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Abstract

We consider a broker-based network of non-observable parallel queues and analyze the minimum ex-
pected response time and the optimal routing policy when the broker has the memory of its previous
routing decisions. We provide lower bounds on the minimum response time by means of convex pro-
gramming that are tight, as follows by a numerical comparison with a proposed routing scheme. The
�Price of Forgetting� (PoF), the ratio between the minimum response times achieved by a probabilistic
broker and a broker with memory, is shown to be unbounded or arbitrarily close to one depending on
the coe�cient of variation of the service time distributions. In the case of exponential service times, the
PoF is bounded from above by two, which is tight in heavy-tra�c, and independent of the network size
and heterogeneity. These properties yield a simple engineering product-form approximating tightly the
minimum response time. Finally, we put our results in the context of game theory revisiting the �Price
of Anarchy� (PoA) of parallel queues: It can be decomposed into the product of the PoA achieved by a
probabilistic broker (already well understood) and the PoF.

1 Introduction

In the context of *-computing and manufacturing systems, users submit jobs without knowing which machine
will handle their execution. A central broker is usually in charge of distributing incoming jobs to a set of
resources to optimize some utility or cost function. The mean response time (simply response time in the
following), the expected time it takes for a job to join the system and return to its issuer, is an important
metric that is usually taken into account to achieve a better exploitation of resources and improve the average
quality of service.

The problem of �nding the routing strategy (or policy) that minimizes response time and the resulting
response time itself are well-known problem in queueing theory and the literature is overwhelming. There are
two main classes of routing strategies: Closed-loop policies, where the broker knows the state of each resource
(number of jobs), and open-loop policies, where the broker does not know their state. Computing the best
closed-loop policy is known to be a hard problem and a lot of work has been devoted to the computation of
good approximations; see, e.g., [9, 27, 33] and the references therein.

The focus of this paper is on the open-loop case, and more precisely on o�-line policies. Indeed, the state
of the queues may not to be known on-line to the broker because of a number of reasons whose e�ects become
worse and worse as the network size increases: i) Communicating the system state to the broker increases
the network load, ii) the information received by the broker can be out of date, and iii) the synchronization
that results from knowing the system state can degrade the performance [26]. A celebrated case is when the
broker only knows the service time distributions of the network resources (or queues in the following) and
dispatches jobs to queues according to an i.i.d. probabilistic law. The probabilistic nature of such broker
yields tractable and accurate mathematical analyses of the problem; see, e.g., [8, 13, 16]. However, such a
probabilistic broker ignores its past decisions that could be stored in a bu�er (or memory). To design better
routing strategies, real-world brokers do exploit local information about their previous routing decisions
with a very limited cost. For instance, Round-Robin is optimal when the queues have identical service time
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distributions [32] and only requires the knowledge of the total number of queues and of the last queue where
the last job has been sent.

Unfortunately, it is not known in general how the broker can exploit its bu�er optimally: In this context,
the assessment of the routing policy that minimizes response time as well as the analysis of such response
time are current open problems; see, e.g., [18, 7, 13, 15]. In this framework, it is also open to assert whether
the optimal policy is cyclic, even in the two queue case [15] and �nding the optimal cyclic policy is NP-
complete [7]. It is also unknown what the added-value of having a broker that optimally exploits its bu�er
with respect to its bu�erless counterpart can be.

1.1 Our Contribution

In this paper, we analyze the minimum response time and the routing policy that minimizes response time
of a broker-based system composed of N parallel and non-observable queues. The broker can exploit the
memory of its previous dispatching choices, and its routing policy can be deterministic, probabilistic or a
mixture of them. The scheduling discipline of each queue is �rst-come-�rst-served (FCFS). This model is
common in grid and volunteer computing [31, 1, 22], and supercomputing [30, 19]. To analyze the added-
value of letting the router exploit its bu�er, we introduce the Price of Forgetting (PoF), which we de�ne
as the ratio between the minimum response time achievable by a memoryless broker with respect to its
counterpart with memory. In the remainder of the paper, the terms probabilistic, memoryless, and Bernoulli
are synonyms.

First, we provide a lower bound on the minimum response time in terms of a convex optimization problem
that is interpreted as the minimum response time of a parallel system of independent Γ/GI/1 queues. Then,
we show that the PoF depends on the coe�cients of variation of the service time distributions: It can be
unbounded or be arbitrarily close to one. Explicit bounds for the PoF are given in heavy-tra�c. The
remainder of our contributions applies for the case of exponential service times, for which our lower bound
is better captured by a simple convex program involving the Lambert W function. In heavy-tra�c, this
program allows for an explicit expression of the optimum that turns out to be half of the minimum response
time achieved by a probabilistic broker. Here, we also prove that the PoF is bounded from above by two for
any network load and size.

The e�ciency of our bounds allows us to assess the quality of heuristics for the optimal routing. An
exhaustive numerical analysis reveals that a broker deterministically forwarding jobs to queues according
to a proposed billiard scheme [5, 21], a generalization of round-robin, yields a response time remarkably
close to our lower bound. In other words, we empirically claim the proposed billiard scheme achieves the
minimum response time that, in turn, is very-well captured by our bound and approximations. Our routing
policy requires the solution of a convex optimization problem, and numerical results show that systems with
thousands of queues can be solved in a few seconds. Our scheme has been successfully implemented in the
context of a real-world volunteer-computing system [22].

We give numerical evidence of the fact that the PoF is an increasing function of the network load (ρ) only,
meaning that it is insensitive to the network size (N) and heterogeneity. These structural properties entail

that the minimum response time ROpt(·) admits the product-form ROptBernoulli(·)/PoF (ρ) where i) ROptBernoulli

is the minimum response time achieved by a Bernoulli broker (which is well-understood [8]), and ii) PoF (ρ),
explicitly given, is increasing in ρ and bounded from above by two.

We �nally put our results in the context of game theory analyzing the �Price of Anarchy� (PoA) of our
system [25], which measures the worst-case performance loss of a decentralized system with respect to its
centralized counterpart in presence of non-cooperative users. In the analysis of the PoA, all existing works
implicitly assume that the central broker behaves probabilistically. We revisit the PoA in the sense we let
the broker exploit its memory. The main consequence is that the arrival process at each queue has in general
di�erent statistical properties than the corresponding one in the game-theoretic equilibrium. In both the
centralized/decentralized situations, thus, the congestion functions are di�erent. We show that our revisited
PoA can be decomposed in the product of the PoA achieved by a probabilistic broker and the PoF.

This paper is organized as follows. Section 2 introduces the model under investigation and provides
bounds on the minimum response time. The accuracy of our bounds is shown in Section 3, where we
empirically show that the response time achieved by a particular billiard sequence is very close to our lower
bound. Section 4 de�nes and analyzes the PoF, and Section 5 derives structural properties for the PoF
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Figure 1: Queueing model under investigation. The broker dispatches incoming jobs to the queues according
to some policy and with no delay. The mean arrival rate is proportional to the number of queues.

achieved with exponential service times. Section 6 introduces our revisited notion of PoA and relates it to
the PoF. Finally, Section 7 draws the conclusions of this work.

Preliminary versions of this paper appeared in [4, 3], where we have limited the focus to queues having
exponentially distributed service times.

2 Brokering in Parallel Non-Observable Queues

We consider a queueing system composed of N in�nite-room queues working in parallel as shown in Figure 2.
Jobs arrive according to an external Poissonian source having intensity λN to a broker which instantaneously
dispatches jobs to one of the N queues according to a given policy, i.e., a routing rule.

In queue i, we assume that jobs require service for a random amount of time having mean µ−1
i and

standard deviation si (both quantities are assumed to be independent of N , the number of queues). The
service times of each queue are i.i.d. and independent of the arrival process. Initially, all queues are supposed
to be empty (this assumption can be relaxed because the mean performance does not depend on initial states,
but it is useful in our proofs for technical reasons). The scheduling discipline of each queue is assumed to be
FCFS. In the remainder of the paper, index i implicitly designates a queue and ranges from 1 to N , if not
otherwise speci�ed.

We denote by

ρ
def
= λN/

∑N
i=1 µi (1)

the network load, an index measuring the network utilization. The considered queueing model is said to be
stable if ρ < 1.

As for the broker policy, we focus on deterministic and/or randomized policies independent of the arrival
process and of the service times. In other words, we restrict our study to policies that can be constructed
o�-line. Of course the policy may depend on the static parameters λ, N , µi, and si, for all i.

