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Abstract

We study a nonatomic congestion game with N parallel links, with each link under the control of
a profit maximizing provider. Within this ‘load balancing game’, each provider has the freedom to
set a price, or toll, for access to the link and seeks to maximize its own profit. Within fixed prices,
a Wardrop equilibrium among users is assumed, under which users all choose paths of minimal and
identical effective cost. Within this model we have oligopolistic price competition which, in equilibrium,
gives rise to situations where neither providers nor users have incentives to adjust their prices or routes,
respectively. In this context, we provide new results about the existence and efficiency of oligopolistic
equilibria. Our main theorem shows that, when the number of providers is small, oligopolistic equilibria
can be extremely inefficient; however as the number of providers N grows, the oligopolistic equilibria
become increasingly efficient (at a rate of 1/N) and, as N → ∞, the oligopolistic equilibrium matches
the socially optimal allocation.

1 Introduction

As researchers in networking and telecommunications have become increasingly interested in economics and
game theory, one of the topics that has spurred significant research is that of congestion games (a.k.a.
routing games). Applications of congestion games are numerous, including settings such as communication
networks and transportation networks, and resultantly a large literature has grown studying the existence
and efficiency of equilibria in a variety of congestion games. See [24] for a recent survey.

In the classic formulation of a congestion game there are noncooperative agents sending traffic through a
network and the agent strategies consist of possible routes through the network. In the ‘nonatomic’ version
of these games, there are a continuous number of players, each of which has a negligible effect on the others.
The utility of routes to agents corresponds to the ‘latency’ or ‘congestion’ experienced on the path. Most
typically, the Wardrop equilibria, under which every agent sends traffic along its smallest latency path(s),
are considered as the solution concept.

There is a large literature studying nonatomic congestion games and, at this point, properties related
to the existence and inefficiency (a.k.a. price of anarchy) of the Wardrop equilibria are well understood.
Interestingly, in many cases, there is little efficiency loss between the social optimal, which minimizes the
total latency across all flows, and the Wardrop equilibrium. For example, for the case of affine latency
functions the price of anarchy is bounded by 4/3 [27], i.e., the equilibria routes have total latency bounded
by 4/3 that of the minimal latency. However, under more realistic latency functions there can be significant
efficiency loss. For example, if one considers latency functions defined by queueing models (as is appropriate
for the Internet or transportation applications), the price of anarchy becomes unbounded: In the case of a
‘load balancing game’ with N parallel M/M/1 queues the price of anarchy is N [14] and when more general
queueing models are considered the price of anarchy can be unbounded even in the case of two parallel
queues [4]. Therefore, significant research has gone into understanding how to reduce the price of anarchy:
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Classic results in this direction include (i) using a Pigouvian tax (toll) [24], (ii) increasing the capacity of
each link in the network [27], and (iii) controlling centrally a small fraction of the traffic [21, 26].

In this paper, we show that competition among profit-maximizing providers (corresponding to the links
in the network) can induce efficient routing. More specifically, the model we study in this paper consists of
a nonatomic congestion game with N parallel links, with each link under the control of a profit maximizing
provider. Within this ‘load balancing game’, each provider has the freedom to set a price, or toll, for access
to the link and seeks to maximize its own profit (i.e., the product of price and traffic per time). Given prices,
a Wardrop equilibria among users is assumed, under which users all choose paths of minimal cost, which
is defined as latency plus price. See Section 2 for a formal description of the model. Within this model,
we have oligopolistic price competition among the providers and we seek to understand the existence and
efficiency of oligopolistic equilibria, which are situations where neither providers nor users have incentives to
adjust their prices or routes, respectively.

Notice that the model we consider is perhaps more representative of many settings than classic congestion
games. In particular, it provides a simple framework in which to study the impact of price and competition
among providers, and as such has application to (i) competition among cloud service providers [24, Chapter
22], (ii) transportation networks where toll roads are not centrally controlled [13], (iii) competition among
ISPs in communication networks [32], and (iv) freight transportation [10]. More generally, the model captures
the impact of competition and price in congested markets, see [2] for a discussion of such markets.

In fact, the model we consider (or slight variants of it) has been studied in a number of recent papers [3, 15,
13, 12]. Interestingly, the model has proven to be highly non-trivial analytically, and little is known about
the existence and uniqueness of oligopolistic equilibria [13, 2]. This is because the provider optimization
problems are not convex and, thus, classical existence proofs do not apply. Despite limited understanding
of existence, some progress has been made in the analysis of this model. In particular, [2] has studied the
model from the perspective of the social surplus (or difference between the users’ willingness to pay and
delay costs), which is different from the price of anarchy, and shown that the ratio of the optimal attained
social surplus to the one attained at the oligopolistic equilibrium (if it exists) is bounded from below by
5/6. In parallel-serial networks, this ratio is lower bounded by 1/2 if the latency functions are zero when
evaluated at zero, otherwise it can be arbitrarily large [3]. If providers can compete over both prices and
capacities, this ratio can be again arbitrarily large [1].

In this paper, we make two main contributions to the study of oligopolistic equilibria in congestion games.
First, we provide new results about existence and non-existence of oligopolistic equilibria (Section 3). We

show existence in the case of homogeneous latency functions, and we show non-existence in the case where
the system is ‘under-provisioned’ in the sense that the ‘capacity’ of the N − 1 slowest servers is not enough
to handle the full traffic. We also give numerical evidence that the best-response algorithm converges to a
fixed-point, implying the existence of an oligopolistic equilibrium in an empirical sense.

Second, we provide a new understanding of the efficiency of oligopolistic equilibria (Section 4). Specifi-
cally, we show that if there are only two providers the oligopolistic equilibria can be arbitrarily worse than
the optimal routing in terms of total latency (i.e., the price of anarchy can be unbounded). However, as the
number of providers N grows, the price of anarchy drops at a rate of 1/N and, as N → ∞, the price of
anarchy converges to 1. As we scale N → ∞, we allow the incoming traffic to scale proportionally with N ,
thus maintaining the same ‘load’ for the system while N grows. This highlights that the improvement in
the price of anarchy is not due to a shrinking of the congestion in the system (as would happen if the traffic
grow sublinearly with N), but is in fact due to the increasing competition among the providers. So, broadly
speaking, this result can be seen as providing an example of the maxim that “competition yields efficiency”,
with the caveat (from our non-existence result) that the system “must not be under-provisioned”.

For both existence and efficiency, we specialize our results using queueing-based latency functions. These
are highly relevant for communication and transportation applications. Further, they highlight the power
of competition among providers because the inefficiency that is evident for these latency functions in classic
congestion games disappears with even a small amount of competition among providers. However, the
queueing examples also highlight the complexity of understanding existence of oligopolistic equilibria.

