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Abstract

Stochastic loss networks are often a very effective model for studying the random dynamics of systems requiring
simultaneous resource possession. Given a stochastic network and a multi-class customer workload, the classical
Erlang model renders the stationary probability that a customer will be lost due to insufficient capacity for at least
one required resource type. Recently a novel family ofslicemethods has been proposed by Junget al to approximate
the stationary loss probabilities in the Erlang model, and has been shown to provide better performance than the
classical Erlang fixed point approximation in many regimes of interest. In this paper, we propose some new methods
for loss probability calculation. We propose a refinement ofthe 3-point slice method of Junget al which exhibits
improved accuracy especially when heavily loaded networksare considered, at comparable computational cost. Next
we exploit the structure of the stationary distribution to propose randomized algorithms to approximate both the
stationary distribution and the loss probabilities. Whereas our refined slice method is exact in a certain scaling regime
and is therefore ideally suited to the asymptotic analysis of large networks, the latter algorithms borrow from volume
computation methods for convex polytopes to provide approximations for the unscaled network with error bounds as
a function of the computational costs.

1 Introduction

Starting with the seminal work of Erlang [4], stochastic loss networks (SLNs) have been applied to the study of

many diverse communication and computer systems. In general, a SLN can be used as a model for any system

which allocates non-idling resource capacities to fulfill various classes of requests if possible, each class requiring

simultaneous possession of resources for a random durationfrom a pool of different types of resources. And quite

often a SLN is able to effectively capture the dynamics and uncertainty of the computer/communication system being

modeled. Examples include telephone networks, communication networks, distributed computing systems, database

systems, data centers, wireless networks, and multi-item inventory systems; see, e.g., [16, 7, 21, 8, 9, 10, 18, 15, 22,

17].

An important performance measure arising in the analysis ofsuch loss networks is the stationary loss probability

for each customer class. Given a stochastic network and a multi-class customer workload, the classical Erlang model

renders the stationary probability that a customer will be lost due to insufficient capacity for at least one required

resource type. While the initial results of Erlang [4] were for the particular case of Poisson arrivals and exponential

service times, Sevastyanov [19] demonstrates that the Erlang formula holds under general finite-mean distributions for
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the customer service times. Subsequently the formula has been shown to hold under more general conditions [3, 2].

A multi-period version of the loss network has also been recently studied [1].

Unfortunately, the problem of evaluating the exact (multi-dimensional) Erlang formula is known to be♯P -complete1

in the size of the network [12], thus rendering the exact formula of limited use for many large networks in practice.

The well-known Erlang fixed-point approximation (EFPA) hasbeen developed and extensively used and studied as

a tractable approach for calculating the stationary loss probabilities. The method assumes that customer losses are

caused by independent blocking events on each of the resources used by that customer. Estimates of the blocking

probabilities of the individual resources are in turn calculated using the one-dimensional Erlang formula with argu-

ments that are functions of the blocking probabilities of other resources. Surprisingly, the EFPA has been shown to

be asymptotically exact in the limiting regime where arrival rates grow in proportion to the resource capacities [8].

Roughly speaking, this result holds true because in that limiting regime the mean number of calls in the system can be

well approximated by the mode of the stationary distribution of the network states.

The popularity of the EFPA can be attributed to the fact that,in addition to its favorable theoretical properties, the

estimates provided by the method have been found to be remarkably accurate in traditional application areas such as

large communication networks. Recently, SLNs have been used for resource planning within the context of workforce

management in the information technology (IT) services industry, where a collection of IT service products are offered

each requiring a set of resources with certain capabilities[1, 14]. In such applications, one is frequently confronted

with critically loaded workload processes for which the EFPA performs poorly [6]. A novel family ofslicemethods

has been proposed in [6] to compute the stationary loss probabilities using Little’s law and a decomposition of the

computation along hyperplane sections that are parallel tothe route axes (called slices), i.e., subsets of the network

states where the number of calls on a given route is kept fixed.It is shown that the idea of approximating the probability

content of each slice by its mode indeed yields more accurateresults, especially in critically loaded situations [5]. The

general slice method solves a strictly convex program alongeach slice of each route; thus its computational complexity

depends on the resource capacities. A 3-point slice method is also proposed in [6] which uses a suitable interpolation

scheme to reduce computational complexity at a small loss ofaccuracy.