The routing policy of jobs into queues is a random in�nite sequence, denoted by (An)n∈N
def
= (A1

n, . . . , A
N
n )n∈N

and is such that the sequences (Ain)n∈N ∈ {0, 1}, and Ain = 1 if the n-th arriving job is sent to queue i,
and it is 0 otherwise. By de�nition, if Ain = 1 then Ajn = 0 for all j 6= i, since a job is routed to a single
queue. We assume that A is independent of the arrival process. By de�nition of A, P(Ain = 1) is the
probability that the n-th job is sent to queue i. Therefore, a routing policy is an in�nite random process
de�ned on the canonical probability space of in�nite sequences, with values in a �nite set of size N , namely
{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.

We also denote by a a realisation of A, or any deterministic routing policy.

2.1 Bounding the Optimal Response Time

Let us consider a to be a deterministic routing policy and let Qin(ai1, . . . , a
i
n) be the expected amount of work

(measured in units of time) in queue i after n arrivals, where the expectation is taken over all arrival and
service times.
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We also denote by R(a) the mean response time (also called sojourn time) of jobs in the system under
policy a (the dependence of a will only be reported when necessary). Since all queues are FCFS, and using
the limsup if the limit does not exist,

R(a)
def
= lim sup

K→∞

1

K

K∑
n=1

(a1
nQ

1
n(a1

1, . . . , a
1
n) + · · ·+ aNn Q

N
n (aN1 , . . . , a

N
n )). (2)

Once the function R(·) ∈ R is de�ned over all deterministic policies, the mean response time under a
randomized policy A is ER(A).

The minimum mean response time is then de�ned as

ROpt
def
= inf

A
ER(A). (3)

It should be clear that for any randomized policy A, ER(A) ≥ infa∈F(A)R(a) where F(A) is the set of all
possible realisations of A. This implies that

ROpt = inf
a
R(a), (4)

where the in�mum is taken over all deterministic routing policies.
Analogously, the minimum mean response time achievable by a probabilistic broker can be de�ned as

ROptBernoulli
def
= inf

A∈B
ER(A), (5)

where the in�mum is taken over the set of all policies with Bernoulli distributions,

B def
= {A : (A1

n, . . . , A
N
n ) is i.i.d. ∀n ∈ N}, which ensures that each job is sent to some queue according to the

same probability law independently of the others. Clearly, we have ROptBernoulli ≥ ROpt.

Remark 1 In the remainder of the paper, we say that a broker is probabilistic, Bernoulli or memoryless if
its routing policy belongs to B.

Remark 2 Since our main goal is to study ROpt, Equation (4) says that we can only focus on deterministic
policies, i.e., the set of sequences (a1

n, . . . a
N
n )n∈N.

Remark 3 Since our analysis only focuses on mean values of response times, in the remainder of the paper
we omit the word �mean� each time that we refer to response time for simplicity.

Now, let us consider queue i in isolation. Let Ri(a
i) be the Cesaro limit of Qin, i.e.,

Ri(a
i) = lim

m→∞

1

m

m∑
n=1

Qi`n(ai1, . . . , a
i
`n), (6)

where `n is the index of the n-th job sent to queue i. This limit exists as soon as the system is ergodic.

For any p and θ in R, let us introduce the Sturmian sequence with rate p and phase θ, α(p, θ)
def
=(

αn(p, θ)
)
n∈N where, for all n ≥ 1, αn(p, θ)

def
= bnp + θc − b(n − 1)p + θc (see [2] and references therein for

more details on Sturmian sequences). Note that αn(p, θ) ∈ {0, 1} for all n as long as p ≤ 1 and it is periodic
in θ with period 1.

Theorem 1 Under the foregoing notations, the response time of a job under any policy a is bounded from
below by a combination of response times in all queues using Sturmian sequences:

R(a) ≥ inf
p1,...,pN≥0:
p1+···+pN=1

(
p1R1(α(p1, 0)) + · · ·+ pNRN (α(pN , 0))

)
.
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This result is to be compared with [17], where Sturmian sequences with rate r are proved to be optimal
admission sequences in a single queue under the constraint that a proportion of at least r jobs have to be
admitted in the queue. The main di�erence comes from the fact that routing to several queues is more
di�cult than admitting to a single queue because one does not know whether the proportion of jobs sent to
each queue by the optimal routing policy exists. This is still an open problem and Theorem 1 above does
not answer to this question but just provides a lower bound on the response time of the optimal policy. On
the other hand, the result stated in Theorem 1 is very close to Theorem 25 in [2]. The main di�erence is the
fact that our cost is not additive, making the proof slightly more involved (see the appendix).

Let us consider a single queue i and the arrival process induced by α(pi, θ) in queue i. Let k
def
= b1/pic.

The inter-arrival times τ1, . . . , τn, . . . are made alternating sums of k and k + 1 i.i.d. exponential random
variables with rate Nλ. For example, if pi = 2/7, then k = 3 and the arrival process in queue i under
policy α(2/7, 0) = 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, . . . where the sequences 0, 0, 1 and 0, 0, 0, 1 alternate, is such that
the distribution of the inter-arrival times alternates between the sum of three exponentials with rate Nλ
and the sum of four exponentials with rate Nλ. The analysis of response time when the arrival process at a
queue has this alternating pattern is not easy. Therefore, we now develop a more tractable bound.

In general, the arrival rate in queue i is piNλ. Now, considering a stationary i.i.d. arrival process
T1, . . . , Tn, . . ., with a Gamma distribution for inter-arrival times, with parameters pi and Nλ. It should be
clear that for any n, these two processes of the inter-arrival times compare for the convex ordering of random
sequences, i.e., (τ1, . . . , τn) ≥cx (T1, . . . , Tn).

Using the fact that the response time of jobs is a convex increasing function of the input process, this
implies that the response time in queue i under a Sturmian arrival process with rate pi is larger than
the response time in queue i with Gamma-distributed inter-arrivals with rate piNλ. This argument and
Theorem 1 yield the following result.

Corollary 1 Let R
Γ(a,b)/GI/1
i be the response time of a job in queue i having general i.i.d. service times

and Γ(a, b) i.i.d. inter-arrival times. Then,

ROpt ≥ inf
π1,...,πN≥0:
π1+···+πN=1

N∑
i=1

πiR
Γ(1/πi,Nλ)/GI/1
i . (7)

In the following, we will use a coe�cient that scales with N for the proportion of jobs sent to queue i:

We de�ne βi
def
= Nπi, where βi is a positive constant. A lower bound on ROpt is �nally obtained by solving

the following optimization problem

GB(N)
def
= min

N∑
i=1

βi
N
R

Γ(N/βi,Nλ)/GI/1
i

s.t. ∑N
i=1 βi = N

Ui(βi) ≤ 1, ∀i
βi ≥ 0, ∀i,

(8)

where
Ui = Ui(βi) = λβi/µi (9)

and GB(N) stands for Gamma-Bound withN queues. By means of Little's law, the quantity Ui is interpreted
as the utilization of station i, and it represents the �proportion of time� in which station i is busy (in the long
term). To obtain a computable bound, one can use heavy-tra�c bounds. Since the Γ(N/βi, Nλ) distribution
is increasing-failure-rate (because N/βi > 1), we have (see [24, Formula 2.51] for details)

R
Γ(N/βi,Nλ)/GI/1
i ≥ λβi

1/(λ2Nβi) + s2
i

2(1− Ui(βi))
− 1

2λβi
(βi/N + Ui(βi)) +

1

µi

=
1/(λN) + λβis

2
i

2(1− Ui(βi))
− 1

2λN
+

1

2µi
.

(10)
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Substituting (10) in (8), we �nally obtain

ROpt ≥ GB(N) ≥ min
1

2

N∑
i=1

βi
N

[
1/(λN) + λβis

2
i

1− Ui(βi)
+

1

µi

]
− 1

2λN

s.t. ∑N
i=1 βi = N

Ui(βi) ≤ 1, ∀i
βi ≥ 0, ∀i.

(11)

The structure of the optimization problem in (11) is identical to problem OR2-IID in [16], which is convex.
Therefore, e�cient polynomial-time algorithms can be applied for its solution [11].