The remainder of this paper is organized as follows. In Section 2, we describe the price competition
game under investigation introducing the social optimum, Wardrop and oligopolistic equilibria. Section 3
presents our results on the existence of oligopolistic equilibria and Section 4 analyzes their efficiency from a
performance standpoint. Finally, Section 5 draws the conclusions of our work and outlines future research.
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2 Model and notation

As mentioned in the introduction, the model considered in this paper falls into the category of oligopolistic
pricing games [24, 15, 2, 13]

More specifically, we consider a network with N > 1 providers working in parallel. Each provider is
assumed to own a single network resource and there is an infinite inelastic stream of infinitely-many arriving
users that follows some stochastic process with intensity λ. The choice of inelastic traffic is motivated by
the fact that in several cases, e.g., cloud-computing, the prices set by providers are small enough so that
every user will choose to join the system; see, e.g., [16, 17, 18]. Upon joining the network, each user selects
exactly one provider from which to receive service. Each user, thus, carries an infinitesimally small amount
of traffic.

Let xi denote the mean amount of traffic per unit of time to provider i in some stationary regime, which
we define in the following, and denote the traffic vector by x = (x1, . . . , xN ), with

∑N
i=1 xi = λ. In the

remainder of the paper, indices i and j implicitly range from 1 to N if not otherwise specified.
Whenever a user selects provider i, it must pay an amount pi ≥ 0 to i. Let p = (p1, . . . , pN ) denote the

vector of prices and define p−j = (pi)∀i6=j . We measure the profit per time unit of provider i by pixi.
Our focus throughout is on the mean time it takes for a user to be served at i. We denote latency of

i (a.k.a., the response time, sojourn time, or flow time of i) by ℓi(xi). The form of the latency functions
can differ greatly depending on the application considered. However, in transportation and communication
networks, latency functions coming from queueing models are most typically used for modeling purposes. The
form of the resulting function still depends on several factors, such as the scheduling discipline implemented
by each provider and the details of the arrival process. One common model, which we use throughout the
paper, assumes (i) a Poisson arrival process, (ii) Processor-Sharing scheduling1 [20], (iii) i.i.d. service times,
(iv) no limit to the number of users that each provider can handle simultaneously, and (v) the selection of
a provider follows an i.i.d. probability law (as in, e.g., [14]). In this setting, for all i,

ℓi(xi) =

{

(µi − xi)
−1 if 0 ≤ xi < µi

+∞ otherwise.
(1)

Note that the parameter µi is interpreted as the mean service rate of provider i. The latency function in
(1) is very popular in communication network performance modeling and corresponds to the mean response
time of an M/GI/1/Processor-Sharing queue and an M/M/1/First-come-first-served queue [8].

Though we use the latency function (1) for illustrative purposes, the main results of the paper hold more
generally. Specifically, in the remainder of the paper we will refer to the following assumptions for the latency
functions.

Assumption 1 The functions ℓi(xi), i = 1, . . . , N , are continuously differentiable and increasing over
[0, µi), µi ≤ ∞.

Assumption 2 If there exists a vector of positive real numbers [µ1, . . . , µN ] such that limxi→µi
ℓi(xi) = +∞

for all i, then λ <
∑

i µi.

Assumption 3 The functions xiℓ
′
i(xi) are non-decreasing for all i.

Clearly the latency function in (1) satisfies these assumptions, as do latency functions based on many
other queueing models. Further, note that Assumption 3 does not necessarily require the convexity of ℓi,
which is typically assumed (e.g., in [2, 13]). Additionally, Assumption 2 guarantees the stability of the
system in the optimal allocation xOpt.

Given the latency functions for each i, we define the latency of the network under the traffic allocation
x as ℓ(x) =

∑

i
xi

λ ℓi(xi). Note that the network latency can be interpreted as a direct measure of the overall
quality of service at allocation x.

Given the setup described to this point, we can now define the optimal traffic allocation, which serves as
a benchmark for the performance of the oligopolistic equilibria we define later.

1Under Processor-Sharing scheduling a resource is shared evenly among all users present, i.e., if there are m users present
they each receive 1/mth of the resource.
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Definition 1 A traffic allocation xOpt is said socially optimal, or a social optimum, if it minimizes the
latency. That is, if

xOpt = argmin
x:

∑

i xi=λ,xi≥0,∀iℓ(x). (2)

In the remainder of this section we introduce the Wardrop and oligopolistic equilibria in the context of
the model described above.

2.1 Wardrop Equilibrium

Since we assume that the incoming traffic is the aggregate flow of infinitely many selfish users that carry
an infinitesimal amount of traffic, for a given price vector p the stationary regime is a Wardrop equilibrium
(WE). This is characterized by Wardrop’s first and second principles [29] (see also [11]): The distribution of
traffic among the providers is such that the sum of the response time and the price of each provider, i.e., the
effective cost incurred by each user, is minimum and equal at each provider. Wardrop’s principles are used
extensively in modeling the traffic distribution of communication networks and transportation networks and
has received significant attention in the algorithmic game theory community, e.g., see the recent survey in
[24].

In our context, a Wardrop equilibrium is defined as follows.

Definition 2 For a given price vector p, a vector xWE ∈ R
N is a Wardrop equilibrium if

ℓi(x
WE
i ) + pi = minj

{

ℓj(x
WE
j ) + pj

}

, ∀i : xWE
i > 0

∑

i x
WE
i = λ

xWE
i ≥ 0, ∀i.

(3)

Throughout, we denote by W (p) the Wardrop equilibrium achieved with price vector p. Note that our
setting is essentially equivalent to nonatomic load balancing games, which have been studied in a number of
recent papers [24]. In our context, it is immediate to conclude the existence and uniqueness of a Wardrop
equilibrium, see [6].

Proposition 1 For a fixed price vector p, there exists exactly one Wardrop equilibrium.

Though the proposition is well-known within our assumptions, it is useful to consider the proof. In
particular, it can be shown that the set of Wardrop equilibria under p is given by the set of minimizers of

∑

i

∫ xi

0

ℓi(z)dz + pixi (4)

subject to
∑

i xi = λ, xi ≥ 0, ∀i. Since (4) is a strictly convex function (ℓi is increasing by Assumption 1)
defined over linear constraints, a unique Wardrop equilibrium exists.

2.2 Oligopolistic Equilibrium

The key interaction that we wish to model is that of the competition among profit maximizing providers.
Given a price vector p, a provider may wish change its price to increase its individual profit in the Wardrop
equilibrium that will result. Thus, profit maximizing providers compete with each other playing the so-called
price competition game, and an oligopolistic equilibrium among the providers can arise.

An oligopolistic equilibrium represents the stationary situation where each provider has no incentives
in unilaterally changing its price because otherwise it would decrease its profit. Specifically, we define an
oligopolistic equilibrium in our setting as follows.

