr−k∗mr+
1
2


















βr

N − n∗mr

βr

N − n∗m



















Nβr−n∗mr+
1
2

=
R
∏

r=1
β

k∗mr−n∗mr
r ,

(43)

i.e., the terms in the second sum of (40) admit a finite limit, we can again exchange the limit and sum operators for

the second sum.

In (37), we observe that if we bring the limit operator insidethe sum, then (34) is immediately obtained by means

of (43) if and only if the open network is ergodic.
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When load-dependent stations are considered, from the BCMPtheorem [5] we have (assuming the per-class load-

dependenceyir )

G(N) =
∑

k∈S

M
∏

i=1

ki !
R

∏

r=1

Dkir
ir

kir !
∏kir

t=1 yir (t)
(44)

and, analogously to (34), we want to show that

lim
N→∞
π(n) =

M
∏

i=1
i,m

ni!
R

∏

r=1

(βr Dir ymr/Dmr)nir

nir !
∏nir

t=1 yir (t)
·

























∑

kir≥0,∀r,i,m

M
∏

i=1
i,m

ki !
R

∏

r=1

(βr Dir ymr/Dmr)kir

kir !
∏kir

t=1 yir (t)

























−1

. (45)

As for (46), we have

lim
N→∞

1
π(n)

= lim
N→∞

∑

kir≥0
∀r,i,m

δ(k)

[

(N − k∗m)!/
R
∏

r=1
(Nr − k∗mr)!

]

R
∏

r=1

Nr−n∗mr
∏

t=1
ymr(t)

[

(N − n∗m)!/
R
∏

r=1
(Nr − n∗mr)!

]

R
∏

r=1

Nr−k∗mr
∏

t=1
ymr(t)

M
∏

i=1
i,m

fi(k)
fi(n)

(46)

where functionsfi (see Formula (36)) now take into account for the load-dependencies ofi.

The existence of a (positive) limiting value forymr(n), asn→ ∞, i.e.,ymr, ensures that the dominance argument

illustrated above can be applied again to prove the convergence of (45). In fact, we first note that for allk : k∗m ≥ n∗m ≥

n∗m (n∗m is given by Lemma 1), we have

Nr−n∗mr
∏

t=1
ymr(t)

Nr−k∗mr
∏

t=1
ymr(t)

=

Nr−n∗mr
∏

t=Nr−k∗mr+1

ymr(t). (47)

Therefore, as in (40), we can split the sum in (46) over sets{kir ≥ 0 : k∗m ≥ n
∗
m, ∀r, i , m} and {kir ≥ 0 : k∗m <

n
∗
m, ∀r, i , m}, wheren

∗
m = max{n∗m, t} with n∗m given by Lemma 1 andt =

∑

r tr =
∑

r arg mint:ymr(t)=ymr t. In the former,

we have (for sufficiently largeNr )
Nr−n∗mr
∏

t=Nr−k∗mr+1

ymr(t) = yk∗mr−n∗mr
mr . (48)

which implies that the dominance argument above can also be applied in the load-independent case, and in the latter

we have a sum spanning a finite space with each summand admitting a finite limit. The same approach immediately

applies even for the load-dependencexi . This proves the load-dependent case (45).

It is easy to see that the above dominance argument also holdsin the more general case where stationsi , mhave

a load-dependence such that limn→∞ zir (n) = ∞, e.g., the case of Infinite Server (IS) stations. This still applies by

means of the dominating function (42).

A.2. Proof of Corollary 1

If the open network defined in Theorem 1 is ergodic, then we have (by the weak convergence result of Theorem 1)

1 > lim
N→∞
π([N, 0, . . . , 0]) > 0 (49)
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whereπ([N, 0, . . . , 0]) is the stationary probability of being in the closed queueing network state [N, 0, . . . , 0] in which

the total number of jobs in each stationi , m = 1 is zero (note that assumingm = 1 is not a loss of generality). This

is sufficient to conclude that limN→∞ Ui(N) is strictly less than one for alli , m by means of its definition, i.e., (4).

Given that, within the considered limiting regime, a bottleneck must always exist, this must bem.

In contrast, ifm is the single bottleneck of the closed network, then all stations i , m must be such that

limN→∞ Ui(N) < 1 and, in particular, we must have that (49) must hold again (assumingm = 1). By means of

the weak convergence result of Theorem 1, the correspondingopen network must be ergodic (i.e., formulae (34)

and (45) must yield positive and finite values).

A.3. Proof of Theorem 2

If m is a natural bottleneck orβ yields the saturation of onlym, then the theorem trivially holds. Ifm is a dominated

station, then a mix which yields the saturation ofm cannot exist. Now, consider the case in whichm is a potential

bottleneck. LetBm be the set of mixes identified by (12) which yields the saturation of onlym. SetBm is characterized

by a number of vertices, i.e., limit points in which a number of inequalities of (12) intersect constraint
∑

r βr = 1.

Let us first suppose thatβr , 0, ∀β ∈ Bm, i.e., m cannot be a natural bottleneck, which means thatBm belongs to

the interior of the plane identified by
∑

r βr = 1. Clearly, if Bm is non-empty, then the theorem holds trivially. IfBm

is empty, to prove thatm cannot become a bottleneck, suppose first thatBm is non-empty.Bm is characterized byR

vertices (see (12)). These vertices represent the entry points of different (connected) sets of mixes which yield the

saturation of different sets ofR stations includingm (Note that these sets cannot be equal because they derive from

the evaluation of different constraints in system (12)). In the degenerate case inwhich Bm is empty, all these sets of

mixes collapse in one single (connected) set of mixes yielding the saturation ofR+1 stations, i.e., one station for each

vertex ofBm plusm (see pages 127–128 of [4] for a graphical example whenR = 2). As shown in [4] (see Section

3.1.2), this is a contradiction since it would require the solution of an extended version of system (19) in [4] with more

(independent) equations than unknowns. Hence,Bm must be non-empty. The same contradiction arises relaxing that

∀β ∈ Bm, βr , 0.

A.4. Proof of Corollary 2

(⇒) By contradiction, let us suppose thatm behaves as a bottleneck for some mix. This means, by Theorem 2,

that exists a mixβ which yields the saturation of only stationmandBm cannot be empty.

(⇐) By contradiction, ifBm is non-empty, then, by Corollary 1, there exists a mix which makes the open network

defined in Theorem 1 ergodic. This means that the only saturated station ism.
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