2.2 Other Cost Functions: Convex Functions of Response Times

So far, we have considered the response time as our main cost function. However, it is possible to increase
the expressive power of our approach by considering combinations of convex functions of the response times
in each queue. For instance, these include the case where the queues have holding costs. More precisely, let
φi : R→ R be arbitrary increasing convex functions for all 1 ≤ i ≤ N .

We introduce an immediate cost for queue i at step n, denoted by Qni (ai1, . . . , a
i
n) and equal to the

expectation of φi applied to the queue size under arrivals (ai1, . . . , a
i
n). Now, let us consider the average cost

in queue i under policy a to be Ri(a
i)

def
= limm→∞

1
m

∑m
n=1Q

i
`n

(ai1, . . . , a
i
`n

), and the global cost of policy a
is

R(a)
def
= lim sup

K→∞

1

K

K∑
n=1

(a1
nQ

1

n(a1
1, . . . , a

1
n) + · · ·+ aNn Q

N

n (aN1 , . . . , a
N
n )). (12)

Corollary 1 extends to that case.

Corollary 2 Using the foregoing notations,

R
Opt ≥ inf

π1,...,πN≥0:
π1+···+πN=1

N∑
i=1

πiR
Γ(1/πi,Nλ)/GI/1

i . (13)

However, note that Corollary 2 may not hold for cost functions that are arbitrary multi-dimensional
convex functions of the bu�er sizes.

Substituting Formula (10) in (13), we obtain a convex program that generalizes (11). In the following we
will remove the functions φi, however most of the results that follow can be extended to that convex case,
in particular, when the functions φi are linear.

2.3 Bound and Approximation for Exponential Service Times

Assuming exponential service times, we can improve the accuracy of bound (11). The integration of the
exact Γ/M/1-queue analysis, see [10], in the constraints of (8) renders a non-linear problem which seems to
be di�cult to analyze, e.g., in terms of convexity, and also yields numerical instabilities related to O(NN )
terms. Therefore, we now address the development of simple approximations for the response time of Γ/M/1
queues better than (10). These hold in the regime where the job arrival rate to the broker proportionally
grows with the number of queues, for which the ideal job arrival processes of each queue considered by our
bound GB(N) become more and more deterministic.

The following theorem provides bounds on R
Γ(N/βi,Nλ)/M/1
i for any network load and size.

Theorem 2 Let σi, σi
+ ∈ [0, 1), respectively, be the (unique) solutions of the equations

zexp( 1−z
Ui

) = 1 (14)
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and

zexp( 1−z
Ui

)

(
1− 1

2

(1− z)2

NU2
i

)
= 1. (15)

Then,
1

µi(1− σi)
≤ RΓ(N/βi,Nλ)/M/1

i ≤ 1

µi(1− σ+
i )
. (16)

Given that, as N →∞, σ+
i → σi, ∀i, the following corollary is straightforward.

Corollary 3 As N →∞,

R
Γ(N/βi,Nλ)/M/1
i (βi)→

1

µi(1− σi)
(17)

from above.

Lemma 1 σi ≤ U2
i .

Rewriting (14) as

− z

Ui
e
− z

Ui = − 1

Ui
e
− 1

Ui (18)

and observing that it admits exactly two positive roots when 0 ≤ Ui ≤ 1, where the largest one is at z = 1,
we note that σi can be expressed in terms of the Lambert W function [14] if and only if −z/Ui ≥ −1 =
−W(−1/e), which is true by Lemma 1. Hence,

σi = −UiW(− 1

Ui
e
− 1

Ui ). (19)

where W is the principal Lambert function (with W(0) = 0).
We recall that the Lambert W function [14], de�ned as the inverse function of f(W) = Wexp(W), over

[−1,+∞), satis�es

0 ≤ −W
(
− 1

Ui
e
− 1

Ui

)
≤ 1 (20)

for all 0 ≤ Ui ≤ 1. In particular, −W(−1/e) = 1 and W(0) = 0.
The rate of convergence of (17) is strictly related to the convergence of (1 + a/N)N , for a �xed, to its

limiting value exp(a), which is known to be Θ(1/N) as it can be shown by a Taylor expansion (see the proof
of Theorem 2). In the experimental results section, we numerically show that this su�ces to obtain very
accurate response time estimates even when N is relatively small and that it provides improved accuracy
with respect to heavy-tra�c approximations.

The simplicity of Formula (17) allows for the development of a simple optimization procedure. In fact,
problem (8) can be rewritten as follows

GB−(N)
def
= min

1

λN

N∑
i=1

Ui
1− σi(Ui)

s.t. ∑N
i=1

µi
λ
Ui = N

0 ≤ Ui ≤ 1, ∀i,

(21)

where σi(Ui) is given by (19).

Remark 4 By Theorem 2, GB−(N) ≤ GB(N) ≤ ROpt(N) for any N .

The following result ensures that e�cient algorithms can be immediately applied to solve (21) in poly-
nomial time [11].

Theorem 3 The optimization problem (21) is convex.
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In heavy-tra�c, the structure of optimization problem (21) also allows for an explicit expression of
GB−(N).

Theorem 4 If
∑N
i=1 µi − λN = ε for ε > 0 su�ciently small, then

GB−(N) ∼ 1

2

1

λN

(
(
∑N
i=1

√
µi)

2∑N
i=1 µi − λN

− 1

)
(22)

and the corresponding utilizations of all queues are

Uj ∼ 1− 1
√
µj

∑N
i=1 µi − λN∑N
i=1

√
µi

. (23)

The following corollary of Theorem 4 is a direct consequence of the known explicit expression of ROptBernoulli

[20] and the fact that all queues must be used in heavy-tra�c.

Corollary 4 If
∑N
i=1 µi − λN = ε for ε > 0 su�ciently small, then GB−(N) ∼ ROptBernoulli/2.

Here, it is worth anticipating one important property of our lower bound that will be analyzed in Section 5:
Assuming that the GB−(N) bound is tight (this will be veri�ed later), Corollary 4 implies that the impact

of having memory in the broker (the ratio ROptBernoulli/GB
−(N)) is independent of the network heterogeneity

(service rates) and size in heavy-tra�c.
Let also GB+(N) be the optimum of (21) where σi(Ui) is given by (15). Even though GB+(N), in

general, does not seem to provide upper bounds on the minimum response time, the following result ensures
that it always provides improved accuracy with respect to GB−(N) when estimating ROpt.

Theorem 5 ROpt −GB−(N) > |ROpt −GB+(N)|.

Even though more accurate approximations than GB−(N) and GB+(N) for ROpt can be derived (by
taking into account more expansions terms, see the proof of Theorem 5), we numerically show that they
su�ce to obtain very accurate results. A numerical evaluation of its tightness and convergence speed is
postponed in the experimental results section.

3 Optimal Routing

The framework introduced in Section 2.1 allows us to numerically inspect the average response-time gap
between our bounds and heuristic strategies for the optimal routing. In this section, we �rst perform a
validation of Formula (17) on several models. Then, we measure the performance achieved with a broker
assigning jobs to queues according to a proposed billiard sequence. We show that the resulting distance
from our formulas is remarkably small. Concisely, our empirical conclusions are that i) the proposed routing
scheme minimizes response time, and ii) our bounds and approximations on the minimum response time are
tight.

3.1 Accuracy of Formula (17)

We now measure the accuracy of asymptotic formula (17) by means of the percentage relative error

|RΓ/M/1
exact −R

Γ/M/1
approx|

R
Γ/M/1
exact

100%, (24)

where R
Γ/M/1
exact is obtained numerically through the (exact) standard analysis of the G/M/1 queue, and

R
Γ/M/1
approx is given by (17). Numerical computations have been performed using Maple 13. We initially

evaluate (24) by varying N ∈ {50, 100, 200, 1000} and U ∈ {0.1, 0.2, . . . , 0.9, 0.95}. Since the mean arrival
rate λ a�ects the percentage relative error (24) only through the utilization, it is not considered in our
experiments. Figure 2 illustrates the quality of (24) in the above cases. As N grows, we �rst note that
the accuracy of (17) increases, which is expected because it is asymptotically exact. For N = 50, (17) is
remarkably accurate and yields a relative error always less than 2%.
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Figure 2: Accuracy evaluation of the asymptotic formula (17) through the error measure (24).