Definition 3 A vector pOE is an oligopolistic equilibrium if

pOE
i [W (pOE)]i = max

pi≥0
pi[W (pi,p

OE
−i )]i, ∀i. (5)
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Provided that it exists, an oligopolistic equilibrium provides a prediction of the point where the strate-
gic actions of both users and providers should converge. Throughout, we use pOE to be an oligopolistic
equilibrium and xOE = W (pOE) to be the corresponding traffic allocation.

The question of existence of an oligopolistic equilibrium is not as simple as that of existence of a Wardrop
equilibrium. However, the following proposition provides necessary conditions for a price vector to be an
oligopolistic equilibrium. Further issues related to existence are our focus in Section 3.

Proposition 2 Let pOE be an oligopolistic equilibrium and xOE = W (pOE). The following conditions must
hold































































pOE
i = xOE

i
∂ℓi(xi)
∂xi
|xi=xOE

i
+

xOE
i

∑

j 6=i:
Aj=0

(

∂ℓj(xj)

∂xj
|
xj=xOE

j

)−1

∀i : Ai = 0,

pOE
i = 0, ∀i : Ai > 0

ℓi(x
OE
i ) + pOE

i = B +Ai, ∀i
Aixi = 0, Ai ≥ 0, ∀i
∑

i x
OE
i = λ

(6)

for some B, Ai, ∀i, if at least two providers are used. Otherwise, pOE = (mini6=k ℓi(0) − ℓk(λ))ek, where
k = argminj ℓj(λ) and ek is the unit vector in direction k.

Proof: The proof consists of merging together the KKT conditions for each of the optimization problems
in (5). Each optimization problem i is analyzed assuming that the price vector pOE

−i is a constant. The
details of this calculation are shown in the appendix. Note that it follows from (6) that the variable Ai is
zero if and only if provider i is used in an oligopolistic equilibrium. Further, B is interpreted as the effective
cost (delay plus price) incurred by users. 2

3 Equilibria existence and uniqueness

The primary questions to address about oligopolistic equilibria are those of existence and uniqueness. As
mentioned above, understanding whether oligopolistic equilibria exist in our setting is non-trivial because of
the non-convex structure of the equilibrium point (5). Further, it is easy to see that there are many natural
cases where oligopolistic equilibria do not exist, which means that one cannot hope for as strong an existence
result as holds for Wardrop equilibria.

The prior literature has begun to study the question of existence; however existence has only been proven
formally in the simple case of linear functions of the type ℓi(xi) = aixi ([2], Proposition 7), which allows
the use of Kakutani’s theorem. In this section we provide two new results regarding the existence and
nonexistence of the oligopolistic equilibria.

One common property of latency functions used in communication and transportation networks is that
providers have some ‘capacity’ on the traffic that can be handled above which the latency becomes infinite.
For example, in the case of the queueing-based latency functions in (1), when xi ≥ µi. It turns out that this
capacity constraint on the providers can lead to settings where oligopolistic equilibria do not exist.

In particular, if the system is too heavily loaded, i.e., all providers need to be used to keep the congestion
cost finite, no oligopolistic equilibrium exists.

Proposition 3 Let Assumptions 1 and 2 hold. Furthermore, let (i) limxi→µi
ℓi(xi) =∞, for all i > 1, (ii)

µ1 ≥ µi, for all i > 1, (iii) λ ≥∑i>1 µi. Then, there exists no oligopolistic equilibrium.

Proof: The best response (price) of provider 1 with respect to any price set by the other providers is un-
bounded, because it will get at least λ−∑i>1 µi traffic (this because limxi→µi

ℓi(xi) =∞, i > 1). Therefore,
for any choice of a finite price by that provider, it has the incentive to increase it, which implies that there
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can be no oligopolistic equilibrium. 2

An interpretation of Proposition 3 is that, if the system is under-provisioned, then it is possible for the
provider with the highest capacity to exploit this fact and obtain arbitrarily large profits. As mentioned,
this fact is particularly relevant in the case of queueing-based latency functions.

On the other hand, let us consider the simple case of N = 2 and with latency function (1) and λ < µ2.
Thus, Proposition 3 does not apply. In this scenario, for any price set by provider i, provider j 6= i cannot
choose a price unboundedly large because provider i could handle all the traffic with an effective cost less
than the price of j, which would cause the profit of j to become zero. Therefore, the prices must be bounded
in this case. Continuing with this example, if the number of providers increases, then at a given point
we must have λ <

∑

i>1 µi (because µi = O(1)), and the non-existence argument in Proposition 3 does
not apply. Therefore, we may expect that an oligopolistic equilibrium eventually exists as the number of
providers grows while keeping λ constant. Note, however, that this argument is not sufficient to establish
the existence of an oligopolistic equilibrium, which is challenging even in this simple scenario.

Though it is difficult to provide a general existence result, we can characterize existence in the special
case of homogeneous (symmetric) latency functions. Interestingly, even in the case of homogeneous latency
functions, existence of an equilibrium is not guaranteed, the following condition on the latency functions is
necessary.

Assumption 4 The function ℓ(x) satisfies the following inequality for all x ∈ [0, λ
N )

ℓ( λ−x
N−1 )− ℓ(x)
λ−x
N−1 − x

<
λ/N

x
ℓ′(λ/N). (7)

A possible interpretation for previous assumption is that the latency function have not to increase “too fast”
for x > λ/N . Also, assume that the arrival rate scales with N , i.e., λ ← λN (this scaling will be used and
discussed in detail in next section). Then, as N →∞, condition (7) becomes: For all x ∈ [0, λ),

ℓ(λ)− ℓ(x)

λ− x
<

λ

x
ℓ′(λ) (8)

Therefore, we have the following observation.

Observation 1 If the arrival rate scales linearly with N and ℓ(x) is convex increasing, which implies
ℓ(λ)−ℓ(x)

λ−x < ℓ′(λ), then for N large enough Assumption 4 holds true.

Proposition 4 Let Assumptions 1 and 2 hold. Furthermore, let (i) all providers be homogeneous, i.e.,
ℓi(x) = ℓ(x), ∀i, (ii) ℓ(x) be convex, (iii) limx→µ ℓ(x) =∞. Then, prices

pOE
i = pOE =

λ

N − 1
ℓ′(λ/N). (9)

form the unique oligopolistic equilibrium of the price competition game if and only if λ < (N − 1)µ and
Assumption 4 holds true.

Proof: We prove existence using Definition 2. That is, assuming that all providers set price (9), we analyze
the best response of each provider to understand under which conditions has the incentive of changing its
price.

