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Abstract

We analyze the behavior of closed multi-class product-form queueing networks when the number of
customers grows to infinity and remains proportionate on each route (or class). First, we focus on the
stationary behavior and prove the conjecture that the stationary distribution at non-bottleneck queues
converges weakly to the stationary distribution of an ergodic, open product-form queueing network, which
is geometric. This open network is obtained by replacing bottleneck queues with per-route Poissonian
sources whose rates are uniquely determined by the solution of a strictly concave optimization problem. We
strengthen such result by also proving convergence of the first moment of the queue lengths of non-bottleneck
stations. Then, we focus on the transient behavior of the network and use fluid limits to prove that the
amount of fluid, or customers, on each route eventually concentrates on the bottleneck queues only, and that
the long-term proportions of fluid in each route and in each queue solve the dual of the concave optimization
problem that determines the throughputs of the previous open network.

1 Introduction

Complex systems such as communication and computer networks are composed of a number of interacting
particles (or customers) that exhibit important congestion phenomena as their level of interaction grows.
The dynamics of such systems are affected by the randomness of their underlying events, e.g., arrivals of
units of work, and can be described stochastically in terms of queueing network models. Provided that these
are tractable, they allow one to make predictions on the performance achievable by the system, to optimize
the network configuration and to perform capacity-planning studies. These objectives are usually difficult
to achieve without a mathematical model because real systems are huge in size; e.g., Urgaonkar et al. [42].

The focus of this paper is on the well-known class of closed queueing network models introduced in Kelly
[24] and Baskett et al. [4]. Specifically, a fixed number of customers circulate in a network following given
routes. A route is a sequence of queues (or stations) that forms a cycle in the network. In terms of the
amount of service required on each queue, users belonging to the same route are statistically equivalent.
In contrast, users belonging to different routes can be statistically different. The stationary probability
distribution of these queueing networks has the product-form property, which formally means that it can
be written as the product of simple terms associated to each queue up to a normalizing constant. This
surprising property represents a big step forward for the understanding of the stationary behavior of this
queueing network model, as it drastically reduces the intrinsic computational complexity of solving the global
balance equations of the underlying Markov chain. However, due to the quick growth of the state space and
despite the attention devoted to this problem during the last decades, the computation of the normalizing
constant remains a notoriously difficult task, especially when the number of customers is large. This issue
limits the application of these models to optimization and dimensioning studies of real systems.

During the last decades, several approaches have been investigated to assess the stationary behavior of
closed product-form queueing networks with a large number of customers. A large body of the literature
aims at developing exact algorithms for the efficient computation of the normalizing constant or stationary
performance indices such as mean queue lengths and throughputs; see, e.g., Reiser and Kobayashi [34],
Reiser and Lavenberg [35], Harrison and Coury [19], Casale [9] and the references therein. To the best of
our knowledge, no exact algorithm has a running time that is polynomial with respect to the numbers of
routes, customers and queues. Motivated by this difficulty, a number of alternative analyses emerged in the
literature for the stationary behavior. These mainly consist in:

• Using the mean value analysis (MVA) by Reiser and Lavenberg [35] to develop iterative or fixed-point
algorithms; e.g., Schweitzer [37], Chandy and Neuse [11], Pattipati et al. [31], Wang et al. [44]. While
these techniques improve the running time of MVA, there is no guarantee that they converge to the
exact solution except for particular cases.
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• Developing efficient bottleneck identification techniques; e.g., Schweitzer [38], Schweitzer et al. [39],
Casale and Serazzi [10], Anselmi and Cremonesi [1]. This approach aims at reducing the network size
by ignoring the impact of the stations that have a minor influence on the overall performance.

• Studying the network behavior when some parameter approaches a limiting value of practical interest,
which is the approach followed in this article.

A number of limiting regimes have been studied in queueing networks. For the case of single-class net-
works, see Goodman and Massey [17]. More generally, through a number of examples, Whitt [45] expounds
the technique of approximating closed systems with the behaviour of an appropriate open queueing system.
For open and closed migration processes, Pollett [33] and Brown and Pollett [8] find methods to identify
bottlenecks and, in addition, characterize the total variation distance between the output process of some
queue and a Poisson process. Works analyse the fluid and heavy-traffic limit of single-class closed queueing
networks. Chen and Mandelbaum [13] provides a heavy traffic approximation of closed networks, and a char-
acterization of bottleneck behaviour is found. The paper extends these results to two classes of customers
with different priorities. In Kaspi and Mandelbaum [20], the generality of the service type distributions
is greatly increased and a concrete connection between the limiting behaviour of bottleneck queues and
the stationary distributions of a Brownian network is made. The book of Chen and Yao [12] analyzes the
fluid and diffusion limits for generalized Jackson networks, for both open and closed topologies. The word
generalized refers to the fact that the external Poisson arrivals are substituted by general and independent
renewal processes. The analysis there, though, mainly considers single-class networks, or in the multi-class
case focuses on the FIFO discipline. This discipline is very different from the processor sharing one and
shows qualitatively different behavior, for instance unexpected instability occurs when all stations of the
network are individually stable for the solution of the traffic flow equations; Kumar and Seidman [27]. Fluid
analysis of multi-class open queueing networks is found in Bramson [7]. Detailed discussions on Bramson’s
work will be made in subsequent sections of this article.

In the closed multi-class queueing networks investigated in this article, a number of works have assumed
the existence of an M/M/∞ queue and allowed the total number of jobs, say n, grow in proportion to its
service (also known as ‘think’) times; see e.g. McKenna and Mitra [30], McKenna [29], Berger et al. [5].
Further analyses let n grow to infinity in proportion to the number of stations; Knessl and Tier [25, 26].
Finally, another important approach is to study the network behavior when n grows to infinity keeping fixed
the proportions of customers in each route; Pittel [32], Schweitzer [38], Balbo and Serazzi [3], Walton [43],
Walton et al. [22], Anselmi and Cremonesi [1], George et al. [16].

The focus of this paper is on the last approach described above where n, the population vector, grows
to infinity keeping fixed the proportions of customers in each route. In this limiting regime, it is known
that some queues, called bottlenecks in the following, increase their backlog proportionally to n, see Pittel
[32] and Walton et al. [22], and uniquely determine the throughput of customers along each route by
means of a concave optimization problem; Schweitzer [38], Walton [43]. Interestingly, this optimization
problem coincides with the utility optimization problem that determines the fractions of bandwidth (or
rates) allocated to multiple classes of concurrent Internet flows (or end-to-end Internet connections); see
Kelly et al. [23], Srikant [41]. On the other hand, the amount of backlog in each non-bottleneck is strictly
bounded by O(n) but in general its limiting behavior is not known. There is numerical evidence to support
the conjecture that the limiting stationary distribution of each non-bottleneck queue is geometric; Balbo and
Serazzi [3]. Such convergence was proved by Pittel [32] under the assumption that the mode of the stationary
distribution is unique; see also Gordon and Newell [18], Lipsky et al. [28], Anselmi and Cremonesi [1]. This
assumption, for instance, is not satisfied when the number of bottlenecks is less than the number of routes
but greater than one, which is a natural scenario in real networks. As we shall explain, one of the principal
contributions of this paper is to prove this conjecture by removing the unimodal assumption.

The above conjecture provides an accurate and efficient approximation to mean performance indices
that takes into account the contribution of non-bottlenecks. The impact on performance of non-bottlenecks
becomes non-negligible if their number prevails significantly, and this is often the case; see Casale and
Serazzi [10], Anselmi and Cremonesi [1]. This approximation allows for the direct development of efficient
optimization frameworks able to address, for instance, data-center consolidation problems [2], where the
objective is to reduce the cost and the size of a data-center while guaranteeing a given performance level.
Furthermore, it provides a good initial guess for the iterative or fixed-point algorithms mentioned above.

1.1 Our contribution.

Following the approach considered by a large body of the literature, we are interested in the behavior of closed
product-form queueing networks when the number of customers in each route grows to infinity proportionally.
This is mainly motivated because real networks are populated by a large number of customers; e.g., Urgaonkar
et al. [42]. Our objective is two-fold and consists in analyzing the problem from two contrasting standpoints.

The first part of this paper focuses on the stationary behavior of these networks. We prove the conjecture
that the stationary distribution of non-bottlenecks converges weakly to the stationary distribution of an
ergodic, open product-form queueing network, with geometrically distributed queue lengths. This open
network is obtained by replacing bottlenecks with per-route Poissonian sources whose rates are uniquely
determined by the solution of a strictly concave optimization problem. In addition, we strengthen such result
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by proving that the mean per-route number of customers of non-bottlenecks converges to the corresponding
mean number of customers of the same open network, which is important from an operational standpoint.

On the other hand, the second part of this paper focuses on the transient behavior of the fluid limit version
of the network. We start from any arbitrary distribution of customers in the network that preserves the
proportional distribution. Then, we let their total number go to infinity. This allows, after a renormalization
and a limit procedure, to construct the fluid limit version of the network with a given initial concentration of
fluid in its queues. We prove that the amount of fluid, or customers, on each route eventually concentrates,
as time increases, on the bottleneck queues only and that the (long-term) proportions of fluid in each route
and in each bottleneck solve the dual of the concave optimization problem that determines the throughputs
of the open network described in the first part above. Our proof for closed queueing networks uses an
entropy Lyapunov function similar to the one used by Bramson [7] to establish convergence properties of
the fluid-limit equations of open queueing networks.

The technical difference behind the two results above is the order in which the limit in the number of
customers and the limit in time are taken. In the second part, the limit in the number of customers is
taken before the limit in time, and vice versa. In stochastic systems, these two limits do not commute in
general, but for the class of queueing networks investigated in this paper we prove that they do. Taking
the limit in the number of customers first provides a natural way to look at the evolution of a network
populated by a large number of customers and, by subsequently taking a limit in time, we justify fluid
model arguments within the queueing literature. The second result proven in this paper, thus, increases
the robustness of the approach taken in the first part, which has been followed by several researchers as
referenced above. Furthermore, it can be also seen as a queueing theoretic analysis of the utility optimization
found in congestion control protocols; e.g., Kelly et al. [23] and Srikant [41].