3.2 Quasi-Optimality of Billiard Sequences

We consider the case where the broker forwards jobs to queues according to billiard sequences, see [5, 21],
that are constructed through the SG algorithm introduced in [21] (easily implementable in network brokers
with a very limited cost). The SG algorithm takes as input the fraction of jobs to send to the queues (given by
the solution of (21)) and an initial-position vector x ∈ RN which we assume such that xi = 1 if µi = maxj µj
and 0 otherwise (we point the reader to [21] for further details on the SG algorithm and billiard sequences).
Therefore, the bu�er size of the broker must be no less than O(logN) bits, which is very small. Given that a
numerical solution of the response time induced by billiard sequences is impractical to compute for a number
of reasons, e.g., the aperiodicity of the resulting patterns, we use simulation. To measure the gap between
the response time achieved with this routing scheme and our bounds/approximations, we assess the general
quality of the percentage relative error

ErrApp =
|RApp −RSim|
GB+(N)

· 100% (25)

where RApp ∈ {GB−(N), GB+(N)} (de�ned in Section 2.3) and RSim is the average response time computed
by simulation. We measure percentage relative errors with respect to GB+(N) because it represents the
closest approximation of ROpt (see Theorem 5). The measures of RSim refer to 99% con�dence intervals having
size no larger than 1% of RSim itself. For any pair (N, ρ), N ∈ {20, 50, 100} and ρ ∈ {0.10, 0.15, 0.20, . . . , 0.95},
we generated 1,000 random models where the service rates µi have been drawn in the range [0.01, 100]
according to a uniform distribution. Larger values of N have not been considered because of the strong
computational requirements of simulation. In any case, the proposed analysis su�ces to assess the accuracy
of our approach.

The experimental results of this analysis are summarized in Figure 3.2, which refers to a total of nearly
50,000 experiments. In the �gure, the dashed (continuous) lines refer to the error obtained with GB−(N)
(GB+(N)) for di�erent network sizes. We clearly see that the response time achieved through a billiard
routing is remarkably close to our approximation GB+(N) and also to our bound GB−(N). Given that
the optimal response time achievable by the system must lie between our bound and the response time
achieved by the billiard routing, we conclude, in an empirical sense, that billiard sequences are optimal for
the response time that is very-well approximated by the solution of our optimization problems.

3.3 Computational Requirements

We illustrate the computational requirements for calculating our tight bound on ROpt through (21). These
are important to know because the program (21) should be executed each time the network changes to
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Figure 3: Plots of the error (25) averaged over a large number of experiments by varying the network load.

reinitialize the parameters of the optimal routing algorithm (e.g., addition or removal of one queue, variation
of the arrival rate or service times, CPU frequency scaling). Experiments have been performed by running
the IBM Ipopt optimization solver on a 2.80Ghz Intel Xeon processor with multi-threading technology. By
varying N , we consider a wide test-bed of randomly generated models, where the service rates uniformly
range in [0.01, 100] and the arrival rate is such that the network load (1) uniformly ranges in [0, 1]. Table 1
illustrates the average and the standard deviation of the computation times (in seconds) required by the
solution of (21), where each number refers to a sample of 1,000 models. From the results in the table, we

N 50 100 500 1,000 5,000

Average time (sec) 0.181 0.251 1.317 2.433 10.85
Std. dev. 0.038 0.059 0.187 0.312 2.901

Table 1: Seconds required by the computation of (21) by varying N .

conclude that the solution of (21) is almost online: Models of networks composed of a thousand of queues
require less than three seconds in average.

4 Price of Forgetting

In this section, we obtain insights on the bene�t of having memory in the broker. One of the major conclusions
is that the added-value of having memory in the broker is negligible (signi�cant) if the coe�cients of variation
of the service time distributions are large (small). We establish this property by introducing the Price of
Forgetting (PoF) as the ratio between the optimal response time achieved with a Bernoulli broker and a
broker with memory:

PoF
def
= ROptBernoulli/R

Opt. (26)

4.1 Heterogeneous Queues

In general, bounds on the PoF can be obtained numerically by computing our lower bound on ROpt

through (11) and ROptBernoulli as in, e.g., [13]. However, this approach prevents the understanding of its qual-
itative dependence with respect to general input parameters. In the heavy-tra�c case, we are able to derive
explicit bounds for the PoF. In contrast, in light-load conditions, i.e., ρ→ 0, we must have PoF (N, ρ) = 1,

10



which is intuitive. In fact, if the queue lengths are almost empty, then the response time approaches the
mean service time of the fastest queue.

We recall that the proposed bound GB(N) is interpreted as the response time achieved when the arrival
processes of all queues are independent and Gamma distributed. This means that the broker can be now
thought as Bernoulli, provided that its job inter-arrival times are i.i.d. and Gamma distributed. Given that
all queues become independent Γ/GI/1 queues, classic heavy-tra�c analysis immediately applies to derive
useful approximation and insights; see, e.g., [23, 16].

This corollary mainly follows by Theorem 1 and the heavy-tra�c analysis of GI/GI/1 queues.

Corollary 5 For any N and as ρ→ 1,

PoF (N) ≤ 1 +
1

minNi=1 µ
2
i s

2
i

. (27)

Corollary 5 shows that the PoF can be arbitrarily close to one in heavy-tra�c (the µi's are kept �xed and
λ is increased) if the smallest coe�cient of variation of the service time distributions, i.e., µisi, is large. In
this case, the impact of memory is negligible.

Remark 5 If the coe�cient of variation of all service time distributions is large, ROpt ≈ ROptBernoulli.

This can be the case of web-server farms, where the squared coe�cient of variation of the size of the incoming
requests (and thus of their service times) is typically between 8 and 50.

On the other hand, the PoF can be unbounded if mini µ
2
i s

2
i is small: If the service times are Erlang

distributed with mean µi and k phases, it follows that PoF (N) ≤ 1 + k.

4.1.1 Exponential service times

Under the assumption of exponential service times, Corollary 4 and 5 imply that PoF (N) ≤ 2 in heavy-
tra�c. The following theorem extends this result to the non-heavy-tra�c case.

Theorem 6 Assume that service times are exponentially distributed. For any N and ρ, PoF (N, ρ) ≤ 2.

In words, the minimum response time achieved by a probabilistic broker can be at most twice larger than
the minimum response time achieved by a broker with memory.

4.2 Homogeneous Queues

A scenario of practical interest is the case where the queues are homogeneous (or statistically equivalent),
i.e., µ1 = · · · = µN = µ and s1 = · · · = sN = s, for which we can draw additional results and easily compare
with the case of Bernoulli brokers.

The following result is known in the literature (and also follows from Theorem 1 using a symmetry
argument); see, e.g., [32] Prop. 8.3.4.

Theorem 7 ([32]) Under the foregoing assumptions, the round-robin policy minimizes response time for
any N .

Therefore, the PoF is the ratio between the response times of a M/GI/1 and of a Γ/GI/1 having the
same mean arrival rate and service time distribution. This corollary follows algebraically by using i) the
Pollaczek�Khintchine formula for the M/GI/1 queue, ii) Formula (10) for the upper bound, and iii) the
inequality [24]

RΓ(N,Nλ)/GI/1 ≤ λ1/(λ2N) + s2

2(1− ρ)
+

1

µ
(28)

for the lower bound.

Corollary 6 If the queues are homogeneous, then

ρ(µ2s2 − 1) + 2

1/(ρN) + ρ(µ2s2 − 2) + 2
≤ PoF (N,λ, µ, s) ≤ 1 +

1− 1/N

1 + 1/N + (µ2s2 − 1)ρ
(29)

where ρ = λ/µ.
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Thus, the PoF is bounded from below and above by two functions that, in heavy-tra�c, converge to

1 +
1− 1/N

µ2s2 + 1/N
. (30)

As stated above, the PoF depends on the squared coe�cient of variation, i.e. µ2s2, of the service require-
ments: Since (28) is exact in heavy-tra�c, (30) is the exact PoF of the system (as ρ → 1). In the case of
deterministic service times, i.e. s = 0, it is easy to see that the heavy-tra�c PoF grows linearly with N ,
meaning that

PoF (N,λ, µ, 0) = N. (31)

4.2.1 Exponential service times

The results which follow in the remainder of this section are implicitly assumed to hold when i) service
times are exponential, ii) queues are homogeneous and iii) N → ∞, and provide upper bounds for the
�nite case. The main di�erence with the analysis above is that here we provide exact results even for the
non-heavy-tra�c case.

The following result is an immediate consequence of Theorems 2 and 7, and provides an asymptotically-
exact formula for the PoF.