The best response of provider 1 (w.l.o.g) given that all the other providers have fixed price pOE as in (9)
is given by the optimizer(s) of

maxp1,x1,x p1x1

s.t.: ℓ(x1) + p1 = ℓ(x) + pOE

x1 + (N − 1)x = λ
x1, x ≥ 0

(10)
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where we have used that the traffic [W (p,pOE
−1 )]i are all equal (to x) for all providers i > 1 (implied by

Definition 2). From the Lagrangian of previous optimization problem, we find the following KKT conditions

p1 = x1ℓ
′(x1) +

x1

N−1ℓ
′(λ−x1

N−1 ) + C

C ≥ 0
(x1 − λ)C = 0

ℓ(x1) + p1 = ℓ(λ−x1

N−1 ) + pOE

0 ≤ x1 ≤ λ

(11)

where C is a Lagrange multiplier.
Note that, at the point C = 0, x1 = λ/N , p1 = pOE , the equation ℓ(x1) + x1ℓ

′(x1) +
x1

N−1ℓ
′(λ−x1

N−1 ) +C =

ℓ(λ−x1

N−1 ) + pOE (from (11)) is satisfied. For λ > x1 ≥ λ/N the left (right) hand term of previous equation
is strictly increasing (decreasing) and therefore no other x1 ∈ [λ/N, λ) can solve it (here, we have used the
fact that ℓ is convex and increasing). If x1 = λ, we must have ℓ(λ) + λℓ′(λ) + λ

N−1ℓ
′(0) +C = ℓ(0) + pOE =

ℓ(0) + λ
N−1ℓ(λ/N), with C ≥ 0, which is again not possible. For x1 < λ/N , there can be other solutions

for conditions (11), but we must have that all of them do not yield a better profit for provider 1. This
is true if x(ℓ( λ−x

N−1 ) − ℓ(x) + pOE) < λ
N pOE , for x ∈ [0, λ

N ). After substitution of equation (9) and some
rearrangements, the inequality holds if and only if Assumption 4 is satisfied.

Therefore, given that there are no other better stationary points than the one specified above, the only
other way provider 1 can increase its profit is to set p1 arbitrarily large (this because the optimization
problem (10) is not convex, and thus the KKT conditions (11) are not sufficient for a point to be a global
optimum). We have two cases:

i) if λ < (N − 1)µ, then [W (∞,pOE
−1 )]1 = 0 and [W (∞,pOE

−1 )]i = λ/(N − 1), i > 1, and no profit can be
made by provider 1.

ii) if λ ≥ (N − 1)µ, then [W (∞,pOE
−1 )]1 ≥ λ − (N − 1)µ and [W (∞,pOE

−1 )]i ≤ µ, i > 1, and an infinite
profit can be made by provider 1 because ℓ(µ) =∞ (some users choose provider 1 to avoid the infinite
congestion cost at other providers).

Therefore, we conclude that the best response of each provider is pOE if λ < (N − 1)µ and Assumption 4
holds true.

For the only if part, we observe that if (9) are the unique equilibrium prices, then the best response
of provider 1 can be neither infinite (which implies λ < (N − 1)µ) nor at some other solution x̄ 6= λ

N of

(11). The latter implies that the profit gained getting x̄ traffic is smaller than λ
N pOE . In particular, we

must have x̄(ℓ( λ−x̄
N−1 ) − ℓ(x̄) + pOE) < λ

N pOE , for all x̄ ∈ [0, λ
N ), which implies Assumption 4 after algebric

rearrangements. 2

It is striking that even in the case of homogeneous latency functions, the existence of an equilibrium is not
guaranteed. However, Assumption 4 is satisfied by most practical latency functions, and so we can expect

equilibria to exist in many settings. For example, Figure 1 plots the function λ/N
x ℓ′( λ

N ) − ℓ( λ−x
N−1 )−ℓ(x)
λ−x
N−1−x

(see

Assumption 4) when ℓ(x) are popular queueing latency functions. In particular, we consider the case where
ℓ(x) is as in (1) and where ℓ(x) = log µ

µ−x , which corresponds to the case where the service discipline is

Shortest-Remaining-Processing-Time (SRPT) [23, 31]. In the figure, we have set λ = 8, µ = 10 and N = 2.
Both plots capture the qualitative behavior of f(ℓ(x), x) and reveal that the assumptions of Proposition 4
are satisfied.

Also, Observation 1 says that if N is large enough and the arrival rate scales linearly with N , then
Assumption 4 holds true and existence is shown.

A final remark about Proposition 4 is that from (9) the equilibrium profit can be easily calculated, and
interestingly it can be seen to be increasing with λ.

To conclude the section, we present a result that will be of use later in the paper. In particular, even
when the assumptions of Proposition 4 are not met, and so equilibrium existence is not characterized, if an
equilibrium exists it must be symmetric.
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Figure 1: Plot of the function λ/N
x ℓ′( λ

N ) − ℓ( λ−x
N−1 )−ℓ(x)
λ−x
N−1−x

for all x ∈ [0, λ] (see Assumption 4) for two popular

cases of latency functions from queueing theory. Both functions are positive in [0, λ/2), meaning that
Assumption 4 holds true.

Proposition 5 Let Assumptions 1 and 3 hold. Furthermore, let (i) all providers be homogeneous, i.e.,
ℓi(x) = ℓ(x), ∀i. If an oligopolistic equilibrium exists, then it is unique and such that all equilibrium prices
are equal.

Proof: Let us define ℓ′(xOE
i1 )

def
=

∂ℓ(xi1)

∂xi1
|xi1=xOE

i1
for simplicity.

Assume that pOE is an equilibrium such that 0 = pOE
i1

< pOE
i2

, for some i1 and i2. Then, we must

have xi1 = 0 (otherwise i1 would set some positive price), which implies ℓ(0) > ℓ(xi2) + pOE
i2

. This is a

contradiction because ℓ(·) is increasing by Assumption 1, thus 0 = pOE
i1

< pOE
i2

cannot be an oligopolistic
equilibrium.

Assume that pOE is an equilibrium such that 0 < pOE
i1 < pOE

i2 , for some i1 and i2. Then, we must have

ℓ(xOE
i1 ) + pOE

i1 = ℓ(xOE
i2 ) + pOE

i2 , (12)

where xOE = W (pOE), which implies that xOE
i1

> xOE
i2

because ℓ(·) is increasing by Assumption 1.
By substituting the expression of the prices (6) in (12), after little algebra we obtain

ℓ(xOE
i1

) + xOE
i1

ℓ′(xOE
i1

) +
xOE
i1

xOE
i2

ℓ′(xOE
i2

)

∑

j 6=i1,i2

xOE
i2

ℓ′(xOE
i2

)

ℓ′(xOE
j

)
+xOE

i2

= ℓ(xOE
i2

) + xOE
i2

ℓ′(xOE
i2

) +
xOE
i1

xOE
i2

ℓ′(xOE
i1

)

∑

j 6=i1,i2

xOE
i1

ℓ′(xOE
i1

)

ℓ′(xOE
j

)
+xOE

i1

.
(13)

Now, since xℓ′(x) is increasing and xOE
i1 > xOE

i2 , we must have

xOE
i1

ℓ′(xOE
i1

)
∑

j 6=i1,i2

xOE
i2

ℓ′(xOE
i2

)

ℓ′(xOE
j )

+
xOE
i1

xOE
i2

(ℓ′(xOE
i1

)+ℓ′(xOE
i2

))
∑

j 6=i1,i2
xOE
i2

ℓ′(xOE
i2

)/ℓ′(xOE
j )+xOE

i2

>

xOE
i2 ℓ′(xOE

i2 )
∑

j 6=i1,i2

xOE
i1

ℓ′(xOE
i1

)

ℓ′(xOE
j )

+
xOE
i1

xOE
i2

(ℓ′(xOE
i1

+ℓ′(xOE
i2

))
∑

j 6=i1,i2
xOE
i1

ℓ′(xOE
i1

)/ℓ′(xOE
j )+xOE

i1

.