1.2 Organization.

In Section 2, we introduce the model considered in this paper. In particular, we include two Markov
descriptions of a closed queueing network, relevant quantities such as bottleneck and non-bottleneck queues
are defined, and an expression for a fluid model of a closed queueing network is given. In Section 3, we present
the three main results of this paper: Section 3.1 shows the asymptotic independence of non-bottleneck queues
in the large-population limit; Section 3.2 shows the convergence of the Markov closed queueing network to
a fluid solution; and Section 3.3 states that a fluid solution converges to the set of bottlenecks in a way that
minimizes a certain entropy Lyapunov function. In Section 4, we prove the main results stated in Section 3.
We respectively prove the results of Sections 3.1, 3.2 and 3.3 in Sections 4.1, 4.2 and 4.3.

2 Closed queueing networks models.

We consider closed, multi-class queueing networks in the sense of Kelly [24] and Baskett et al. [4]. The
set J ⊂ N denotes the set of queues (or stations) and we let J = |J |. The set I ⊂ 2J denotes the set
of routes (or classes) and we let I = |I|. A route is a sequence of queues visited by a customer during
one cycle of the network. We assume, for simplicity, that each customer visits each queue at most once
within a cycle of the network. Within each route i = {ji1, ..., j

i
ki
}, we associate a route order (ji1, ..., j

i
ki
).

For k = 1, ..., ki − 1, a customer departing queue jik will next join queue jik+1 and a customer departing
queue jiki

will join queue queue ji1. Unless otherwise specified, i will be used to index routes and j will be
used to index queues. We assume that a constant number of customers circulate along each route of the
network. We denote by n = (ni : i ∈ I) ∈ N

I the population vector, i.e., the total number of customers on
each route. When joining queue j, we assume that route-i customers require amounts of service that are
independent and exponentially distributed with mean µ−1

ji . At each queue, we assume that customers are
served at rate 1 according to a processor sharing discipline and customers joining a queue take a position
uniformly at random in the queue. Thus, if a route-i customer does not join a queue j, i.e. j /∈ i, we may
assume µ−1

ji = 0.

2.1 Two Markov models of closed queueing networks.

Firstly, we could describe the exact location of each customer in the queue according to its route type. Here
the explicit state of a queue j would be a vector sj = (ij(k) : k = 1, ..., mj), where mj is the number of
customers in the queue and ij(k) is the route type of the customer in the kth position. The explicit state of
the network would then be the vector of each queue’s state, s = (sj : j ∈ J ). We then let X (n) be the set
of the explicit states where the number of customers of each route type i is ni.

Secondly, we could ignore positional information about customers within a queue, and instead, just
consider the number of each route type at a queue. Here, we let m = (mji : j ∈ J , i ∈ I, j ∈ i) be a network
state, where mji represents the number of route i customers in queue j. Thus, S(n) = {m :

∑

j mji = ni, i ∈
I} is the state space of this Markov chain. It may be verified in a straightforward manner that this state
space is finite and irreducible.
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Under the above assumptions, it is known (Kelly [24] and Baskett et al. [4]) that the stationary distribu-
tion of being in state s, which we denote by π(s|n), or in state m, which we denote π(m|n), is respectively

π(s|n) =
1

B(n)

∏

j∈J

mj∏

k=1

µ−1
jij (k)

=
1

B(n)

∏

j∈J

∏

i:j∈i

µ
−mji

ji , s ∈ X (n), (2.1)

π(m|n) =
1

B(n)

∏

j∈J

((

mj

mji : i ∋ j

)
∏

i:j∈i

µ
−mji

ji

)

, m ∈ S(n), (2.2)

where B(n) is the normalizing constant

B(n)
def
=

∑

m∈S(n)

∏

j∈J

((

mj

mji : i ∋ j

)
∏

i:j∈i

µ
−mji

ji

)

, (2.3)

that is the same in (2.1) and (2.2); see [4]. To count the possible orderings of customers inside a queue, we
use the multinomial coefficient (

mj

mji : i ∋ j

)

def
=

mj !
∏

i:j∈i mji!
.

In the following, we mainly consider the stationary distribution (2.2), while the expression (2.1) will be
used in proofs.

Remark 1. There are a large number of generalizations of our queueing network where (2.2) still gives the
stationary probability of the per-route number of customers in each queue. For instance, we could generalize
our processor-sharing discipline to the class of symmetric queueing disciplines with unit service capacity, see
Kelly [24, Section 3.3]. We could also generalize service requirements to be independent with mean µ−1

ji and
having a rational Laplace transform. If we keep the assumption that service requirements are exponential
and we assume that the state space of our Markov description is irreducible, then we could generalize to
allow any service discipline that allocates service amongst customers in a way that does not discriminate
between the route types of customers at the queue. Such service disciplines are described by Kelly [24, Section
3.1]. Finally, in all cases, we may elaborate the routing structure of our network; we may allow a route i
customer to be routed through the network as a Markov chain (with finite expected exit time) whose states
are determined by the set of queues so far visited.

Although generalizations leading to stationary distribution (2.2) are abundant (as explained in the above
remark), we do not explore these in further detail for simplicity of exposition. Thus, our results in Theorems 1
and 2 generalize to such cases. On the other hand, Theorems 3 and 4 apply to the specific case of processor-
sharing queues, and thus they do not apply directly to all the generalizations described above. The extension
of Theorems 3 and 4 when other service disciplines are considered, e.g., last-come-first-served preemptive-
resume, is left as future work.

2.2 Throughputs and bottlenecks.

A key quantity of interest is the rate at which customers complete service on each route with respect to a
reference queue (say ji1 for route i). Let

Λi(n)
def
=

∑

m∈S(n):
m

ji
1

>0

µji
1
i

mji
1
i

mji
1

π(m|n) (2.4)

be the throughput of customers on route i observed at queue ji1. In addition, let

Uj(n)
def
=
∑

i:j∈i

Λi(n)

µji

(2.5)

be the utilization (or load) of queue j. Using Little’s law, Uj(n) can be interpreted as the proportion of time
where queue j is busy.

Remark 2. The expression (2.4) gives the service completion rate of route i customers at queue ji1, i.e.,
µji

1
i, times the service rate devoted to these customers at that queue, i.e., mji

1
i/mji

1
, times the stationary

probability that there are m customers in the network, i.e., π(m|n). Thus, this expression gives the mean
rate (or throughput) for which route i customers leave queue ji1. Note the route i throughputs at each queue
j ∈ i must be equal. Without loss of generality, we considered queue ji1.

A more concise expression for the per-route throughput is given in the following lemma; see, e.g., Bolch
et al. [6, Formula (8.28)] or, for single class networks, Chen and Yao [12, Formula (2.10)].

Lemma 1.

Λi(n) =
B(n− ei)

B(n)
, i ∈ I (2.6)

where B(n) is the normalizing constant (2.3) and ei is the ith unit vector in R
I
+.
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In agreement with other works (e.g., Anselmi and Cremonesi [1], Balbo and Serazzi [3]), we define a
bottleneck queue as a queue whose service is saturated.

Definition 1. Queue j ∈ J is called bottleneck if and only if

lim
c→∞

Uj(cn+ uc) = 1, (2.7)

where {uc}c∈N is any uniformly bounded sequence such that cn + uc ∈ Z
I
+. We define the set J̄ ⊆ J to be

the set of bottlenecks and let J̄ = |J̄ |. Similarly, we define J ◦ = J \J̄ to be the set of non-bottlenecks and
let J◦ = |J ◦|.

We will think of J ◦ as the ‘open part’ of the closed network under investigation.

2.3 Non-bottleneck queues and open queueing networks.

We are interested in the probability distribution of non-bottleneck queues. For this reason, we consider
queue-size vectors m◦ = (m◦

ji : j ∈ J ◦, i ∈ I, j ∈ i) ∈ Z
J◦×I
+ and

π◦(m◦|n)
def
=

∑

m̄∈Z
J̄
+

:

(m̄,m◦)∈S(n)

π((m̄,m◦)|n), j ∈ J ◦, i ∈ I, (2.8)

which defines the stationary probability that non-bottleneck queues are in state m◦.
We also define

π◦
Λ(m

◦)
def
=

∏

j∈J◦

π◦
j,Λ(m

◦), (2.9a)

m◦ ∈ Z
J◦×I
+ , Λ ∈ R

I
+, where

π◦
j,Λ(m

◦)
def
=

(

1−
∑

i:j∈i

Λi

µji

)(
mj

mji : i ∋ j

)
∏

i:j∈i

(
Λi

µji

)mji

. (2.9b)

The distribution π, given by (2.2), refers to the stationary distribution of a closed queueing network. In
contrast, the distribution π◦

Λ can be shown to be the stationary distribution of an open queueing network
constructed on queues J ◦. Here customers arrive on each route as a Poisson process of rate Λ = (Λi : i ∈ I)
and depart the network after receiving service at each queue on their route i∩J ◦, see Kelly [24] and Baskett
et al. [4].

2.4 Fluid Model.

In order to study the transient behavior of our closed queueing network, we will analyze the following fluid
model.

Definition 2 (Closed queueing network fluid model). The processes m(t) = (mji(t) : j ∈ J , i ∈ I, j ∈ i)
and L(t) = (Lji(t) : j ∈ J , i ∈ I, j ∈ i) form a fluid solution (or fluid limit) of our closed queueing network
if they satisfy the following conditions:

mji
k
i(t) = Lji

k−1
i(t)− Lji

k
i(t), (2.10a)

∑

i:j∈i

1

µji

(Lji(t)− Lji(s)) ≤ t− s, (2.10b)

Lji(t) is increasing, (2.10c)

if mj(t) > 0 then Λji(t) =
mji

mj

µji, (2.10d)

∑

j:j∈i

mji(t) = ni. (2.10e)

where we used the definition Λji(t)
def
= dLji(t)/dt. Here, j ∈ J , i ∈ I, j ∈ i, t ≥ s ≥ 0. Also, jik is the kth

queue on route i and jik−1 is the queue before the kth queue (we use the convention that the queue before ji1
is jiki

).

The (j, i)-component of the process m(t) denotes the amount of fluid of type i contained at time t at
queue j ∈ i. The process Λji(t) gives the instantaneous throughput of this type of fluid at the same queue,
while the process Lji(t) gives the total amount of fluid of this type flowed out from queue j by time t.