Corollary 7

PoF (ρ) =
1 + ρW(−exp(−1/ρ)/ρ)

1− ρ
(32)

where ρ = λ/µ.

It can be shown that (32) converges to one in light-tra�c and to two in heavy-tra�c, which is in agreement

with Corollary 4, Formula (30) and Theorem 6. Note that (30) becomes 1+ 1−1/N
1+1/N in the case of exponentially

distributed service times. In contrast, the expression (32) depends on the network utilization and allows us
to derive further properties.

Corollary 8 PoF (ρ) is strictly increasing in ρ and

lim
ρ→0

dPoF (ρ)

dρ
= 1, lim

ρ→1

dPoF (ρ)

dρ
= 0. (33)

The limits in (33) and the monotonicity of the PoF show that i) the response-time bene�ts of a broker with
memory are non-negligible even when the utilizations are small, and that ii) PoF (ρ) is concave in heavy-load
conditions (concavity does not hold for PoF (ρ) in general), and, thus, large improvements can be obtained
even in a non-negligible neighborhood of ρ = 1.

5 Impact of Memory in the Broker: Structural Properties

We now measure the proposed upper bound on the PoF in order to numerically investigate its fundamental
properties. Following the results of previous section, it is very tight. We infer an important structural
property: the PoF only depends on the network load ρ, meaning that it is independent of the network
heterogeneity and size.

5.1 Homogeneous Queues

In the case of homogeneous queues, the proposed bound boils down to the simple formula (32), which is
asymptotically exact. By varying the utilization from 0.05 to 0.95 with step 0.05, Figure 4 illustrates i) the
asymptotic PoF (32) (the dashed bold line), ii) the PoF obtained with a memoryless broker (the dashed-
dotted line), and iii) for N ∈ {10, 50, 100, 1000}, the exact PoF, which is obtained by applied standard
analysis of the EN/M/1 queue. In that �gure, we �rst notice that the PoF is not concave and (slightly)
increases as N does converging to our asymptotic formula (32). The fact that the PoF increases with N �nds
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Figure 4: PoF by varying the queues utilization. The three continuous lines correspond to the exact PoF for
increasing network sizes, where the lowest refers to N = 10 and the largest to N = 1000.

the simple intuition that adding new resources gives more and more freedom to the broker for optimizing
the response time with respect to its Bernoulli counterpart. The exact PoF computed for N = 100 is very
close to our asymptotic formula and, for N = 10, it has almost the same behavior. When N = 100 and
U = 0.85, Figure 4 shows that a Bernoulli-based analysis underestimates the PoF of a factor 1.9. When the
utilizations are 0.1, i.e., small, the Bernoulli PoF is 10% lower. These observations immediately quantify
how large can be the worst-case impact of considering brokers with memory in the design of distributed or
centralized systems, where utilizations usually range in [0.6, 0.85].

5.2 Heterogeneous Queues: Independence of Network Heterogeneity and Size

We now measure the PoF in the heterogeneous case. We �rst consider an illustrative example which we use
to inspect fundamental properties. Then, we carry out an extensive numerical analysis to give evidence of
their correctness.

An illustrative scenario We consider a clustered network composed of N queues where 1/10 of the
queues have fast service rates µf = 100, 2/10 of the queues have medium service rates µm = 50, and the
remaining ones have low service rates µl = 1. By varying the network load (ρ) and size (N), we plot the
resulting PoFs in Figure 5, which lets us draw two important hypotheses.

First, we observe that our bound on the PoF is independent of the network size. Second, if the ratios
of Figure 5 are compared pointwisely to the corresponding ones of Figure 4 (where the concepts of network
load and utilization are equivalent) we note that these points are very close each other. This suggests that
the PoF is not in�uenced by the heterogeneity of the considered scenario and depends on the network load
only. In Section 4.1.1, we showed that this property holds true in heavy-tra�c and as N grows.

Exhaustive numerical investigation We now carry out an extensive numerical analysis to give evidence
of the independence of the PoF on the network size and heterogeneity. To do this, we focus on a very large
test-bed of randomly generated models drawing the service rates µi in [0.01, 100] uniformly. For any pair
(N, ρ), we generated 1,000 models computing average and standard deviation of the PoF. The results of this
analysis are shown in Table 2, which refers to a total of 48,000 di�erent models. The results presented in
that table robustly con�rm the two hypotheses arisen in previous section. When N = 50, we observe that
the averages of the PoF are already settled to their asymptotic value. Furthermore, the standard deviations
are very small and decreasing in both N and ρ. This shows the independence with respect to the network
heterogeneity. By varying ρ and U (for ρ = U), Figure 6 plots (32) and the average PoF shown in Table 2
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Figure 6: Comparison of Formula (32) with the averages of the PoFs in Table 2 by varying the network load.

to stress independence with respect to heterogeneity. Both curves are remarkably close each other, and they
are almost equivalent when ρ ≥ 0.55. In the �gure, we observe that the slight gap achieved when ρ is small
must go to zero as ρ→ 0 because, in this regime, ROpt → maxi µi and R

Opt
Bernoulli → maxi µi.

Except for the heavy-tra�c case, this is surprising because the optimal fractions of jobs sent to each queue
in the Bernoulli and non-Bernoulli settings are di�erent (see next section). These structural properties and
the tightness of our GB bounds imply that the minimum response time ROpt can be seen as the product-form

ROpt ≈ ROptBernoulli/PoF (ρ), (34)

where PoF (ρ) is given by (32).

5.3 Optimal Routing Probabilities Comparison

We show the relation between the long-term fractions of jobs sent to each queue by the optimal Bernoulli
broker (pi) and of our bound (21) (πi) by evaluating the distance

∑N
i=1 |πi − pi| over the experiments

performed in previous section. While in heavy-tra�c the fractions of jobs in a memory/non-memory setting
are equal (which is obvious) and the properties above could �nd some interpretation, this does not hold for
the non-heavy-tra�c case, for which a signi�cant di�erence exists (see Table 3). Notwithstanding, the PoF
is not a�ected by such di�erence as shown in previous section.
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Averages

N 50 100 500 1,000 5,000 10,000

ρ = 0.10 1.252 1.254 1.254 1.254 1.253 1.253
ρ = 0.25 1.408 1.409 1.409 1.409 1.409 1.409
ρ = 0.40 1.534 1.534 1.535 1.534 1.535 1.534
ρ = 0.55 1.652 1.652 1.652 1.652 1.652 1.652
ρ = 0.70 1.768 1.768 1.768 1.768 1.768 1.768
ρ = 0.85 1.885 1.885 1.885 1.885 1.885 1.885
ρ = 0.95 1.966 1.966 1.966 1.966 1.966 1.966
ρ = 0.99 1.992 1.992 1.992 1.992 1.992 1.992

Standard deviations

N 50 100 500 1,000 5,000 10,000

ρ =0.10 3.0e-2 2.0e-2 8.3e-3 7.9e-3 6.9e-3 6.1e-3
ρ =0.25 1.4e-2 1.0e-2 5.3e-3 4.8e-3 2.8e-3 1.8e-3
ρ =0.40 9.5e-3 6.9e-3 3.1e-3 2.3e-3 2.1e-3 8.9e-4
ρ =0.55 5.3e-3 3.9e-3 1.7e-3 1.3e-3 7.1e-4 6.4e-4
ρ =0.70 2.9e-3 2.1e-3 1.0e-3 8.3e-4 5.5e-4 5.3e-4
ρ =0.85 2.1e-3 1.6e-3 7.7e-4 6.4e-4 4.8e-4 4.5e-4
ρ =0.95 7.3e-4 5.9e-4 4.7e-4 4.5e-4 4.4e-4 4.3e-4
ρ =0.99 4.8e-4 4.6e-4 4.3e-4 4.4e-4 4.3e-4 4.2e-4

Table 2: Averages and standard deviations of our bound on the PoF over the large number of tests (e-n
reads 10−n).

ρ 0.25 0.40 0.55 0.70 0.85 0.95 0.99

1.9e-1 7.7e-2 2.6e-2 6.2e-3 5.4e-4 1.3e-5 ≤e-5

Table 3:
∑N
i=1 |πi − pi| by varying the network load (e-n reads 10−n).