(14)

On the other hand, even ℓ(xOE
i1

) > ℓ(xOE
i2

) because ℓ is increasing. This contradiction implies the uniqueness
and symmetry of an equilibrium. 2
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Figure 2: Providers’ profits starting from initial price vectors p(0) = (1, 1) (the two lines on the bottom) and
p(0) = (100, 100) (the two lines at the top). The continuous (dashed) lines refer to the profit of provider 1
(2).

3.1 Processor sharing queues

Since the known results about the existence of oligopolistic equilibria are limited, in this section we consider
the specific example of latency function (1) and use numeric experiments to illustrate the existence of
oligopolistic equilibrium in non-homogeneous scenarios.

In order to find oligopolistic equilibria, we apply best response (BR) dynamics, which are known to
converge to Nash equilibria in many settings, see [25] for example. Under best response dynamics the system
starts with some (non-equilibrium) price vector p(0). At time n ≥ 0, provider 1 observes the resulting
Wardrop equilibrium W (p(n)) and chooses the price p1(n+ 1) that maximizes its profit conditioned on the
prices of the others providers, i.e.,

p1(n+ 1) = argmaxp≥0 p[W (p,p−1(n))]1 (15)

In turn, provider 2 then observes the Wardrop equilibrium resulting from [p1(n+1),p−1(n)] and chooses its
best price p2(n+ 1). In accordance with (5), the sequence of prices pi(n) represent the best response of i.

In Figure 2, we illustrate the application of best response dynamics in the case of N = 2 and latency
functions (1). Specifically, Figure 2 shows the sequence of profits [pi(n) · [W (p(n))]i] when µ1 = 6, µ2 = 4,
λ = 3 and different initial vectors p(0). Notice that the initial price vectors seem to not affect the asymptotic
profits. In fact, this is no accident as we can prove that in this setting an oligopolistic equilibrium is unique
if it exists.

Specifically, the (necessary) conditions in (6) allow us to immediately derive conditions for the number
of possible oligopolistic equilibria, and we have the following proposition.

Proposition 6 Assume N = 2, latency functions (1) with µ1 > µ2, and λ < µ2. The number of oligopolistic
equilibria is less than or equal to the number of roots in the interval (λ− µ2, µ1) of the cubic

(µ1 − λ+ x1)(µ2 − λ+ x1)
2 = (µ2 − x1)(µ1 − x1)

2. (16)

Proof: The result follows after a little algebra and the substitution of (1) into the KKT conditions of
Proposition 2. 2

From this proposition, we can see that if µ1 is sufficiently large, it is possible to show that the discriminant
of the above cubic is negative (the dominant term is −O(µ6

1)). Therefore, only one real root exists, meaning
that at most one oligopolistic equilibrium can arise in the price competition game.
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λ p1(∞)[W (p(∞))]1 p2(∞)[W (p(∞))]2
1 0.071 0.003
2 0.23 0.06
3 0.60 0.25

3.9 1.28 0.67
≥ 4 ∞ ∞

Table 1: Providers’ profits by varying λ with µ1 = 6, µ2 = 4.

The results of other experiments with best response dynamics are summarized in Table 1, which shows
the equilibrium prices of all servers as λ is varied. Again, these prices do not seem to be dependent of the
initial conditions. As one might expect, the profits increase with the load. Further, when λ ≥ 4, this system
becomes under-provisioned and Proposition 3 applies.

4 Equilibria efficiency

We now move from the existence of oligopolistic equilibria to the efficiency of oligopolistic equilibria.
Before moving to the results it is worth placing them in the context of results about the efficiency

of Wardrop equilibria for nonatomic load balancing games. In particular, there are some settings where
Wardrop equilibria are quite efficient, for example in the case of affine ℓi where the price of anarchy is
4/3 independent of N . However, more commonly the price of anarchy can be large. For example, when
polynomial ℓi are considered the price of anarchy approximately grows with the degree of the polynomial
[27]. Further, when queueing latency functions are considered the price of anarchy can be unbounded. In the
case of M/GI/1/Processor-Sharing queues the price of anarchy is N [14] and if other scheduling policies such
as Shortest-Remaining-Processing-Time first are considered the price of anarchy can be unbounded already
in the case of N = 2 [9].

One motivation for studying oligopolistic pricing is to understand how competition among profit max-
imizing providers affects this inefficiency. Thus, we focus again on the price of anarchy (PoA), defined
formally as follows in our setting:

PoA(N ; ℓ1, . . . , ℓN )
def
= sup

pOE

ℓ(xOE)

ℓ(xOpt)
≥ 1, (17)

where pOE is an oligopolistic equilibrium.
This is a natural measure of efficiency to consider for applications in communication and transportation

networks where latency provides a measure of the user experience (or quality of service). For example, in
the context of a cloud-computing ‘infrastructure-as-a-service’ provider, user experience is of key importance
and any increased latency compared to the optimal allocation indicates suboptimal resource allocation.

Though we focus on the price of anarchy as defined above, other complementary efficiency measures have
been looked at previously in the literature. For example, the oligopolistic pricing game under investigation
has been studied in [2] with a focus on an efficiency measure that is defined as the ratio between the social
surplus at the worst oligopolistic equilibrium and at the optimal allocation. Under this measure, it is shown
that the efficiency is remarkably high, bounded from below by 5/6.2 Thus, the oligopolistic equilibrium is
quite efficient under that measure. However, those results do not imply any bound on the price of anarchy
defined above.

The main conclusion of the results in this section is that, though the price of anarchy can be arbitrarily
large if N is small (and so there is little competition), it converges to 1 with rate 1/N as the number of
providers N increases to infinity. This holds even under queueing latency functions, where the contrast is
stark. If N is large the Wardrop equilibrium can be extremely inefficient, while the oligopolistic equilibrium

2We observe that our notion of socially optimal allocation slightly differs from the one in [2], where the authors use the
additional parameter R called reservation utility. However, if R is sufficiently large, then both notions of social optimum are
equivalent.
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is extremely efficient. This highlights the benefit of increasing competition among providers to the underlying
architecture that hosts the providers. In the context of cloud-computing, an infrastructure provider such as
[16, 17, 18] should therefore encourage competition in order to optimally exploit its available resources.