The conditions (2.10), thus, are the defining properties of a fluid solution and we observe that they
are analogous to the ones used by Bramson [7, Formulas (2.3)-(2.6)], which hold for the open versions of
the considered closed queueing networks1. In particular, conditions (2.10a), (2.10c), (2.10e) are basic and

1Actually, the open queueing networks defined in Bramson [7], called head-of-the-line processor sharing networks, appear different
from ours. In fact, upon completion of service at one queue, a class-i1 customer becomes of class i2 with probability pi1i2 . However,
one can easily build a mapping from one representation to the other.

5



relate queue lengths in an obvious manner, condition (2.10d) is the property that defines a processor-sharing
discipline, and condition (2.10b) takes into account the maximal processing rate of the system.

We note that the condition (2.10b) implies that Lji is Lipschitz continuous. By (2.10a), this is also
true for mji. Lipschitz continuity implies absolute continuity, and therefore the processes Lji and mji are
differentiable almost everywhere with respect to the Lebesgue measure. Throughout this document, the
term for almost every will refer to a set of real numbers whose complement has Lebesgue measure zero.
Shortly, we will prove that the limit of the closed queueing network described previously satisfies the fluid
model (2.10).

3 Results on closed queueing networks.

In this section, we present the main results of this article. Namely, Theorems 1 and 2, which state the
independence of the per-route numbers of customers in non-bottlenecks and the convergence of their expec-
tations under a large-population limit (Section 3.1); Theorem 3, which states that the stochastic process
limit of a closed queueing network is a solution to the fluid equations (2.10) (Section 3.2); Theorem 4, which
states the convergence in time of the fluid model (2.10) via a Lyapunov function argument (Section 3.3).

3.1 Independence of non-bottleneck queues.

We will demonstrate that non-bottleneck queues become independent as our closed queueing network be-
comes congested. We now consider the limiting behavior of our queueing network with cn customers when
c → ∞. Given the constraints on the number of customers on each route, the random variables of the
stationary number of per-route customers in each queue are certainly dependent; however, in classic open
queueing networks, where all customers arrive from an external source and eventually leaves the network,
they are shown to be independent, see Kelly [24] and Baskett et al. [4].

We consider our stationary distributions for closed multiclass queueing networks, (2.8), and open multi-

class queueing networks, (2.9). In informal terms, we wish to prove that for each n ∈ R
I
+,m ∈ Z

J◦×I
+

π◦(m◦|cn) −−−→
c→∞

π◦
Λ∗(m◦). (3.1)

To prove such a statement, we must identify the throughput vector Λ∗ ∈ R
I
+ and the set of non-bottleneck

queues J ◦. Since the vector cn need not to belong to Z
I
+, we consider cn+uc where {uc}c∈N is any uniformly

bounded sequence such that cn+ uc ∈ Z
I
+. Our theorem can then be written as follows.

Theorem 1. For n ∈ R
I
+,m

◦ ∈ Z
J◦×I
+

π◦(m◦|cn+ uc) −−−→
c→∞

π◦
Λ∗(n)(m

◦) (3.2)

where Λ∗(n) = (Λ∗
1(n), . . . ,Λ

∗
I (n)) is the unique optimizer of the strictly-concave optimization problem

maximize
∑

i∈I

ni log Λi (3.3a)

subject to
∑

i:j∈i

Λi/µji ≤ 1, j ∈ J (3.3b)

over Λi ≥ 0, i ∈ I, (3.3c)

and where J ◦, the set of non-bottlenecks, is given by the set of queues j such that

∑

i:j∈i

Λ∗
i (n)

µji

< 1.

The solution of optimization problem (3.3), Λ∗(n), is known in the literature as the proportionally-fair
allocation (see Kelly [21]) and, interestingly, emerged independently as a model for the sharing of bandwidth
among Internet connections (e.g., Srikant [41]). For a detailed treatment of the relationship between closed
queueing networks and the proportionally-fair allocation, see Walton [43].

Theorem 1 proves that non-bottleneck queue lengths converge in distribution. Unfortunately, this is not
enough to claim that the first moments converge as well. Convergence of the first moments is important
from a practical standpoint, particularly for mean value analyses. This result is demonstrated in the next
theorem. For our closed queueing network with n customers, let M◦(n) ∈ Z

J◦×I
+ be the stationary number

of customers from each route at each non-bottleneck queue. In other words, Pr(M◦(n) = m◦) = π◦(m◦|n).
Similarly, let M◦

Λ be the stationary number of customers from each route at each queue in the open queueing
network (2.9a), i.e., Pr(M◦

Λ = m◦) = π◦
Λ(m

◦).

Theorem 2.

EM◦(cn+ uc) −−−→
c→∞

EM◦
Λ∗(n) (3.4)

where Λ∗(n) = (Λ∗
1(n), . . . ,Λ

∗
I (n)) is the unique optimizer of (3.3).
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3.2 Existence of fluid limits for closed queueing networks.

In Section 3.1, we analyzed the stationary probability distribution (2.2) of the closed queueing networks
under investigation in the large-population limit. Now, we focus on the transient probability distribution in
the large-population limit and then study the evolution in time of the system. In other words, the limit in
time is now taken after the limit in the number of customers. In stochastic systems it is known that both
limits are not interchangeable in general. The fluid limit, see Definition 2, is a natural framework that allows
for the analysis of such scenario.

We consider a sequence of the closed queueing networks as described in Section 2. In this sequence, the
only variables that change are the number of customers on each route (the number of queues, routes, service
distributions are kept fixed). We let the vector n ∈ R

I
+ be the proportion of customers on each route of the

network. In the cth network of this sequence of closed queueing networks, there are cn + uc customers on
each route, where {uc}c∈N is a bounded sequence of variables in R

I
+ such that cn+ uc ∈ Z

I
+.

We let Mc
ji(t) be the number of route-i customers in queue j at time t of the cth closed queueing network.

We let Lc
ji(t) give the total number of route-i customers served by queue j by time t in the cth closed queueing

network. From this, we define the rescaled processes

M̄c
ji(t)

def
=

Mc
ji(ct)

c
, L̄c

ji(t)
def
=

Lc
ji(ct)

c
, j ∈ J , i ∈ I, j ∈ i.

We wish to show that the vector processes M̄c and L̄c converge to a fluid solution.

Theorem 3. The sequence of stochastic processes {(M̄c, L̄c}c∈N converges weakly to a continuous process
(m,L) that satisfies the fluid solution equations (2.10).

3.3 Convergence of the fluid solution.

Having established the existence of a fluid solution of our closed queueing networks, (m,L), now our goal is
to study its evolution in the long-term, i.e., m(t) when t → ∞. In our main result, we show that the amount
of fluid m eventually concentrates on the bottleneck queues only and that the long-term proportions of fluid
in each route and in each queue solve the dual of optimization problem (3.3).

From the stationary distribution π(m|n), given by (2.2), and under the same premise of Theorem 1, we
can show that

lim
c→∞

1

c
log π(cm|cn) = −β(m)

where

β(m)
def
=
∑

j∈J

∑

i:j∈i
mji>0

mji log
mjiµji

mj

(3.5)

=
∑

j∈J :
mj>0

mj

∑

i:j∈i

pji log
pji

µ−1
ij

. (3.6)

Here, we have used the notation pji
def
= mji/mj .

Remark 3 (Relative Entropy). A key quantity that will be useful in our proofs is the unnormalized relative
entropy2

D(p||q)
def
=
∑

i

pi log
pi
qi
, p, q ∈ R

I
+.

We notice that the function β, given by (3.6), is a linear combination of these unnormalized relative entropies
for each queue. Furthermore, we note that if

∑

i pi =
∑

i qi, then we can renormalize and treat p and q as
probability distributions. In this case, one can show that D(p||q) ≥ 0, using Jensen’s inequality, and that
D(p||q) is minimized if p = q where its value is 0.

Remark 4. It is an interesting observation that the rate of decrease of β(m), the (negative) entropy of states,
will be determined by the relative entropy between the rates of service; see Proposition 7 below. Although
distinct, this argument is similar to those argued for Markov processes by Spitzer [40] and more recently by
Dupuis and Fischer [15]. A further important reference is Bramson [7], which shows, for the open versions of
the closed queueing networks considered in this paper, that the amount of fluid in non-bottlenecks converges
to zero.

In Bramson [7], the main argument behind the fluid convergence to zero for non-bottleneck stations
relies on closing the open network with an additional (artificial) queue whose service rate equals the overall
throughput of the network. All customer routes enter this additional queue and it is assumed that this queue
never empties. This plays a significant role in regulating traffic to match that of the open network. So
although a closed queueing network appears in that analysis, this additional queue introduces an important
loss of generality.

2This entropy is unnormalized because we do not enforce the condition that its arguments are probability distributions.
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The function β(m) forms a natural candidate for a Lyapunov function. We need to show that, for n ∈ R
I
+

fixed, β(m(t)) decreases to its minimal value

β∗ def
= minimize β(m) subject to

∑

j∈i

mji = ni, i ∈ I. (3.7)

We show in Lemma 11 that the above optimization problem is the dual of the problem (3.3), and considering
the set of points attaining this minimal value

M(n)
def
= argmin β(m) subject to

∑

j∈i

mji = ni, i ∈ I, (3.8)

we have that when the network is in one of these states the corresponding throughputs are uniquely given
by the Λ∗(n) vector given in Theorem 1.

The following theorem shows how fluid eventually distributes among network stations.

Theorem 4. Let (m(t), L(t)) be a solution of the fluid model (2.10) with m(0) satisfying equation (2.10e)
for a given vector n, then,

β(m(t)) ց β∗, as t → ∞

and, moreover,
min

m∗∈M(n)
|m(t)−m∗| → 0, as t → ∞

where the fluid point m∗ ∈ M(n) induces, via equation (2.10d), the same throughputs Λ∗(n) given in Theorem
1.

In the above theorem, the norm |m| is the Euclidean norm in R
I×J .

4 Proofs of main results.

We now focus on proving the main results of this paper, namely, Theorems 1 and 2 (Section 4.1), Theorem 3
(Section 4.2) and Theorem 4 (Section 4.3).