6 Price of Anarchy

The Price of Anarchy (PoA) [25] is an index measuring the ine�ciency of a decentralized system with
respect to its centralized counterpart in presence of sel�sh users. It is de�ned as the response-time ratio
between the worst-case situation where users behave to maximize their own individual bene�t, yielding some
game-theoretic equilibrium, and the contrasting situation where users are controlled optimally by a central
authority, e.g., a broker, yielding the social optimum. While the former identi�es the equilibrium point for
which any unilateral deviation of each job strategy does not lower its delay, the latter represents the optimal
strategy for all users in a centralized setting.

In the context of queueing models, the interest for the PoA is currently growing because of its large
spectrum of applications: *-computing, network routing, load balancing, peer-to-peer, wireless networks,
server farms [28]. The great majority of existing works provide mathematical tools for characterizing and
computing the response times in both the situations described above and try to relate the PoA to the
network size in di�erent settings. This lets designers estimate the loss of performance that occurs in shifting
to decentralized solutions and subsequently perform a suitable dimensioning of the system. It is shown in
[29] that the PoA is independent of the network topology as long as the mean job arrival rate is less than the
mean service rate of the slowest queue, and, in this light-load regime, an upper bound is provided. When
heterogeneous processor-sharing queues are considered, it is shown in [20, 34] that the PoA scales linearly
with the network size, and it can only depend on the heterogeneity degree of the queues provided that
these adopt the shortest-remaining-processing-time scheduling discipline [12]. In the case of multiple central
authorities, which can be the case of large server farms, the PoA is shown to be lower bounded by the square
root of the number of authorities [6].
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We observe that a key point common to all the above works is that the broker is implicitly assumed to
dispatch jobs to queues in a Bernoulli manner.

6.1 Wardrop Equilibrium and Social Optimum Revisited

Within our parallel model, we consider two di�erent scenarios. In the �rst scenario, an in�nite stream of
jobs submitted by in�nitely-many users that follows a Poisson process with intensity λ joins the network
selecting exactly one queue to minimize their individual response time. The state of the queues is not known
to the users. Since each user carries an in�nitesimally-small amount of tra�c, the long-term average system
dynamics is modeled by the Wardrop equilibrium [8, 20, 34], whose existence and uniqueness is ensured by
the strict convexity of response times. The response time achievable in this scenario is thus denoted by RWe

and is obtained uniquely by Wardrop's principles [28]. In the second scenario, jobs are sent to queues by a
central broker having the goal of minimizing the overall response time. We refer to this situation as social
optimization, and the response time achieved in this scenario is denoted by ROpt.

The two scenarios above re�ect the con�icting situations where an in�nite stream of non-cooperative
jobs moves in an infrastructure with neither control nor shared information with respect to the case where
a centralized object dictates the dynamics of the system to maximize the social welfare.

Given that no shared information is available in a fully-decentralized system before the arrivals of jobs, in
a Wardrop equilibrium jobs make their decisions independently of the others according to some probabilistic
law that is identical for each job (users have the same objective or utility function). As a consequence,
existing works apply to our model in this case; see [8, 20, 34] for formulae and bounds on RWe.

On the other hand, the fact that in a Wardrop equilibrium jobs make their decisions in a i.i.d. manner
does not imply that the optimal brokering strategy satis�es such condition. In fact, a real-world broker knows
where previous jobs have been sent and it can clearly exploit this information to improve performance. Our
notion of social optimum di�ers from the one considered in existing approaches in the sense that we let the
broker operate with the memory of its previous decisions. The quantity ROpt is thus interpreted as in (4).
As a consequence, the job arrival processes to the queues do not preserve the statistical properties of the
job arrival process at the broker. For instance, with a broker implementing Round-Robin and assuming that
the (external) stream of users follows a Poisson process, the inter-arrival times at each queue are Gamma
distributed instead of exponentials as in the Wardrop equilibrium. This diversity impacts on the response
times of all queues. In other words, the congestion functions of the queues in the centralized and decentralized
scenario become di�erent!

Within �xed inter-arrival and service time distributions, we measure the ine�ciency of the Wardrop
equilibrium with respect to the social optimum by means of the revisited PoA, which we de�ne as

PoA(N)
def
=

RWe(N)

ROpt(N)
≥ 1. (35)

Evidently, large values of PoA indicate that the impact of a centralized control drastically improves the
performance of the system, and vice versa. On the other hand, a centralized system is less scalable and
reliable than a distributed one because it has a single point of failure.

The following connection between our revisited PoA and the PoA of a probabilistic broker immediately
follows by multiplying the numerator and the denominator of (35) by ROptBernoulli.

Proposition 1
PoA(N) = PoABernoulli(N)PoF (N). (36)

Proposition 1 characterizes our revisited notion of the PoA and shows that the multiplicative factor PoF
should be taken into account by a Bernoulli analysis of the PoA to understand the impact of having memory
in the broker.

Given that PoABernoulli(N) is well-understood, we can now apply the results on the PoF presented in
Section 4 to obtain bounds on the revisited PoA.

In the case of exponentially distributed service times, using Theorem 6 and the fact that PoABernoulli(N) ≤
N [20], we obtain

PoA(N) ≤ 2N, (37)
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which is exact in heavy-tra�c.
In the case of identical, exponentially distributed service times, �xing the load ρ we obtain

PoA(N, ρ) = PoF (N, ρ) ≤ 1 + ρW(−exp(−1/ρ)/ρ)

1− ρ
, (38)

because PoABernoulli(N, ρ) = 1 (see [20]), for any ρ and N .
In the case of service times having a general distribution, the new PoA is arbitrarily large even when N

is �xed by means of (31).

7 Conclusions

In a network of parallel and non-observable queues, we have derived lower bounds on the minimum mean
response time that allowed us to establish the quasi-optimality of a new and e�cient routing strategy. We
showed that the mean response time achieved by a broker dispatching jobs to queues according to our billiard
sequence is very close to our lower bound (the error is less than 1%). Then, we have studied the maximum
added-value of letting the broker operate with the memory of its previous decisions, i.e., the PoF. Such value
is negligible if the coe�cients of variation of the service time distributions are large and, contrariwise, it is
unbounded. Assuming exponential service times, the PoF is always bounded from above by two, which is
tight in heavy-tra�c, and independent of the network heterogeneity and size. Finally, we have revisited the
PoA of our system giving a more realistic de�nition of system ine�ciency. The revisited PoA is bounded
from above by the product of the PoA with a memoryless broker and the PoF. Our new vision of the PoA
can be naturally applied to di�erent games.

Most of the results presented in this paper can be generalized to networks with di�erent topologies and
more general arrival processes provided that they are stationary. An important extension of our analysis is
when the broker takes into account also the size of the incoming jobs, provided that it is known, or when
multiple classes of jobs enter the system.
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Appendix

Proof of Theorem 1

First, note that Qin is only de�ned on integer points in {0, 1}n and can be extended to [0, 1]n by linear
interpolation over simplexes, de�ned by the multimodular base vk = (0, . . . , 0,−1,+1, 0, . . . , 0) (see [18]).
Once this is done, it can been shown that Qin has the following properties [2]:

(P1) Qin is convex.

(P2) for all m, Qin(ai1, . . . , a
i
n) = Qin+m(0, . . . , 0, ai1, . . . , a

i
n).

(P3) for all m < n, Qin(ai1, . . . , a
i
n) ≥ Qim(ain−m+1, . . . , a

i
n).

The last two properties are easy to prove because they are also true on each trajectory: Point (P2) is true
because the system is initially empty and time-homogeneous, while the third property (P3) comes from the
fact that adding a job in the past increases the load at time 0.

However, the �rst item (P1) is only true for the expected queue length.