4.1 Inefficiency under limited competition

The fact that Wardrop equilibria can be extremely inefficient already provides intuition for the fact that
the oligopolistic equilibria can be inefficient for a small number of providers. However, the situation is even
worse than one might expect. We show in the following that the price of anarchy of oligopolistic equilibria is
unbounded even in the case when affine latency functions are considered, which we noted earlier have a 4/3
price of anarchy in the case of the Wardrop equilibrium. Thus, limited competition can induce inefficiency
even in situations that are, in some sense, ‘inherently’ efficient.

Proposition 7 supN ;ℓ1,...,ℓN PoA(N ; ℓ1, . . . , ℓN) =∞.

Proof: To prove the result it suffices to give a family of examples for which the price of anarchy are
unbounded. For this, we consider N = 2 and ℓ1(x1) = a1x1, ℓ2(x2) = x2 (note that an oligopolistic
equilibrium exists when linear congestion functions are considered [2]).

We first calculate the optimal allocation (see Definition 1). Solving

xOpt = argmin
x1

λ
a1x1 +

x2

λ
x2

s.t. : x1 + x2 = λ, x1, x2 ≥ 0,

we obtain

xOpt
1 =

λ

a1 + 1
. (18)

We next calculate the oligopolistic equilibrium. For the assumed latency functions, in an oligopolistic
equilibrium we have (see [2], equation (20))

{

2a1x1 + x1 = 2x2 + b2 + a1x2
∑

i xi = λ, xi ≥ 0 ∀i. (19)

i.e.,

xOE
1 =

λ

3

a1 + 2

a1 + 1
. (20)

To show that the price of anarchy can be unbounded, we need to bound the following quantity

ℓ(xOE)

ℓ(xOpt)
=

a1
(λ(a1+2))2

9(a1+1)2 + (λ− λ(a1+2)
3(a1+1) )

2 + (λ− λ(a1+2)
3(a1+1) )

a1
λ2

(a1+1)2 + (λ− λ
a1+1 )

2 + (λ − λ
a1+1 )

. (21)

Notice that if a1 is large in the above, then

ℓ(xOE)

ℓ(xOpt)
∼ a1

λ2

9 + (λ− λ
3 )

2

λ2
∼ a1/9, (22)

which implies that the price of anarchy can be made arbitrarily large as desired. 2

4.2 Efficiency under increased competition

Having shown that inefficiency can occur when the number of providers is small, we now turn to the case
where there is significant competition, i.e., the case of large N . Our goal in this section is to highlight that
as N → ∞ the increased competition among providers yields efficient traffic allocations. However, to show
such a result we need to first define a scaling of our system that allows us to take N →∞.

11



The scaling we define in order to consider ‘large’ systems is the following. We consider there are C ≥ 1
provider ‘types’ or ‘classes’, where all providers belonging to a given class have the same latency function.
In other words, providers of the same class are statistically equivalent. We then define βc as the proportion
of class-c providers, and consider a limit where N grows but β = (β1, . . . , βC) remains fixed.

This does not completely define the scaling however, it is additionally important that the arrival rate
grows as the size of the system N grows, otherwise the system becomes trivial. In particular, if the arrival
rate is not scaled, then as N grows the congestion of the system disappears. Thus, we seek to scale the
arrival rate so that the congestion of the system remains ‘constant’ through the scaling. To achieve this we
choose the arrival rate when there are N servers as λN . This scaling is natural because it keeps the ‘load’,
i.e., ratio of the arrival rate to the total service capacity, of the system the same as N is scaled. Additionally,
this scaling models the fact that the increasing number of providers is likely a response to a growing market,
i.e., arrival rate. In the queueing theory literature, this scaling of the arrival rate with the system capacity
is quite popular, e.g., [30, 19]. Other scalings can be also considered [22] and generalizing the results in
this section to such scalings is an interesting topic for future work. However, with respect to heavy-traffic
scalings where the arrival rate approaches the overall network capacity, Proposition 3 already says that an
oligopolistic equilibrium cannot exist.

In the context of the scaling described above, we can now state our main result.

Theorem 1 Let Assumptions 1, 2, and 3 hold. As N →∞, there exists at most one oligopolistic equilibrium
and, for any C and β,

lim
N→∞,β

PoA(N ; ℓ1, . . . , ℓN) = 1. (23)

Further this limit is approached at a rate of 1/N .

Proof: Let c range from 1 to C, the number of classes, and let xOE
c be the oligopolistic-equilibrium traffic

that a provider of class c gets, i.e., xOE
c = xOE

i for each provider i of class c. Let also SN be the set of all
oligopolistic-equilibrium traffic allocations assuming that the total number of providers is N . It is clear that

SN ⊆ TN def
= {x : x is a solution of (6)}. In the following, we prove the theorem by showing that |TN | → 1

as N →∞ (keeping fixed β) and that the limiting allocation is xOpt.
We have that, as N →∞:

(i) within the constraints in (6), ∂ℓi(xi)
∂xi
|xi=xOE

i
is strictly positive by Assumption 1 and it can be bounded

from above by means of Assumption 2 (in the conditions of Assumption 2, for any fixed arrival and

service rates, one has ∂ℓi(xi)
∂xi
|xi=xOE

i
< ∂ℓi(xi)

∂xi
|xi=µi−ǫ, for ǫ small enough),

(ii) providers of the same class must have the same equilibrium price and traffic allocation by symmetry
(this follows by using the same by-contradiction argument used in the proof of Proposition 5), and

(iii) at least one class of providers is used.

Thus, for all c we have

xOE
c

∑

i6=j:Ai=0

(

∂ℓi(xi)

∂xi
|
xi=xOE

i

)−1 =
xOE
c

C
∑

c′=1:
Ac′=0

(N−1{c′=c})βc′

(

∂ℓ
c′

(x
c′

)

∂x
c′

|
x
c′

=xOE
c′

)−1 → 0,
(24)

where xOE
c is the traffic to one provider of class c.

Therefore, in the limit,






























pOE
c = xOE

c
∂ℓi(xc)
∂xc

|xc=xOE
c

, ∀c : Ac = 0

pOE
c = 0, ∀i : Ac > 0

ℓc(x
OE
c ) + pOE

c = BOE +Ac, ∀c
Acxc = 0, Ac ≥ 0, ∀c
∑

c βcx
OE
c = λ,

(25)
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In the same limiting regime, the optimality conditions of (2) become

ℓc(xc) + xc
∂ℓc(xc)
∂xc

= λ(W + Yc), ∀c
Ycxc = 0, Yc ≥ 0, ∀c
∑

c βcxc = λ, xc ≥ 0, ∀c,
(26)

where W and Yc are Lagrange multipliers (Yc = 0 if and only if c is used), and xc is the traffic to one provider
of class c.