4.1 Analysis of non-bottleneck queues.

First, we develop a proof of Theorem 1. Recalling the informal statement (3.1), we need to verify that for

each n ∈ R
I
+,m ∈ Z

J◦×I
+

π◦(m◦|cn) −−−→
c→∞

π◦
Λ∗(m◦), (4.1)

for some Λ∗ ∈ R
I
+ for some set of non-bottleneck queues J ◦. Before verifying such statement, we must

identify the relevant throughput vector Λ and non-bottleneck queues J◦. The following result, which was
proven by Walton [43], characterizes Λ∗ and J ◦.

Proposition 1 ([43]).
Λ∗

i (n) = lim
c→∞

Λi(cn+ uc), i ∈ I

where Λ∗
i (n) is the unique minimizer of the concave optimization problem (3.3) and so that Λi(cn + uc) is

defined on a point in its domain, {uc}c∈N is any bounded sequence in R
I
+ such that cn+ uc ∈ Z

I
+.

Consequently, j ∈ J ◦ if and only if
∑

i:j∈i

Λ∗
i (n)

µji

< 1.

Now, we show that (3.2) holds. Before proceeding with this proof, we introduce a specific closed queueing
network, which will helps us in the proof. Recall the closed queueing network defined on set J introduced
in Section 2. Consider a queueing network defined exactly as in Section 2, except that queues J ◦ are
removed. The resulting queueing network has states m̄ = (m̄ji : j ∈ J̄ , i ∈ I, j ∈ i) ∈ Z

J̄×I
+ ; if there are

n ∈ Z
I
+ customers on each route, this network has state space S̄(n) = {m̄ :

∑

j m̄ji = ni, i ∈ I}, stationary
distribution

π̄(m̄|n) =
1

B̄(n)

∏

j∈J̄

((

m̄j

m̄ji : j ∈ i

)
∏

i:j∈i

µ
−m̄ji

ji

)

, m̄ ∈ S̄(n), (4.2)

where

B̄(n) =
∑

m̄∈S̄(n)

∏

j∈J̄

((

m̄j

m̄ji : j ∈ i

)
∏

i:j∈i

µ
−m̄ji

ji

)

,

and stationary throughput

Λ̄(n) =
B̄(n− ei)

B̄(n)
.
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Proposition 1 holds for this network and, here, we would consider Λ̄∗(n), the solution to the optimization

maximize
∑

i∈I

ni log Λi subject to
∑

i:j∈i

Λi/µji ≤ 1, j ∈ J̄ over Λi ≥ 0, i ∈ I.

In this optimization, all constraints that are not relevant to our solution Λ∗(n) are removed. Thus, it is not
surprising that the following lemma holds.

Lemma 2. Λ̄∗(n) = Λ∗(n).

We prove Lemma 2 in Appendix A. A direct consequence of Lemma 2 and Proposition 1 is the following.

Lemma 3.

Λ̄i(n) =
B̄(n− ei)

B̄(n)
−−−→
c→∞

Λ∗
i (n), i ∈ I.

We can now proceed to demonstrate that (3.2) holds. Let us consider the equilibrium distribution
π◦(m◦|n). We have

π◦(m◦|n) =
∑

m̄∈Z
J̄
+

:

(m̄,m◦)∈S(n)

π((m̄,m◦)|n)

=
1

B(n)
×
∏

j∈J◦

((

m◦
j

m◦
ji : j ∈ i

)
∏

i:j∈i

µ
−m◦

ji

ji

)

×
∑

m̄∈Z
J̄

+
:

(m̄,m◦)∈S(n)

∏

j∈J

((

m̄j

m̄ji : j ∈ i

)
∏

i:j∈i

µ
−m̄ji

ji

)

=
1

B(n)
×
∏

j∈J◦

((

m◦
j

m◦
ji : j ∈ i

)
∏

i:j∈i

µ
−m◦

ji

ji

)

×
∑

m̄∈S̄(n−n◦)

∏

j∈J

((

m̄j

m̄ji : j ∈ i

)
∏

i:j∈i

µ
−m̄ji

ji

)

=
B̄(n)

B(n)
︸ ︷︷ ︸

(c)

×
B̄(n− n◦)

B̄(n)
︸ ︷︷ ︸

(b)

×
∏

j∈J ◦

((

m◦
j

m◦
ji : j ∈ i

)
∏

i:j∈i

µ
−m◦

ji

ji

)

︸ ︷︷ ︸

(a)

. (4.3)

Here, n◦ = (n◦
i : i ∈ I) is the number of route-i customers in non-bottleneck queues, i.e. n◦

i =
∑

j∈i∩J◦ m◦
ji.

The third equality above follows by observing that the summation is over all the states where the number
of non-bottleneck customers is n− n◦, whch then gives B(n− n◦).

We now consider how the terms (a), (b) and (c), converge as we keep m◦ fixed and let n increase.
Term (a) is easily dealt with as it does not depend on n. Term (b) will be shown to converge in the next
proposition. Subsequently, term (c) will take a more in depth analysis.

Term (a) represents the correct expression for the unnormalized stationary distribution of our open
queueing network (see (2.9)), except that we do not include the multiplicative term

∏

j∈J ◦

∏

i:j∈i

Λ∗
i (n)

m◦
ji =

∏

i∈I

Λ∗
i (n)

n◦
i .

As the following proposition shows, this is the limit of the term (b).

Proposition 2. For n◦ ∈ Z
I
+, n ∈ R

I
+ and {uc}c∈N some bounded sequence such that cn+ uc ∈ Z

I
+

B(cn+ uc − n◦)

B(cn+ uc)
−−−→
c→∞

∏

i∈I

Λ∗
i (n)

n◦
i .

Proof. Proof From Proposition 1, we have that

B(cn+ uc − ei)

B(cn+ uc)
−−−→
c→∞

Λ∗
i (n), (4.4)

for any n ∈ R
I
+ and any bounded sequence {uc}c∈N such that cn+uc ∈ Z

I
+. LetK =

∑

i n
◦
i , Let ei(1), ..., ei(K)

be a finite sequence of unit vectors and n(0), ..., n(K) be a sequence of vectors in Z
I
+ such that

n(0) = 0, n(K) = n◦

n(k) = n(k − 1) + ei(k), k = 1, ..., K.

Applying (4.4), we have that

B(cn+ uc − n◦)

B(cn+ uc)
=

K−1∏

k=0

B(cn+ uc − n(k)− ei(k+1))

B(cn+ uc − n(k))
−−−→
c→∞

K∏

k=1

Λ∗
i(k)(n) =

∏

i∈I

Λ∗
i (n)

n◦
i ,

as required.
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As the above proposition holds for any closed queueing network and because Lemma 3 holds, we can say
that

B̄(cn+ uc − n◦)

B̄(cn+ uc)
−−−→
c→∞

∏

i∈I

Λ∗
i (n)

n◦
i =

∏

j∈J◦

∏

i:j∈i

Λ∗
i (n)

m◦
ji . (4.5)

This gives the convergence of term (b) in expression (4.3).
We now study term (c) in expression (4.3). We can note that this term is exactly the probability that

all non-bottleneck queues are empty.

Lemma 4.

π({mj = 0, ∀j ∈ J ◦}|n) =
B̄(n)

B(n)
.

Proof. Proof We have the following equations:

π({mj = 0,∀j ∈ J ◦}|n) =
∑

m∈S(n):
mj=0,j∈J◦

1

B(n)

∏

j∈J

((

mj

mji : j ∈ i

)
∏

i:j∈i

µ
−mji

ji

)

=
∑

(0,m̄)∈S(n)

1

B(n)

∏

j∈J̄

((

m̄j

m̄ji : j ∈ i

)
∏

i:j∈i

µ
−m̄ji

ji

)

=
∑

m̄∈S̄(n)

1

B(n)

∏

j∈J̄

((

m̄j

m̄ji : j ∈ i

)
∏

i:j∈i

µ
−m̄ji

ji

)

=
B̄(n)

B(n)
.

Although it is difficult to directly deal with events of the form {mj = 0, ∀j ∈ J ◦}, we can deal with
events of the form {mj > 0, ∀j ∈ J ′} where J ′ ⊂ J ◦.

Lemma 5. For J ′ ⊂ J ◦,

π({mj > 0,∀j ∈ J ′}|cn+ uc) −−−→
c→∞

∏

j∈J ′

U∗
j (n)

where we define

U∗
j (n)

def
=
∑

i:j∈i

Λ∗
i (n)

µji

. (4.6)

Proof. Proof To prove this lemma, we consider the explicit stationary distribution of a closed multi-class
queueing network (2.1).

Recall s = (sj : j ∈ J ) where sj = (ij(k) : k = 1, ..., mj) ∈ Imj keeps track of the exact position and
route type of each customer within a queue. With this state representation, we can calculate the probability
that the customer at the head of each queue j ∈ J ′ is from a specific route type r(j) ∈ I. In particular, if
we let r(j) be the route type of the customer at the head of queue j ∈ J ′ and we let the vector n′ give the
number of customers of each route type at the heads of these queues then we can see that

π({ij(1) = r(j), j ∈ J ′}|n) =
∑

s∈X(n):

ij(1)=r(j),j∈J ′

1

B(n)

∏

j∈J

∏

i:j∈i

µ
−mji

ji

=

[
∏

j∈J ′

1

µjr(j)

]

×
∑

s′∈X(n−n′)

1

B(n)

∏

j∈J

∏

i:j∈i

µ
−m′

ji

ji

=

[
∏

j∈J ′

1

µjr(j)

]

×
B(n− n′)

B(n)
.

In the second inequality above, we factor out the multiplicative terms corresponding to the heads of each
queue in J ′. We then notice the remaining states that must be summed over are all the states where there
are n− n′ customers on each route. The resulting sum then gives the normalizing constant when there are
n− n′ customers on each route.

Next, by Proposition 2, we have that

π({ij(1) = r(j), j ∈ J ′}|n) =

[
∏

j∈J ′

1

µjr(j)

]

×
B(n− n′)

B(n)
−−−→
c→∞

∏

j∈J ′

Λ∗
r(j)(n)

µjr(j)

. (4.7)

The events {ij(1) = r(j), j ∈ J ′} are disjoint for different choices of r′ = (r(j) : j ∈ J ′). For a queue to be
nonempty, there must be some customer at its head. Thus,

⋃

r′∈IJ′

{ij(1) = r(j), j ∈ J ′} = {mj > 0, j ∈ J },
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and consequently using (4.7), we have

π({mj > 0, j ∈ J }|n) =
∑

r′∈IJ′

π({ij(1) = r(j), j ∈ J ′}|n)

=
∑

r′∈IJ′

[
∏

j∈J ′

1

µjr(j)

]

×
B(n− n′)

B(n)

−−−→
c→∞

∑

r′∈IJ′

∏

j∈J ′

(
Λ∗

r(j)(n)

µjr(j)

)

=
∏

j∈J ′

(
∑

r∈I

Λ∗
r(n)

µjr

)

=
∏

j∈J ′

U∗
j (n)

as required.