For any 0 < δ < 1, let piδ
def
= (1− δ)

∑∞
k=1 δ

k−1aik, that exists since all a
i
n are bounded. By de�nition of

piδ,
∑N
i=1 p

i
δ = 1. Therefore, the set of limit points of (p1

δ , . . . , p
N
δ ), when δ → 1, only contains vectors that

sum to one.
Using these de�nitions and the properties (P1)-(P3) above, one has for any M ∈ N,
∞∑
n=1

(1− δ)δn−1ainQ
i
n(ai1, . . . , a

i
n)

≥
M∑
n=1

(1− δ)δn−1ainQ
i
M (0, . . . , 0, ai1, . . . , a

i
n) +

∞∑
n=M+1

(1− δ)δn−1ainQ
i
M (ain−M+1, . . . , a

i
n)

≥
( ∞∑
n=1

(1− δ)δn−1ain

)
QiM

( M∑
n=1

(1− δ)δn−1(0, . . . , 0, ai1, . . . , a
i
n) +

∞∑
n=M+1

(1− δ)δn−1(ain−M+1, . . . , a
i
n)

)
= piδQ

i
M (δMpiδ, δ

M−1piδ, . . . , p
i
δ). (39)

By de�nition of the mean response time,

R(a) = lim sup
K→∞

1

K

K∑
n=1

(a1
nQ

1
n(a1

1, . . . , a
1
n) + · · ·+ aNn Q

N
n (aN1 , . . . , a

N
n )). (40)

Using the well-known fact that the Cesaro limit is always larger than the discounted limit with a discount
going to one,

R(a) ≥ lim sup
δ→1

(1−δ)
∞∑
n=1

δn−1
(
a1
nQ

1
n(a1

1 . . . a
1
n) + · · ·+ aNn Q

N
n (aN1 . . . aNn )

)
≥ lim sup

δ→1

N∑
i=1

piδQ
i
M (δMpiδ, δ

M−1piδ, . . . , p
i
δ) (from (39))

≥ inf
p1+···+pN=1

N∑
i=1

piQ
i
M (pi, pi, . . . , pi).
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In the multimodular base introduced at the beginning of the proof, the point (pi, pi, . . . , pi) belongs
to the simplex of RM whose extreme points are the M + 1 pre�xes of length M of the Sturmian sequences
{α(pi, θ)}0≤θ≤1. SinceQ

i
M is linear on each simplex, one getsQiM (pi, pi, . . . , pi) = EθQiM (α1(pi, θ), . . . , αM (pi, θ)),

where the expectation is taken over the uniform distribution on 0 ≤ θ ≤ 1.
Finally, by letting M go to in�nity, it can been shown (see Lemmas 7 and 8 in [2]) that one gets, for the

Cesaro limit of any subsequence `n,

lim
M→∞

QiM (pi, pi, . . . , pi) = lim
m→∞

1

m

m∑
n=1

Qi`n(α1(pi, 0)1, . . . , α`n(pi, 0)). (41)

This concludes the proof by noticing that this limit is the mean response time in queue i under the admission
sequence α(pi, 0) (see Equation (6)).

Proof of Corollary 2

Let us consider the functions Q
i

n
def
= φi ◦ Qin as de�ned in Section 2.2. It should be clear that these new

functions satisfy the properties (P1), (P2), (P3) de�ned in the proof of Theorem 1.
Now, the remaining of the proof of Theorem 1 can be carried unchanged by replacing the functions Qin

by Q
i

n everywhere. We get

R(a) ≥ inf
p1+···+pN=1

(
p1R1(α(p1, 0)) + · · ·+ pNRN (α(pN , 0))

)
.

Again, consider the inter-arrival times τ1, · · · , τn, · · · of a Sturmian routing sequence α(pi, 0) and the inter-
arrival times T1, · · ·Tn · · · of a Gamma distribution with parameters pi and Nλ. As mentioned in Section
2.1, these two inter-arrival processes compare for the convex ordering of random sequences: (τ1, · · · , τn) ≥cx
(T1, · · · , Tn).

Now, since the mean response times Ri are convex increasing functions of the input process, the same is
true for its composition with φi, so that by de�nition of the convex ordering,

Ri(α(pi, 0))
)
≥ RΓ(1/πi,Nλ)/GI/1

i .

Combining this with Equation (7) yields

R
Opt ≥ inf

π1,...,πN≥0:
π1+···+πN=1

N∑
i=1

πiR
Γ(1/πi,Nλ)/GI/1

i . (42)

Proof of Theorem 2

Applying the standard analysis of G/M/1 queues, e.g., [10], it follows that

RΓ(N/βi,Nλ)/M/1 =
1

µi(1− x)
(43)

where x is the least positive solution of

z =

(
Nρi

Nρi + 1− z

)N/βi

, (44)

and ρi = λ/µi, which we rewrite as

z

(
1 + βi

1− z
NUi

)N/βi

= 1, (45)
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Assuming a = (1− z)/Ui, with a Maclaurin series expansion in βi/N we obtain

exp(−a)
(

1 + βi
a

N

)N/βi

= 1− 1
2a

2 βi
N

+
(

1
3a

3 + 1
8a

4
) β2

i

N2

−
(

1
4a

4 + 1
6a

5 + 1
48a

6
) β3

i

N3

+O(β4
i /N

4)

(46)

where the coe�cient of (βi/N)−i, i ≥ 0, alternates because a > 0. Observing that σ and σ+ refer to
truncations of the alternating series above, we must have σ ≤ x ≤ σ+, which implies (16).

Proof of Lemma 1

Let us refer to (14) through f(z) = zexp(− z
Ui

)− exp(− 1
Ui

). One can easily check that:
i) f(Ui) > 0,
ii) f ′(z) = exp(− z

Ui
)(1− z/Ui) = 0 if and only if z = Ui,

iii) f ′′(z) = − 1
Ui
exp(− z

Ui
)(2 + z/Ui) < 0 (z ≥ 0), i.e., f(z) is concave, and

iv) (14) has only two (positive) real roots (when 0 ≤ Ui ≤ 1) where the largest one is z = 1.
Taking into account facts i)�iv), the statement can be proven by showing that f(z) is non-negative when

z = U2
i . Substituting U2

i in f , we thus must have U2
i exp(−U

2
i

Ui
) ≥ exp(− 1

Ui
), i.e., lnU2

i − Ui ≥ − 1
Ui
, i.e.,

(rearranging the terms)

h(Ui)
def
= 2Ui lnUi − U2

i + 1 ≥ 0. (47)

Since h(0) = 1, h(1) = 0 and h is decreasing (note that 1
2
dh(Ui)

dUi
= lnUi+1−Ui < 0,∀Ui ∈ [0, 1), which easily

follows by the change of variable Ui = 1 − xi and expanding the logarithm in Taylor series), we conclude
that h(Ui) must be strictly positive when Ui ∈ [0, 1).

Proof of Theorem 4

Using Formula (17), the mathematical program (21) can be written as follows

GB−(N) = min
1

λN

N∑
i=1

Ui
1− σi

s.t. exp(σi−1
Ui

) = σi, ∀i∑N
i=1

µi
λ
Ui = N

0 ≤ σi ≤ Ui, ∀i.

(48)

Taking the logarithm, one obtains Ui

1−σi
= − 1

lnσi
, ∀i, that yields, together with the change of variable

σi = 1− σi, the equivalent formulation

GB−(N) = min
1

λN

N∑
i=1

− 1

ln(1− σi)
s.t. ∑N

i=1

µi
λ

−σi
ln(1− σi)

= N

0 < 1− σi ≤
−σi

ln(1− σi)
, ∀i,

(49)

21



In heavy-tra�c conditions σi must be small. This suggests to adopt, in (49), the following Laurent expansion
1

ln(1−x) = − 1
x + 0.5 +O(x), obtaining

GB−(N) = min
1

λN

N∑
i=1

(
1

σi
− 0.5

)
s.t.

∑N
i=1

µi
λ

(1− 0.5σi) = N

0 ≤ σi < 1, ∀i.