Given that the optimization problem (2) is strictly convex (by Assumption 1), the KKT conditions (26)
are both necessary and sufficient for the existence of a unique solution.

This means that the conditions (25) must also have a unique solution coinciding with the solution of (26).
In fact, a solution for (25) exists if and only if Ac = λYc and BOE = λW because both (26) and (25) have
the same structure.

Provided that an oligopolistic equilibrium exists, this immediately implies limN→∞,β PoA(N ; ℓ1, . . . , ℓN ) =
1. To complete the proof, we note that, as N grows, the allocation at any oligopolistic equilibrium (provided
that it exists) converges to its asymptotic value with rate 1/N . This is evident given (24). 2

Though, it is not unexpected to see that the price of anarchy for oligopolistic equilibria converges to one
given the maxim that “competition yields efficiency”, it is perhaps surprising how quickly this convergence
happens (at a rate of 1/N). This highlights that, not only are oligopolistic equilibria efficient when N is large,
but they become efficient quickly as N grows. Another observation that follows from the proof of Theorem 1
is that the prices charged by the providers in the oligopolistic equilibrium converge to the Pigouvian taxes
[24], which are known to induce optimal behavior. Further, the convergence to these prices happens at a
rate of 1/N , so even for small N the prices are close to the socially optimal ones. We explore both of these
observations further in the context of queueing-based latency functions in Section 4.3.

To conclude this section, let us briefly remark about one simple, but important, extension of Theorem 1.
Specifically, note that the optimal allocation we have used as a benchmark to this point, though it is
commonly used as a benchmark for load balancing and congestion games, is not truly the optimal allocation.
That is, it assumes that requests are allocated to servers probabilistically in a i.i.d. manner, i.e., that the
probability a job is forwarded to provider i is xOpt

i /λ. In practice, for example in cloud computing systems,
upon the arrival of a user request it is possible to exploit information about where recent requests were sent
in order to improve the overall latency. For example, if ℓi = ℓj for all i, j, then a central broker implementing
a Round-Robin allocation3 outperforms any probabilistic routing policy, see [28].

Thus, to understand the true inefficiency among all possible routing policies (rather than among just
probabilistic routing policies), the task is more complex. To illustrate this, note that the arrival process
of users to providers changes considerably and this affects the latency functions in a non-trivial manner.
However, recent results have provided a bound on the difference between latencies of the probabilistic and
non-probabilistic optimal routing schemes, see [5]. In particular, if we let x̃Opt represent the non-probabilistic
optimal traffic allocation and ℓ̃i represent the induced latency functions, then [5] proves that ℓ̃(x̃Opt) ≥
ℓ(xOpt)/2.

Applying this result to the setting of the current paper then simply doubles the price of anarchy proven in
Theorem 1. Thus, as N →∞, the oligopolistic equilibrium provides latency within a factor of 2 of that pro-
vided by the optimal, non-probabilistic allocation. This is important when contrasting the distributed setting
modeled by an oligopolistic equilibrium (which cannot induce non-probabilistic routing) with a centralized
approach where non-probabilistic routing is standard.

4.3 Processor sharing queues

To obtain more insight into the efficiency of oligopolistic equilibria we now focus on one specific class of latency
functions where explicit results can be obtained – the M/GI/1/Processor-Sharing queue (1). Further, this
class represents a particularly important model for communication systems.

3Under Round-Robin, request i is sent to provider i mod N .
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Figure 3: Boxplot of our bound on the PoA (40) under a varying number of providers. The service rates are
chosen uniformly at random from [1, 10000].

The social optimal allocation in this setting is well understood; see, for example, [7, 14]. Assuming for
simplicity that ∞ > µ1 > µ2 > · · · > µN > 0, we have

xOpt
j = µj −

√
µj

∑ī
i=1 µi − λ
∑ī

i=1

√
µi

, ∀j ≤ ī, (27)

where µN+1 = 0,

ī = min







i ≥ 1 :
√
µi+1 ≤ (

i
∑

j=1

µj − λ)/

i
∑

j=1

√
µj







.

and xOpt
j = 0, for all j > ī.

The above allocation yields a socially-optimal cost of

ℓ(xOpt) =
1

λ

(
∑ī

i=1

√
µi)

2

∑ī
i=1 µi − λ

− ī

λ
. (28)

The Wardrop equilibrium is also well understood for this setting, [7, 14]. Additionally, the price of
anarchy for the Wardrop equilibrium has been bounded by N , which has been shown to be tight [14].

We now move to characterizing the oligopolistic equilibrium. Within this setting, we have already seen in
the numerical experiments of Section 3 that oligopolistic equilibria exist if the system is not ‘over-provisioned’.
Further, we have seen that there is often a unique oligopolistic equilibrium. We now derive explicit bounds
on the price of anarchy, traffic allocation, and prices that emerge in an oligopolistic equilibrium.

Theorem 2 For each i, let ℓi(xi) as in (1). If pOE denotes the price vector at some OE that uses k
providers, then the following inequalities hold true for each i ≤ k:

xOpt
i

µi − xOpt
i

≤ pOE
i ≤ xOpt

i

µi − xOpt
i

+
µi

∑

j≤k:j 6=i µj
B (29)

xOE
i ≤ µi −

√

µi

B
(30)

µi

(µi − xOpt
i )2

≤ B ≤ µi

(µi − xOpt
i )2

(

max
i′≤k

1− µi′
∑

j≤k:j 6=i′ µj

)−1

(31)
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Proof: Without loss of generality, assume that the number of providers used is N (if only k providers are
used, the following sums and indices should be up to k). Using Proposition 2, in an oligopolistic equilibrium
pOE the following conditions must hold



















xOE
i

(µi − xOE
i )2

≤ pOE
i ≤ xOE

i

(µi − xOE
i )2

+
xOE
i

∑

j 6=i

(µj − xOE
j )2

, ∀i

(µi − xOE
i )−1 + pOE

i = B, ∀i
∑

i x
OE
i = λ.

(32)

Using the first inequality, we have the conditions







(µi − xOE
i )−1 +

xOE
i

(µi − xOE
i )2

≤ B, ∀i
∑

i x
OE
i = λ.

(33)

which coincide with the KKT conditions of (2) provided that ≤ is replaced by =. This means that xOpt

satisfies (33) when

B ≥ BOpt = (µi − xOpt
i )−1 +

xOpt
i

(µi − xOpt
i )2

. (34)

Using the left-hand inequality and the second equality of (32), we find

µi(B − pOE
i )2 −B ≤ 0. (35)

Since B − pOE
i > 0, we get

√

B

µi
≥ B − pOE

i = (µi − xOE
i )−1. (36)

We use (36) to bound the second term in the second inequality of (32) obtaining

pOE
i ≤ xOE

i

(µi − xOE
i )2

+
µi

∑

j 6=i µj
B (37)

Substituting (37) in (32), we find







(µi − xOE
i )−1 +

xOE
i

(µi − xOE
i )2

≥ amaxB, ∀i
∑

i x
OE
i = λ.