Now we are in the position to prove the convergence of term (c) in expression (4.3).

Proposition 3.

B̄(cn+ uc)

B(cn+ uc)
−−−→
c→∞

∏

j∈J◦

(
1− U∗

j (n)
)

Proof. Proof In the following expression, we use Lemma 4; we apply the Inclusion-Exclusion Principle (4.9);
we apply Lemma 5 (4.10); and then we notice the resulting summation is

∏

j∈J◦

(
1− U∗

j (n)
)
expanded:

B̄(cn+ uc)

B(cn+ uc)
=π({mj = 0, ∀j ∈ J ◦}|cn+ uc) (4.8)

=1− π

(
⋃

j∈J◦

{mj > 0}
∣
∣
∣cn+ uc

)

=
J◦

∑

k=0

∑

j1,...,jk∈J◦:
j1<...<jk

(−1)kπ({mj > 0, j = j1, ..., jk}|cn + uc) (4.9)

−−−→
c→∞

J◦

∑

k=0

∑

j1,...,jk∈J◦:
j1<...<jk

(−1)k
∏

j=j1,...,jk

U∗
j (n) =

∏

j∈J ◦

(
1− U∗

j (n)
)
. (4.10)

In expression (4.9), the k = 0 summand is understood to equal 1.

We have now discovered the limiting behavior of terms (a), (b), and (c), and we can prove Theorem 1.

Proof. Proof of Theorem 1We apply to the equality (4.3) the results (4.5) (which we derived from Proposition
3) and Proposition 2:

π◦(m◦|cn+ uc) =
B̄(cn+ uc)

B(cn+ uc)
×

B̄(cn+ uc − n◦)

B̄(cn+ uc)
×
∏

j∈J ◦





(

m◦
j

m◦
ji : j ∈ i

)
∏

i:j∈i

1

µ
m◦

ji

ji





−−−→
c→∞

∏

j∈J◦

(
1− U∗

j (n)
)
×
∏

j∈J◦

∏

i:j∈i

Λ∗
i (n)

m◦
ji ×

∏

j∈J◦

((

m◦
j

m◦
ji : j ∈ i

)
∏

i:j∈i

(
1

µji

)m◦
ji

)

=
∏

j∈J◦

(
1− U∗

j (n)
)
×
∏

j∈J◦

((

m◦
j

m◦
ji : j ∈ i

)
∏

i:j∈i

(
Λi(n)

µji

)m◦
ji

)

=π◦
Λ∗(n)(m

◦).

This proves that our network’s non-bottleneck queues become independent.

We have now shown, for our stationary closed queueing network, convergence in distribution of non-
bottleneck queues to a stationary open queueing network. We now wish to show convergence of queue sizes
in expectation, Theorem 2.

Building on the above results, we now develop a proof for Theorem 2. Once again, we gain the result by
considering a modified version of our original queueing network. Recalling the normalizing constant B(n)
(2.3), let B+j(n) be the normalizing constant of the closed queueing network that is obtained by adding a
replica of queue j. This replica is added immediately after queue j. Customers leaving j will immediately
join this replica queue, and then, after service at the replica queue, customers will continue on their route.
We can now express mean queue lengths in terms of these normalizing constants.

Lemma 6.

EM◦
ji(n) =

1

µji

B+j(n− ei)

B(n)
.
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Proof. Proof For all j′ ∈ J , i′ ∈ I, we have

EM◦
j′i′(n)

def
=

1

B(n)

∑

m∈S(n):mj′i′>0

mj′i′

∏

j∈J

mj !
∏

i:j∈i

µ
−mji

ji

mji!
(4.11)

=
µ−1
j′i′

B(n)

∑

m∈S(n):mj′i′>0

∏

j∈J :
j 6=j′

mj !
∏

i:j∈i

µ
−mji

ji

mji!
×mj′ !

∏

i:j′∈i,i6=i′

µ
−mj′i

j′i

mj′i!
×

µ
−mj′i′+1

j′i′

(mj′i′ − 1)!
(4.12)

=
µ−1
j′i′

B(n)

∑

m∈S(n−ei′ )

∏

j∈J :
j 6=j′

mj !
∏

i:j∈i

µ
−mji

ji

mji!
× (mj′ + 1)!

∏

i:j′∈i

µ
−m

j′i

j′i

mj′i!
(4.13)

=
µ−1
j′i′

B(n)

∑

m∈S(n−e
i′
)

∏

j∈J :
j 6=j′

mj !
∏

i:j∈i

µ
−mji

ji

mji!
×

mj′∑

k=0

(

mj′

mj′i : i ∋ j

)
∏

i:j′∈i

µ
−mj′i

j′i
. (4.14)

Using the multinomial Vandermonde convolution we can rewrite the last sum in (4.14) in the following way

mj′∑

k=0

(

mj′

mj′i : i ∋ j

)
∏

i:j′∈i

µ
−mj′i

j′i
(4.15)

=

mj′∑

k=0

∑

m̃1,m̃2∈Z
I
+:

∑
i m̃1i=k,

m̃1i+m̃2i=mj′i,∀i

(

k

m̃1i : i ∋ j′

)(

mj′ − k

mj′i − m̃1i : i ∋ j′

)
∏

i:j′∈i

µ
−mj′i

j′i
(4.16)

=
∑

m̃1,m̃2∈Z
I
+:

m̃1i+m̃2i=m
j′i

,∀i

( ∑

i m̃1i

m̃1i : i ∋ j′

)
∏

i:j′∈i

µ−m̃1i

j′i

( ∑

i m̃2i

m̃2i : i ∋ j′

)
∏

i:j′∈i

µ−m̃2i

j′i
. (4.17)

We can interpret the above identity as adding an extra queue to our network and hence it follows that

EM◦
j′i′(n) =

µ−1
j′i′

B(n)

∑

m∈S+j′ (n−e
i′

)

∏

j∈J+j′

mj !
∏

i:j∈i

µ
−mji

ji

mji!
=

µ−1
j′i′

B(n)
B+j′(n− ei′) . (4.18)

In the above expression, S+j′(n− ei′) and J +j′ are, respectively, the state space and set of queues obtained
when adding a replica of queue j′.

With Lemma 6, we can prove Theorem 2.

Proof. Proof of Theorem 2 By assumption, j ∈ J ◦ – it is a non-bottleneck queue. Notice that the replica
queue added for B+j corresponds to a repeated constraint in optimization (3.3), which by Theorem 1 implies
that the replica queue must also be a non-bottleneck queue.

By Lemma 6 and the definition of B̄(n) given in (4.1), the following equation holds

lim
c→∞

EM◦
ji(cn+ uc) =

1

µji

lim
c→∞

B̄(cn+ uc)

B(cn+ uc)

B̄(cn− ei + uc)

B̄(cn+ uc)

B+j(cn− ei + uc)

B̄(cn− ei + uc)
(4.19)

Now, using Lemma 3,

lim
c→∞

B̄(cn− ei + uc)

B̄(cn+ uc)
= Λ∗

i (n) (4.20)

Since the replica queue j is not a bottleneck, we can apply Proposition 3 twice to find that

lim
c→∞

B̄(cn+ uc)

B(cn+ uc)

B+j(cn− ei + uc)

B̄(cn− ei + uc)
=

1

1− U∗
j (n)

, (4.21)

where we recall that U∗
j (n) is defined in (4.6). Substituting (4.20)-(4.21) in (4.19), we get

lim
c→∞

EM◦
ji(cn+ uc) =

Λ∗
i (n)/µji

1− U∗
j (n)

. (4.22)

For a non-bottleneck queue, j ∈ J ◦, U∗
j (n) =

∑

i:j∈i Λ
∗
i (n)/µji < 1, with some standard calculations on one

can verify that

EM◦
Λ∗(n),ji =

Λ∗
i (n)/µji

1− U∗
j (n)

, (4.23)

for all i ∈ I and j ∈ J ◦. Thus together (4.23) and (4.22) imply the required result

lim
c→∞

EM◦
ji(cn+ uc) = EM◦

Λ∗(n),ji

for all i ∈ I and j ∈ J ◦.
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4.2 Proof of fluid limit.

In this section, we prove Theorem 3. We first introduce and recall some notation before proceeding with a
proof.

Let I(j)
def
= {i ∈ I : j ∈ i} and I(j)

def
= |I(j)|. Assuming that set I(j) is ordered, we also denote by ij(l),

with l = 1, . . . , I(j), the function that enumerates its elements. We define for each j ∈ J , an independent
Poisson marked point process Nj with intensity µj dt ⊗ du on R × [0, 1], where µj = max{µji : i ∈ I(j)},
and the function χj(mj , u) on N

I(j) × (0, 1) in the following way:

χj(mj , u) =







0 if mj = 0

ij(l) if
∑l−1

h=0 mjh µjh ≤ mj µj × u ≤
∑l

h=0 mjh µjh

0 if
∑I(j)

h=0 mjh µjh ≤ mj µj × u ≤ mj µj .

Therefore, the network process can be written as

dMji(t) = 1{χj′ (Mj′(t−), UNj′ (t)
) = i} dNj′(t)− 1{χj(Mj(t−), UNj(t)) = i} dNj(t)

where j′ denotes the queue just before j on route i, and the uniform independent random variables Uk

are generated by the second coordinate of the marked point process. In the following we will use also the
notations ĵ and ĵ′ to denote the first queue on route i before the queues j and j′ respectively that are non
empty. In integral form, we have

Mji(t) = Mji(0) + Lj′i(t)− Lji(t) + Lj′i(t)− Lji(t)

where Lji(t) is the martingale

Lji(t) =

∫ t

0

∫ 1

0

1{χj(Mj(s−), u) = i}[dNj(s, u)− µj duds],

and the process Lij(t) is given by

Lji(t) =

∫ t

0

∫ 1

0

µj 1{χj(Mj(s−), u) = i} du ds.