(50)

The objective function in problem (50) is convex and di�erentiable over the feasible region. Therefore,
a unique optimum exists and can be found by Lagrangian duality. Let us initially ignore the boundary
constraints 0 ≤ σi < 1, ∀i. The Lagrangian of (50) becomes

L(σ, x) =
1

λN

N∑
i=1

(
1

σi
− 0.5

)
+Nx− x

N∑
i=1

µi
λ

(1− 0.5σi) (51)

and, di�erentiating with respect to σj , we must have

− 1

N

1

σ2
j

+ x
µj
2

= 0, (52)

i.e.,

σj =

√
2

µjxN
(53)

because σj must be positive. Substituting in (51), we obtain the dual function

g(x) = inf
σ
L(σ, x) =

1

λN

N∑
i=1

(
x

1
2

√
µiN

2
− 0.5

)
+ x− µi

λ

(
x− 0.5

√
2

µiN
x

1
2

)
(54)

and strong duality ensures that GB−(N) = maxx∈R g(x). Since

dg(x)

dx
=

N∑
i=1

1

2λ
x−

1
2

√
µi
2N

+ 1− µi
λ

(
1− 1

4

√
2

µiN
x−

1
2

)

= x−
1
2

[
N∑
i=1

1

2λ

√
µi
2N

+
µi
λ

1

4

√
2

µiN

]
+N −

N∑
i=1

µi
λ
,

(55)

after some algebra the maximizing x becomes

x =
1

2N

[ ∑N
i=1

√
µi∑N

i=1 µi − λN

]2

(56)

Substituting (56) in (53), the maximizing σ becomes

σj =
2
√
µj

∑N
i=1 µi − λN∑N
i=1

√
µi

. (57)

Now, in heavy-tra�c we must have
∑N
i=1 µi − λN → 0 (from above), meaning that σj ∈ (0, 1), i.e., the

boundary constraints 0 ≤ σi < 1, ∀i are satis�ed, and, thus, (57) optimizes the objective function of (50).
The expression (22) and (23) follows by substitution of (57) in g(x) and in Ui = 1− 0.5σi, respectively.
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Proof of Theorem 5

Within the GB(N) bound (8), the mean response time of queue i is RΓ(N/βi,Nλ)/M/1 = 1/(µi(1−si)), where
si is the least positive root of

z

(
1 +

1− z
Nρi

)N/βi

= 1. (58)

After a Maclaurin expansion in βi/N (see (46)) and taking the �rst two expansion terms (yielding (14)
and (15)), we must have GB(N)−GB−(N) > GB+(N)−GB(N). The statement follows by observing that
GB(N) ≤ ROpt.

Proof of Theorem 3

Given that the Hessian of the objective function is diagonal and the constraints are linear, to prove the
convexity of (21), it su�ces to show that Ui/(1 − si) is convex in Ui. Let g = g(Ui) = −exp(−1/Ui)/Ui.
From the expressions of the derivatives of the Lambert W function [14], we obtain

d

dg
W(g) =

W(g)

g(1 +W(g))
, (59)

d2

dg2
W(g) = −exp(−2W(g))(g + 2)

(1 +W(g))3
(60)

and substituting g = W(g)exp(W(g)) in the latter, which follows by the de�nition of the W function, we
obtain

d

dUi

Ui
1 + UiW(g)

=
1

(1 + UW(g))(1 +W(g))
(61)

and
d2

dU2
i

Ui
1 + UiW(g)

=
−W(g)

(1 +W(g))3U2
i

(62)

which is strictly positive because 0 < −W(g) < 1, for 0 < U < 1.

Proof of Corollary 5

Let Ui = λβi/µi and denote by GBH(N) the optimum of optimization problem (11). Using the heavy-tra�c
formula for GI/GI/1 queue (10), we obtain for

∑
i βi = N, βi ≥ 0

GBH(N) ≥ min
β1,...,βN

N∑
i=1

βi
N

[
λβi

s2
i

2(1− Ui)
+

1

2µi

]
− 1

2λN
. (63)

In the remainder of the proof and with a slight abuse of notation, we assume that the variables β1, . . . , βN
yield the minimum in (63). With respect to such βi's , in the Bernoulli case we obtain

ROptBernoulli ≤
N∑
i=1

βi
N
R
M(λβi)/GI/1
i ≤

N∑
i=1

βi
N

(
λβi

1/(β2
i λ

2) + s2
i

2(1− Ui)
+

1

µi

)
=

N∑
i=1

βi
N

(
λβi

s2
i

2(1− Ui)
+

1

2µi

)
− 1

2λN
+

N∑
i=1

βi
N

(
1

2µi
+ λβi

1/(β2
i λ

2)

2(1− Ui)

)
+

1

2λN

= GBH(N) +

N∑
i=1

βi
N

(
1

2µi
+

1/(βiλ)

2(1− Ui)

)
+

1

2λN
,

(64)

where the �rst inequality follows from the fact that the βi's above are not necessarily optimal for the Bernoulli
broker (M(λβi) denotes a Poisson process with intensity λβi), and the second one by using a heavy-tra�c
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upper bound of the GI/GI/1 queue [24]. Taking the ratio of the above expressions, we obtain

PoF ≤
ROptBernoulli

GBH(N)
≤ 1 +

∑N
i=1

βi
N

(
1/(βiλ)

2(1− Ui)
+

1

2µi

)
+

1

2λN∑N
i=1

βi
N

[
λβi

s2
i

2(1− Ui)
+

1

2µi

]
− 1

2λN

(65)

Now, keeping �xed the µi and increasing λ such that ρ→ 1, we must have βi/N → µi/
∑N
j=1 µj , ∀i. Given

that (1− Ui)−1 →∞, for each i, as ρ→ 1, we have

lim
ρ→1−

PoF (ρ) ≤ 1 + lim
ρ→1−

∑N
i=1[1− Ui]−1∑N

i=1 λ
2β2
i s

2
i [1− Ui]−1

≤ 1 + lim
ρ→1−

(λ2 minNj=1 β
2
j s

2
j )
−1

= 1 + (minNj=1 µ
2
js

2
j )
−1.

(66)

Proof of Theorem 6

Let

f1(U) =
1

λN

N∑
i=1

1

2

Ui
1− Ui

(67)

for U ∈ RN :
∑N
i=1

µi
λ
Ui = N, 0 ≤ Ui < 1, ∀i and

f2(U) =
1

λN

N∑
i=1

Ui
1 +W(g(Ui))Ui

(68)

for g(Ui) = −exp(−1/Ui)/Ui and U ∈ RN :
∑N
i=1

µi
λ
Ui = N, 0 ≤ Ui < 1, ∀i. To prove the theorem, we

show that f2(U) ≥ f1(U), ∀U, which is true if

1 +W(g(Ui))Ui ≤ 2(1− Ui), ∀i, (69)

Since −W(g(Ui) ≤ Ui by Lemma 1, (69) is satis�ed because it holds with equality when Ui = 1 and strictly
when Ui = 0, and

d

dUi

[
1

Ui
− 2−W(g(Ui))

]
= − 1

U2
i

− (1− Ui)W(g(Ui))

U2
i (1 +W(g(Ui)))

(70)

is always negative.

Proof of Corollary 8

Monotonicity. From the expressions (59) and (60), we have

dPoA(ρ)

dρ
=
ρW(g)2 +W(g) +W(g)ρ2 + ρ

ρ(1 +W(g))(1−W(g))2
> 0 (71)

if and only if ρW(g)(W(g) + ρ) +W(g) + ρ > 0. Lemma 1 implies that −W(g) ≤ ρ and proves that it is
increasing in ρ.

Limit as ρ→ 1. Applying L'Hôpital's rule to (71), we obtain

lim
ρ→1

dPoA(ρ)

dρ

= lim
ρ→1

ρW(g)2 +W(g) +W(g)ρ2 + ρ

4(1 +W(g))

= lim
ρ→1

W(g)2 + 2ρW(g)W ′(g) +W ′(g) + 2ρW(g) +W ′(g)ρ2 + 1

4W ′(g)

(72)
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Let W ′(g) = dW(g(ρ))/dρ. Taking into account (59) and applying again L'Hôpital's rule, we have

lim
ρ→1
W ′(g) = lim

ρ→1

W(g)

1 +W(g)

1− ρ
ρ2

= lim
ρ→1

ρ− 1

1 +W(g)

= lim
ρ→1

1

W ′(g)
,

(73)

which holds true if and only if limρ→1W ′(g) is 1 or −1 (the existence of the limit (73) follows by continuity
arguments and the fact that W ′(g) is monotonically decreasing). Since W ′(g) is monotonically decreasing,
we conclude that limρ→1W ′(g) = −1. Substituting this in (72), we obtain zero.

Limit as ρ→ 0. From (71), we obtain

lim
ρ→0

dPoA(ρ)

dρ
= lim
ρ→0
W(g)2 +

W(g)

ρ
+W(g)ρ+ 1

= 1 + lim
ρ→0
W ′(g)

= 1 + lim
ρ→0

W(g)

1 +W(g)

1− ρ
ρ2

= 1 + lim
ρ→0

W(g)

ρ2

(74)

The Lambert W function admits the following Maclaurin expansion [14]

W(g) = −
∑
n≥1

nn−1

n!
(−g)n (75)

which is convergent ∀g : |g| ≤ 1/e. The leading term of (75) is exp(−1/ρ)/ρ, when ρ → 0. Therefore, we
have

lim
ρ→0

W(g)

ρ2
= lim
ρ→0

exp(−1/ρ)

ρ3
= 0. (76)
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