(38)

where amax = maxi 1 − µi
∑

j 6=i µj
. Conditions (38) are again the KKT conditions of (2) provided that ≥ is

replaced by =. This means that xOpt satisfies (38) when

amaxB ≤ BOpt. (39)

Inequalities (29) and (31) follow by the first inequality in (32) and (34), (37), (39). 2

Inequalities (29) and (31) provide bounds on the equilibrium price, traffic allocation, and profit of each
provider, and these bounds are asymptotically exact since, as N grows, µi/

∑

j 6=i µj approaches zero. This
is in agreement with Theorem 1.

Corollary 1 For each i, let ℓi(xi) as in (1). Assume that one oligopolistic equilibrium using the same
providers of the socially-optimal allocation exists. If k > 1 denote the number of providers used, then

PoA(N ; ℓ1, . . . , ℓN ) ≤
(

max
i≤k

1− µi
∑

j≤k:j 6=i µj

)−1/2

. (40)
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Proof: From (36) and (39), we find

xOE
i ≤ µi −

√

µi

B
≤ µi −

√

µi

BOpt
amax. (41)

Since (µi − xi)
−1 is increasing in xi, substituting (41) in ℓ(xOE)

ℓ(xOE) ≤ 1

λ

∑

i

√

µiB
Opt

amax
− N

λ
, (42)

and using (28) we finally get

ℓ(xOE)

ℓ(xOpt)
≤

1

λ

∑

i

√

µiB
Opt

amax

1

λ

∑

i

√

µiBOpt

=
1√
amax

.
(43)

2

To provide some more insight into Corollary 1, we provide the results of some numerical experiments in
Figure 2. Specifically, Figure 2 varies the network size N and plots our bound on the price of anarchy (40) for
a random instance of a load balancing game where the service rates have been randomly generated from set
[1, 10000] according to a uniform distribution. The figure shows a boxplot for each N , which refers to 10,000
experiments. The point of this figure is to illustrate the speed with which the price of anarchy converges
to 1. In the figure, we observe that the average performance loss at the worst oligopolistic equilibrium is
remarkably small even when N is very small.

5 Concluding remarks

In this paper we have studied the existence and efficiency of oligopolistic equilibria in load balancing games.
This model is meant to provide insight into the impact of competition and price in congested markets, e.g.,
transportation networks and communication networks. One particularly interesting setting that the model
studied here provides insight into is that of the cloud computing ‘infrastructure-as-a-service’ model, where
a infrastructure provider such as [16, 17, 18] rents out resources to content providers, who then serve traffic
requests independently, and are often in competition with each other.

The main insights that stem from our results on existence and efficiency of oligopolistic equilibria are
that (i) competition can be disastrous if the system is under-provisioned, i.e., an oligopolistic equilibrium
will not exist and the provider prices will grow unboundedly, and (ii) if the system is properly provisioned
and an oligopolistic equilibrium exists, then competition yields efficiency, i.e., as the N → ∞, the price of
anarchy converges to 1 at a rate of 1/N .

One important technical contribution of this work is that we define and analyze a scaling of the load
balancing game which allows a non-trivial limit to emerge as N →∞, and thus allows the proof of result (ii)
above. This scaling is quite natural and allows the traffic to grow linearly with N . In the queueing theory
literature, this is a popular scaling for studying multi-server systems [30, 19, 13]. An interesting direction for
extending this work is to study other scalings of the system in order to understand how robust the conclusion
that ‘competition yields efficiency’ is for load balancing games.

More broadly, there are many open questions that remain about oligopolistic equilibria among competing
providers. In particular, the question of existence remains very open – even in simple settings existence has
not been characterized. Additionally, there are many interesting variations of the model that are worthy of
study, including considering bounded prices for the providers and inelastic traffic.
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Appendix

Proof of Proposition 2

As done for the proof of Proposition 9 in [2], the proof derives the KKT conditions of optimization prob-
lem (5). Point W (pOE) is uniquely given by the minimizers of (4) whose KKT conditions are

ℓi(xi) + pOE
i −Ai = B, ∀i

∑

i xi = λ, xi ≥ 0, ∀i
Aixi = 0, Ai ≥ 0, ∀i

(44)

where Ai and B are Lagrange multipliers. Assume that an oligopolistic equilibrium exists and denote it by
pOE . Using the optimality conditions (44), for provider j

pOE
j xOE

j = max pjxj

s.t.: ℓj(xj) + pj −Aj = B,
ℓi(xi) + pOE

i −Ai = B, ∀i 6= j
∑

i xi = λ
Aixi = 0, Ai ≥ 0 ∀i

(45)

where each provider i 6= j has fixed equilibria price pOE
i (a constant here). The constraint xi ≥ 0, ∀i, does not

appear because it is redundant (for a fixed price vector there exists a unique Wardrop equilibria). Without
loss of generality, assume that the first Ñ providers are used. Since pOE

i > 0 if and only if i ≤ Ñ if and only
if Ai = 0 if and only if xi > 0, (45) can be rewritten as (for j ≤ Ñ)

pOE
j xOE

j = max pjxj

s.t.: ℓj(xj) + pj = B,

ℓi(xi) + pOE
i = B, ∀i 6= j : i ≤ Ñ

∑

i xi = λ

(46)
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Clearly, if j > Ñ , then pOE
j xOE

j = 0. With respect to multipliers Vi and W , the KKT conditions of (46)
become



















































−xj + Vj = 0

−pj + Vj
∂ℓj(xj)
∂xj

+W = 0

Vi
∂ℓi(xi)
∂xi

+W = 0, ∀i 6= j : i ≤ Ñ

−
∑Ñ

i=1 Vi = 0

ℓj(xj) + pj = B

ℓi(xi) + pOE
i = B, ∀i 6= j : i ≤ Ñ

∑

i xi = λ,

(47)

and after some algebra we obtain



































pj = xj
∂ℓj(xj)
∂xj

+
xj

∑Ñ
i=1:i6=j

(

∂ℓi(xi)
∂xi

)−1

ℓj(xj) + pj = B

ℓi(xi) + pOE
i = B, ∀i 6= j : i ≤ Ñ

∑

i xi = λ.

If pOE is such that pOE
i = 0 for all i 6= k, then the best-response of k is to set the price (mini6=k ℓi(0)−ℓk(λ))ek

(over this threshold at least one other provider would have the incentive to deviate its price). Provider k
must be such that k = argminj ℓj(λ). In fact, if provider k′ is such that ℓk′(λ) ≤ ℓk(λ), then it would get a
non-null proportion of the traffic in the corresponding Wardrop equilibrium, against the assumption.
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