From the equation above, noticing that
∫ 1

0
1{χj(Mj(s, u) = i} du = (µji Mji(s))/(µj Mj(s)) and with the

convention that 0/0 = 0, we get that

1

µji

Lji(t) =

∫ t

0

µj

µji

∫ 1

0

1{χj(Mj(s−), u) = i} du ds =

∫ t

0

Mji(s−)

Mj(s−)
ds.

Summing over i : j ∈ i we have that for t′ ≤ t′′

∑

i:j∈i

1

µji

(
Lji(t

′′)− Lji(t
′)
)
=

∫ t′′

t′

∑

i:j∈i

Mji(s−)

Mj(s−)
ds =

∫ t′′

t′

∑

i:j∈i

1{Mj(s−) 6= 0} ds ≤ t′′ − t′, (4.24)

which gives the Lipschitz condition for the process Lji(t).
We define the scaled process M̄(n c, t) = c−1 M(n c, c t), such that, having Mji(0) = c nji, it has the

ji-component given by

M̄ji(n c, t) = nji +
Lj′i(ct)− Lji(ct)

c
+

Lj′i(ct)− Lji(ct)

c
.

Using the same steps as before, we can rewrite the process c−1Lji(ct) in the following way

Lji(ct)

c
=

1

c

∫ c t

0

∫ 1

0

µj 1{χj(Mj(s), u) = i} duds

=

∫ t

0

∫ 1

0

µj 1{χj(Mj(c s), u) = i} du ds =

∫ t

0

Mji(c s)

Mj(c s)
µji ds .

Proposition 4. Given n ∈ N
J×I , the processes {(M̄(n c, t), t > 0)}c>0, with M(n c, 0) = n c, are tight.

Proof. Proof By the triangular inequalities for metrics, to prove tightness of the multidimensional process
{(M̄(n c, t), t > 0)}c>0, it is enough to show that any of its coordinate processes are tight. By Theorem C.9
in Robert [36], this can be done by showing that: given i, j, for any fixed T, η > 0, there exists δ > 0 such
that

Pr{ωM̄ji(n c, ·)(δ) > η} < ǫ (4.25)

where, for a given function f , the modulus of continuity on [0, T ] is defined as

ωf (δ) = sup{|f(t) − f(s)| : s, t ≤ T, |t− s| < δ}.

13



Since M̄ji(n c, t) = n+c−1 ∆Lji(c t)+c−1 ∆Lji(c t)−(Lji(c t)) with ∆Lji(t) = Lj′i(t)−Lji(t) and ∆Lji(t) =
Lj′i(t) − Lji(t), it is enough to prove that relation (4.25) is valid separately for the processes c−1∆Lji(c t)
and c−1∆Lji(c t). We have, for T > 0 and η > 0,

Pr
{

sup
s,t≤T ;|t−s|<δ

∣
∣
∣
∆Lij(c t)

c
−

∆Lij(c s)

c

∣
∣
∣ > η

}

= Pr
{

sup
s,t≤T ;|t−s|<δ

∣
∣
∣

∫ t

s

(
Mj′i(c u)

Mj′(c u)
µj′i −

Mji(c u)

Mj(c u)
µji

)

du
∣
∣
∣ > η

}

≤ Pr
{

sup
s,t≤T ;|t−s|<δ

∫ t

s

∣
∣
∣
∣

Mj′i(c u)

Mj′ (c u)
µj′i −

Mji(c u)

Mj(c u)
µji

∣
∣
∣
∣
du > η

}

≤ Pr
{

sup
s,t≤T ;|t−s|<δ

2|t − s|µ > η
}

= 0 (4.26)

with δ < η/(2µ) and where µ = max{i, j : µji}.
For the martingale c−1 ∆Lji(c t), we have that

Pr
{

sup
s,t≤T ;|t−s|<δ

∣
∣
∣
∆Lji(c t)

c
−

∆Lji(c s)

c

∣
∣
∣ > η

}

= Pr
{

sup
t≤T

∆Lji(c t)

c
>

η

2

}

≤
4

c2η2
E
[
(∆Lji(c t))

2]

where the last inequality follows by applying the Doob’s inequality. Having that E
[
(∆Lji(c T ))

2
]
≤ 2µcT

we have that for c > 8µT/(ǫη2) the probability is bounded above by ǫ, as required.

The tightness property ensures the relative compactness, therefore from every sequence {(M̄(n c, t), t >
0)}c>0, with M(n c, 0) = n c and n fixed, it is possible to extract a convergent subsequence. The following
proposition ensures that any limit process will be given by a fluid solution.

Proposition 5. Assume that a sequence of processes {(M̄(n c, t), t > 0)}c>0 converges to a limit process
m(t) as c → ∞. Then, m(t) is almost surely continuous and it is a fluid solution as defined in Definition 2.

Proof. Proof Using the Skorohod’s Representation theorem, see Robert [36, Theorem C.8], we can assume
that all the elements of the sequence are random processes defined on the same probability space with
probability P and the convergence is P-a.s.

Since we have that for any c

M̄ji(n c, t) = nji +
∆Lji(c t)

c
+

Lj′i(c t)

c
−

Lji(c t)

c
,

passing to the limit and using bounded convergence for the integral we get

m̄ji(t) = nji + Lj′i(t)− Lji(t)

where

Lji(t) = lim
c→∞

∫ t

0

Mji(c u)

Mj(c u)
µji du,

which exists by (4.26). In particular, if mj(t) > 0 for some t, it will be positive in a neighborhood B(t) of t
by continuity. It follows that for t′ < t′′ and t′, t′′ ∈ B(t),

Lji(t
′′)− Lji(t

′) = lim
c→∞

∫ t′′

t′

Mji(c u)

Mj(c u)
µji du =

∫ t′′

t′
lim
c→∞

Mji(c u)

Mj(c u)
µji du =

∫ t′′

t′

mji(u)

mj(u)
µji du,

where in the second equality we have used the bounded convergence theorem, which implies equation (2.10d),
i.e.

Λji(t) =
dLji(t)

dt
= µji

mji(t)

mj(t)
as mj(t) > 0.

The additional conditions satisfied by Lji(t) easily follow as equivalent property holds for the approximating
processes {c−1 Lji(c t), c > 0}, in particular the Lipschitz condition follows by (4.24).

4.3 Proof of convergence of bottleneck queues.

We now focus on proving Theorem 4. For technical reasons that we will explain shortly, our proof is quite
involved and requires a number of lemmas. For a solution (m(t), L(t)) of the fluid model (2.10), let Λji(t)
be the derivative of Lji(t), when it exists. Let also lji be the queue before queue j on route i and xji be the
next queue after queue j on route i.

We recall the function β(m(t)):

β(m(t))
def
=
∑

j∈J

∑

i:j∈i
mji(t)>0

mji(t) log
mji(t)µji

mj(t)
. (4.27)
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The terms mji(t) are Lipschitz and thus are differentiable for almost every t. So, if mji(t) > 0 then we can
differentiate the ijth summand of (4.27). However, if mji(t) = 0, taking a derivative become a significantly
more technical issue. The following proposition ensures we can differentiate the summands of β(m(t)) and
the subsequent lemma ensures summands have zero derivative when mji(t) = 0.

Proposition 6. For each i and j ∈ i and for any time interval [t0, t] with t > t0 > 0, there exists a constant
D > 0 such that for any t1, t2 ∈ [t0, t]

|β(m(t2))− β(m(t1))| ≤ D|t2 − t1| . (4.28)

Moreover, the same locally-Lipschitz condition applies to each summand of β(m(t)), (4.27).

Lemma 7. For functions f : R+ → R+ and p : R+ → [0, 1], if t > 0 is such that the derivative of f exists
at t, the derivative of f log p exists at t and f(t) = 0 then

df

dt
= 0 and

df log p

dt
= 0.

Proposition 6 is based on Proposition 4.2 of Bramson [7]. Both Proposition 6 and Lemma 7 are proven
in Appendix B. It will also be useful to have the following lemma, which is proven in Appendix B.

Lemma 8. For almost every t, 0 < Λji(t) ≤ µmax, where µmax = max{µji : i ∈ I, j ∈ i}.

Recalling that xji is the next queue on route i after j and that lji is the queue before queue j on route
i, we can now prove the following proposition.

Proposition 7. For almost every t,

dβ(m(t))

dt
= −

∑

i∈I

∑

j∈i

Λji(t) log
Λji(t)

Λxjii(t)
. (4.29)

Proof. Proof Our processes in Proposition 6 are absolutely continuous and thus almost everywhere differen-
tiable. So for almost every t, we can differentiate the terms Lji(t), mij(t), mj(t), mij(t) log(mji(t)µji/mj(t)),
and β(m(t)). Differentiating, we obtain

dβ(m(t))

dt
=
∑

j∈J

∑

i:j∈i
mji(t)>0

(dmji logmji

dt
−

dmji

dt
log µji

)

−
∑

j∈J :
mj(t)>0

dmj logmj

dt
(4.30a)

=
∑

j∈J

∑

i:j∈i
mji(t)>0

(dmji

dt
logmji +

dmji

dt
−

dmji

dt
log µji

)

−
∑

j∈J :
mj (t)>0

(
dmj

dt
logmj +

dmj

dt

)

(4.30b)

=
∑

j∈J

∑

i:j∈i
mji(t)>0

dmji

dt
log

mji(t)µji

mj(t)
(4.30c)

=
∑

i∈I

∑

j∈i

(

Λljii(t)− Λji(t)
)

log Λji(t) (4.30d)

=
∑

i∈I

∑

j∈i

Λji(t)
(

log Λxjii(t)− log Λji(t)
)

(4.30e)

= −
∑

i∈I

∑

j∈i

Λji(t) log
Λji(t)

Λxjii(t)
. (4.30f)

For the above sequence of equalities, in equality (4.30a), we restrict our attention to summands with mji(t) >
0 by applying Lemma 7 and Proposition 6. Equality (4.30c) holds by observing that

∑

i:j∈i mji = mj and

canceling terms. For equality (4.30d), we know by our fluid model assumption (2.10a) that m′
ji(t) =

Λljii(t) − Λji(t). In addition, we note that if mji > 0 then, using (2.10d), log
mjiµji

mj
= log Λji(t) and if

mji(t) = 0 then 0 = m′
ji(t) = Λljii(t)− Λji(t) and Λji(t) > 0 (by Lemma 8). Thus, we may reintroduce the

mji(t) = 0 terms in our summation. In equality (4.30d), for each route, we re-interpolate the first term in
our summation.

The next lemma, found in Cover and Thomas [14], will be of key importance in bounding our Lyapunov
function.

Lemma 9 (Pinsker’s Inequality). For the relative entropy between two discrete probability distributions
p = (pj)j and q = (qj)j with the same support:

D(p||q) =
∑

j

pj log
pj
qj

,

the following inequality holds
√

D(p||q) ≥
∑

j

|pj − qj |.
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Applying Pinsker’s inequality to Proposition 7 gives

Lemma 10. For almost every t,

dβ(m(t))

dt
≤ −

∑

i∈I

1

µmax|J |

∑

j∈i

(

Λji(t)− Λxjii(t)
)2

, (4.31)

where |J | is the size of set J and we recall that µmax = max{µji : i ∈ I, j ∈ i}.

Proof. Proof Let t be a time for which Proposition 7 holds and let ΛΣ
i (t) =

∑

j∈i Λji(t), for i ∈ I. For each

i, let pj = Λji(t)/Λ
Σ
i (t) and qj = Λxjii(t)/Λ

Σ
i (t). By Lemma 8, p and q both have the same support. For

each i, we applying Pinsker’s Lemma

∑

j∈i

Λji(t)

ΛΣ
i (t)

log
Λji(t)

Λxjii(t)
=
∑

j∈i

pj log
pj
qj

≥

(
∑

j∈i

|pj−qj |

)2

≥
∑

j∈i

|pj−qj |
2 =

1

(LΣ
i (t))

2

∑

j∈i

(

Λji(t)−Λxjii(t)
)2

Multiplying the left and right of this inequality by −LΣ
i (t), summing over i ∈ I gives

dβ(m(t))

dt
= −

∑

i∈I

∑

j∈i

Λji(t) log
Λji(t)

Λxjii(t)
≤ −

∑

i∈I

1

LΣ
i (t)

∑

j∈i

(

Λji(t)− Λxjii(t)
)2

.

Recall that from Lemma 8 that Λji(t) ≤ µmax thus ΛΣ
i (t) ≤ |J |µmax. Applying this bound to ΛΣ

i (t) the
above equation gives the required result (4.31).

We define m∗ to be a solution to the optimization problem

minimize β(m) subject to
∑

j∈i

mij = ni, i ∈ I over mji ≥ 0, i ∈ I, j ∈ i. (4.32)

As we discussed, we expect the path of the m(t) to converge to the optimal value of the optimization. To
conduct further analysis, we characterize the dual of this problem.

Lemma 11. The dual of the optimization (4.32) is

maximize
∑

i∈I

ni log Λi subject to
∑

i:j∈i

Λi

µji

≤ 1 over Λi ≥ 0, i ∈ I.

Proof. Proof Taking Lagrange multipliers λ ∈ R
I , its Lagrangian function is,

L(m,λ) =
∑

j∈J :mj>0

∑

i∈I

mji log
mjiµji

mj

+
∑

i∈I

λi

(

ni −
∑

j:j∈i

mji

)

=
∑

j∈J :mj>0

∑

i∈I

mji log
mjiµji

mjeλi
+
∑

i∈I

λini

=
∑

j∈J :mj>0

mjD(p(j)||q(j))−
∑

j∈J :mj>0

mj log
(∑

i:j∈i

eλiµ−1
ji

)

+
∑

i∈I

λini.

In the last inequality above, we let p(j) = (mji/mj : i ∋ j) and q(j) = (eλiµ−1
ji /

∑

r e
λrµ−1

jr : i ∋ j). Recalling

our Remark 3 on relative entropies, this Lagrangian is minimized by taking p(j) = q(j) for each j ∈ J , where
D(p(j)||q(j)) = 0, and then by minimizing over mj . In particular, we get the Lagrange dual function

min
m∈RK

+

L(m,λ) =

{∑

i:ni>0 niλi if
∑

i:j∈i
eλi

µji
≤ 1, ∀j ∈ J ,

−∞ otherwise.

Thus, we find dual

maximize
∑

i:ni>0

niλi subject to
∑

i:j∈i

eλi

µji

≤ 1 over λ ∈ R
I .

Substituting Λi = eλi gives the required result

maximize
∑

i:ni>0

ni log Λi subject to
∑

i:j∈i

Λi

µji

≤ 1, ∀j ∈ J over Λ ∈ R
I
+.

Lemma 12. If, for some ǫ > 0, β(m(t)) ≥ β(m∗) + ǫ then there exists δ > 0, i ∈ I and j ∈ i such that

|Λji(t)− Λxjii(t)| ≥ δ.
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Proof. Proof We develop a proof by contradiction. If this result were not true, as the set of queue sizes
is compact, we could construct a sequence of times tk, k = 1, 2, 3, ... such that β(m(tk)) ≥ β(m∗) + ǫ and
m(tk) → m̃, as k → ∞ and

∑

i∈I

∑

j∈i

∣
∣
∣Λji(t

k)− Λji(t
k)
∣
∣
∣ −−−−→

k→∞
0.

For each queue j ∈ I with m̃j > 0, let j+i be the next non-empty queue on route i i.e. m̃
j
+

i
i
> 0. We can

say

Λji(t
k) −−−−→

k→∞

m̃jiµji

m̃j

and Λ
j
+

i
i
(tk) −−−−→

k→∞

m̃
j
+

i
i
µ
j
+

i
i

m̃j+
.

We letting J+ be the set of queues on route i between j and j+i that includes j but does not include j+i .
Applying a triangle inequality across these queues, we can say that

∣
∣
∣
∣
∣

m̃jiµji

m̃j

−
m̃

j
+

i
i
µ
j
+

i
i

m̃j+

∣
∣
∣
∣
∣
≤ lim

k→∞





∣
∣
∣
∣

m̃jiµji

m̃j

− Λji(t
k)

∣
∣
∣
∣
+

∣
∣
∣
∣
∣

m̃
j
+

i
i
µ
j
+

i
i

m̃
j
+

i

− Λ
j
+

i
i
(tk)

∣
∣
∣
∣
∣
+
∑

l∈J+

∣
∣
∣Λli(t

k)− Λxlii(t
k)
∣
∣
∣



 = 0.

Applying this triangle inequality once more, for any queue l on route i that is between j and j+i , we see that

lim
k→∞

∣
∣
∣
∣

m̃jiµji

m̃j

− Λli(t
k)

∣
∣
∣
∣
= 0.

In other words, for each route i and for all queue j ∈ i, Λji(t
k) converges to some value L̃i > 0 where if

m̃j > 0 we have that

L̃i =
m̃jiµji

m̃j

for some constant L̃i > 0. Observe that, by (2.10b), for each queue j ∈ J

∑

i:j∈i

L̃i

µji

≤ 1

also
β(m̃) =

∑

i∈I

∑

j:j∈i

m̃ji log L̃i =
∑

i∈I

ni log L̃i. (4.33)

Thus, the vector L̃ = (L̃i : i ∈ I) is feasible for the dual problem and the vector m̃ is feasible for the
primal problem. We know by Weak Duality (for a minimization) that any primal feasible solution is bigger
than that of the dual. Thus, we know by (4.33) that the primal equals dual solution and so m̃ must be
optimal for the primal problem i.e. β(m̃) = β(m∗). This must be a contradiction because by assumption
β(m(tk)) ≥ β(m∗) + ǫ and thus by continuity of β, β(m̃) ≥ β(m∗) + ǫ.

We are now in a position to prove Theorem 4.

Proof. Proof of Theorem 4 We found β(m(t)) was absolutely continuous in t. In Lemma 10, we found the
derivative of β(m(t)) was almost everywhere negative and thus β(m(t)) must be a decreasing function.

Suppose for s ∈ [0, t], β(m(s)) ≥ β(m∗) + ǫ for some ǫ > 0 then by Lemma 12 there exists an i ∈ I and
a j ∈ i

|Λji(s)− Λji(s)| ≥ δǫ,

for some δǫ > 0. Thus, applying this to our bound in Lemma 10 for intervals of time [0, t] such that
β(m(s)) ≥ β(m∗) + ǫ, we have that

β(m(t)) ≤ β(m(0))− t
δ2ǫ

|J |µmax

.

As β(m(t)) is bounded below by β(m∗), the above inequality cannot be sustained for all times t. In other
words, eventually β(m(t)) ≤ β(m∗) + ǫ. Thus β(m(t)) ց β(m∗). This proves the first assertion in Theorem
4.

Now, it remains to show that m(t) approaches M, the set of solutions to (4.32). Take some ǫ1 > 0. Let
m = (mji : i ∈ I, j ∈ i) be any vector with

∑

j:j∈i mji = ni for i ∈ I and such that

min
m∗∈M

|m−m∗| ≥ ǫ1.

Such an m belongs to a compact set and thus, as β is continuous, it must be that β(m) ≥ β(m∗) + ǫ for
some ǫ > 0. Or stated differently, if β(m) < β(m∗) + ǫ then it must be that

min
m∗∈M

|m−m∗| < ǫ1.

As we have just shown, β(m(t)) < β(m∗) + ǫ holds eventually for all fluid paths. Thus,

lim
t→∞

min
m∗∈M

|m(t)−m∗| = 0.
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Appendix

A Proof of Lemma 2.

We consider both optimal solutions Λ̄∗(n) and Λ∗(n). Let

Gn(Λ) =
∑

i∈I

ni log Λi

Since Λ̄∗(n) is the solution of an optimization with a larger feasible set Gn(Λ̄
∗(n)) ≥ Gn(Λ

∗(n)).
Take v = Λ̄∗(n) − Λ∗(n). Note Λ∗(n) + δv belongs to feasible set

{

Λ ≥ 0 :
∑

i:j∈i

Λi

µji

≤ 1, j ∈ J

}

for all δ suitably small. If this were not so then there would have been some constraint/queue which we did
not correctly include in the set of bottleneck links J̄ . Taking the partial derivative of Gn from Λ∗(n) in the
direction of v, we can then say that

∑

i∈I

vi
∂Gn(Λ

∗(n))

∂Λi

≤ 0.

This holds because Λ∗(n) is optimal. Now, also, by the concavity of Gn(·)

Gn(Λ̄
∗(n))−Gn(Λ

∗(n)) ≤
∑

i∈I

vi
∂Gn(Λ

∗(n))

∂Λi

.

So, Gn(Λ̄
∗(n)) ≤ Gn(Λ

∗(n)), and thus Gn(Λ
∗(n)) = Gn(Λ̄

∗(n)). By the strict concavity the optimum of
Gn(·) is unique, so, it must be that Λ̄∗(n) = Λ∗(n).

B Lipschitz Continuity of β(m(t)).

Before proceeding to prove the Lipschitz continuity of β(m(t)), i.e., Proposition 6, we give a proof of Lemma 7.

Proof. Proof of Lemma 7 We use the fact that we know that the derivative exists. First, it is clear that
df

dt
= 0 because

df

dt
= lim

hց0

f(t+ h)− 0

h
≥ 0 and

df

dt
= lim

hր0

f(t+ h)− 0

h
≤ 0.

Now, noting that f log(p) is negative for all p ≤ 1 and by using the same argument, we have

df log p

dt
= lim

hց0

f(t+ h) log p(t+ h)− 0

h
≤ 0, and

df log p

dt
= lim

hր0

f(t+ h) log p(t+ h) − 0

h
≥ 0.

Thus df log f

dt
= 0.

We now demonstrate that the function β(m(t)) is Lipschitz continuous on any compact time interval.
Here m(t) is any solution to the fluid equations (2.10) and β(m) is defined by (3.6). The following arguments
are adapted from Lemma 4.2 and Proposition 4.2 of Bramson [7]. All queues may empty in our network, so
we have to apply some degree of care in proving the Lipschitz continuity on compact time intervals. First,
we prove Lemma 8.

Proof. Proof of Lemma 8 Suppose that m(t) and L(t) are differentiable at t. We may assume Λji(t) > 0 for
some queue j on route i. Such a queue must exist because there is always some queue with mji(t) > 0 as
ni > 0 and thus by (2.10d) Λji(t) > 0. Now consider xji the next queue on route i, if mxjii(t) > 0 then by
(2.10d) Λxjii > 0, and if mxjii(t) = 0 then m′

xjii
(t) = 0, thus by (2.10a) Λxjii(t) = Λji(t) > 0. Continuing

inductively we see that Λji(t) > 0 for all queues.
From this argument we now see that the value of Λji(t) on any route i is achieved by a queue j∗ with

mj∗i > 0. Thus applying (2.10d), Λji(t) ≤ µji ≤ µmax.

Proposition 8. For almost every t > t0 > 0, there exists a constant T > 0 such that if t − t0 < κT for
κ ∈ N then

min
ji

Λji(t) >
minji Λji(t0)

(1 + maxji µji)κ

Here κ is a strictly positive constant which depends on m(t0), the fluid model state at time t0.

In order to prove this proposition we require the following lemma
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Lemma 13. For almost every time t0 and t with t > t0, if a queue j on route i, has arrival process from
the queue before j, lji, such that for almost every s ∈ [t0, t]

Λlijj(s) > c,

then the output of route i from queue j satisfies

Λji(t) ≥ c′ (B.1)

where

c′ = min

{

Λji(t0),
c

1 + maxji µji

}

.

Proof. Proof
We note that Lij(t) is a Lipschitz function and thus is almost everywhere differentiable. We assume

that t and t′ are differentiable points where (B.1) is violated. Observe that if mji(t) = 0 then, by (2.10a),
0 = m′

ji(t) = Λji(t)−Λljii(t). Thus Λji(t) = Λljii(t) > c > c′. So it must be that mji(t) > 0. Consequently
by (2.10d), Λji(s) = µjimji(s)/mj(s) must be continuous on an interval around t and there must be an
open interval around t for which Λji(s) < c′.

For a Λji(s) to get small we need the total number of departures to be comparable relative to the arrivals.
So, we will next argue the contradiction that Λji(t) cannot enter an interval of time for which Λji(s) < c′

without the average departure rate (Λji(t)− Λji(s))/(t− s) being bigger that c′.
We let t̃ be the last time before t for which Lji(t̃) ≥ c′. Note Lji(t0) ≥ c′, so t̃ is well defined. We use

the shorthand Lji(t̃, t) = Lji(t)− Lji(t̃) and ∆j(t̃, t) = mj(t)−mj(t̃). As mij(t) > 0, by (2.10d), we have

c′ > Λji(t) = µji
mji(t)

mj(t)
= µji

mji(t̃) + Lljii(t̃, t)− Lji(t̃, t)

mj(t̃) +∆j(t̃, t)
.

Rearranging the above expression implies

Lji(t̃, t) > Lljii(t̃, t)− c′∆j(t̃, t) + µjimji(t̃)− c′mj(t̃) ≥ Lljii(t)− c′∆j(t̃, t).

The last inequality holds because, by (2.10d), Λji(t̃) ≥ c′ implies µjimji(t̃) − c′mj(t̃) ≥ 0. We now look at
the mean value of the terms in the above inequality:

Lji(t̃, t)

t− t̃
>

Lljii(t̃, t)

t− t̃
− c′

∆j(t̃, t)

t− t̃
≥ c− c′ max

ji
µji ≥ c′.

In the second inequality above, we use the assumption that Λlijj(s) > c, s ∈ [t0, t0 + T ] and the fact the
average change in mj(t), ∆j(t̃, t)/(t− t̃), is at most the maximum service rate maxji µji. The final inequality
holds by our choice of c′. This then contradicts our assumption that Λji(s) < c′ on the interval (t̃, t].

The following lemma is a consequence achieved by iteratively applying the last result. We have to apply
some care because, in comparison to Bramson’s open network analysis [7], every queue can empty or have
low arrival and departure rate.

Lemma 14. For almost every t0, there exists an interval of fixed length [t0, t0 + T ] such that for almost
every t ∈ [t0, t0 + T ] and for all i ∈ I and j ∈ J

Λji(t) > c̃(t0) > 0.

Here c̃(t0) is a function of the network state at time t0.

Proof. Proof On route i there is always one queue with greater than or equal to the average amount of work.
Without loss of generality, i.e. relabelling queues if necessary, we assume that this is the first queue on route
i. So, we have that for any route i

mj1
i
i(t0) ≥

minr nr

I
.

The biggest rate that this queue could decrease is maxji µji. So, we have

mj1
i
i(t) ≥

minr nr

2I
for t ∈ [t0, t0 + T ],

where we define T = minr nr

2I maxji µji
, and

Lji(t0) = µji
mji(t0)

mj(t0)
>

minji µji minr nr

2I
∑

r nr

= c1.

We can now repeatedly apply Lemma 13. Starting from c1 above for k = 1, . . . , ki − 1 we define

ck+1 = min

{

Λji(t0),
ck

1 + maxji µji

}

.
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Each time we iterate, we reduce ck by at least 1 + maxji µji. A simple lower bound, which is sufficient for
our purposes, is that

ck ≥
minji Λji(t0)

(1 + maxji µji)K
def
= c̃(t0)

where K = maxi ki is the longest route within the queueing network. Thus, from this repeated application
of Lemma 13, we have that

Λji(t) ≥ c̃(t0)

for almost every t ∈ [t0, t0 + T ].

In a similar manner to Proposition 4.2 of Bramson [7], now we show that β(m(t)) is Lipschitz on any
compact time interval.

Proof. Proof of Proposition 6 Note that without loss of generality, we may assume interval [t0, t] is of length
less than or equal to T = minr nr

2I maxji µji
, where T was derived in the last lemma, Lemma 14. If t− t0 > T then

we can split the interval [t0, t] in to overlapping sub-interval of size T and then use the largest Lipschitz
constant found in each sub-interval as a Lipschitz constant for [t0.t].

Note that

β(m(t)) =
∑

j∈J

∑

i:j∈i
mji(t)>0

mji(t) log
mji(t)µji(t)

mj(t)
=
∑

j∈J

∑

i:j∈i

mji(t) log Λji(t).

It is enough to prove Lipschitz continuity of each term summed above:

|mij(t2) log(Λji(t2))−mij(t1) log(Λji(t1))| ≤ D1 |t2 − t1| .

By Lemma 14 for s ∈ [t0, t], log(Λji(s)) is bounded below by c̃(t0) and also above by mj , the maximum
service rate of queue j. So

| log(Λji(s))| ≤ D0
def
= max{| log(mj)|, | log(c̃(t0))|}.

If mij(t2) = mij(t1) = 0, the relation is trivial, so we assume that mij(t2) > 0. If mij(t1) = 0 we have
that

|mij(t2) log(Λji(t2))| ≤ D0|mij(t2)| = D0|mij(t2)−mij(t1)| ≤ D2 D0 |t2 − t1|

where the constant D0 is as above and the constant D2 is the Lipschitz constant of mij(t).
Now assume mij(t2) and mij(t1) both positive, and without loss of generality that

Λji(t1) ≤ Λji(t2) .

It follows that

|mij(t2) log Λji(t2)−mij(t1) log Λji(t1)| ≤ |mij(t2)−mij(t1)| |log Λji(t2)|

+mij(t1) |log Λji(t2)− log Λji(t1)|

Again the first term in this upper bound is less than or equal to D2 D0 |t2 − t1|. The second term, since the
logarithm function is concave and has its derivative maximized at the left-most point, can be bounded in
the following way

mij(t1) |log Λji(t2)− log Λji(t1)| ≤
mij(t1)

Λji(t1)
|Λji(t2)− Λji(t1)|

=

∣
∣
∣
∣
mj(t1)

mji(t2)

mj(t2)
−mij(t1)

∣
∣
∣
∣

≤
mij(t2)

mj(t2)
|mj(t2)−mj(t1)|+ |mij(t2)−mij(t1)|

≤ |mj(t2)−mj(t1)|+ |mij(t2)−mij(t1)|

≤ D3 |t2 − t1|,

which follows from the fact that mij(t2) ≤ mj(t2) and the fact that both mij(t) and mj(t) are Lipschitz
continuous. The result follows by choosing D1 ≥ max{D3, D2 D0}.
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