In this paper, we propose some new methods for loss probability calculation. First we present a refinement of

the 3-point slice method which provides improved accuracy especially when heavily loaded networks are considered.

This new approach has nearly the same computational complexity of the 3-point slice method. Next we exploit the

structure of the stationary distribution to propose randomizedcontouralgorithms to approximate both the stationary

distribution and the loss probabilities. The contour algorithms borrow from volume computation methods for convex

polytopes to approximate the probability content of carefully chosen contours. The two sets of proposed algorithms

differ in their applicability: whereas the refined slice method is asymptotically exact in a certain scaling regime and is

therefore ideally suited to the asymptotic analysis of large networks, the contour algorithms provide approximations

corresponding to the unscaled network with error bounds as afunction of the computational cost. Hence, there is

a tradeoff between computational complexity and (probabilistic) accuracy guarantees in choosing among our refined

slice method and our contour methods.
1Refer to [20] for details on the♯P -complete complexity class.
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2 Preliminaries

2.1 Erlang Loss Model

Consider a SLN withJ links, labeled1, 2, . . . , J , and a set ofK fixed routes, denoted byR = {1, . . . , K}, where

each linkj hasCj units of capacity andC = (C1, . . . , CJ ) denotes the vector of link capacities. Calls on router

arrive according to an independent Poisson process of rateνr, with ν = (ν1, . . . , νK) denoting the vector of these

rates, and requireAjr units of capacity on linkj, Ajr ≥ 0. An arriving call on router is admitted to the network if

sufficient capacity is available on all links used by router; otherwise, the call is lost. The call service times are i.i.d.

and follow a general distribution with unit mean.

Let n(t) = (n1(t), . . . , nK(t)) ∈ Z
K
+ be the vector of the number of active calls in the network at time t. By

definition,n(t) ∈ S(C) where

S(C) =
{

n ∈ Z
K
+ : An ≤ C

}

.

As Erlang originally established, followed by extensions of various researchers, it is well known that there is a unique

stationary distributionπ on the state spaceS(C) such that forn ∈ S(C)

π(n) = G(C)−1
∏

r∈R

νnr
r

nr!
,

whereG(C) is the normalizing constant

G(C) =
∑

n∈S(C)

∏

r∈R

νnr
r

nr!
. (1)

The stationary probability that a call on router is lost can be expressed as

Lr = 1 − G(C)
−1

G(C − Aer),

whereer is the unit vector corresponding to a single active call on router.

2.2 Erlang Fixed-Point Approximation

Due to the computational complexity of (1), which is known tobe ♯P -complete in the size of the network [12], the

EFPA has been long used as a more efficient alternative to the exact Erlang loss formula. The EFPA is based on

approximating the stationary blocking probabilities of the individual links, denoted byEj , by the following set of

equations:

Ej = E(ρj , Cj) =
ρ

Cj

j

Cj !





Cj
∑

i=0

ρi
j

i!





−1

where ρj =
1

1 − Ej

[

∑

r

νrAjr

∏

i

(1 − Ei)
Air

]

.

Then the stationary loss probability for router can be approximated in terms of the per-link blocking probabilities as

Lr ≈ 1 −
∏

j

(1 − Ej)
Ajr .
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The approximation assumes that lost calls are caused by independent blocking events on each of the links used by the

routes, and uses the one-dimensional Erlang loss formula for each link with an appropriately thinned arrival rate.

The EFPA can provide relatively poor estimates for the per-route loss probabilitiesLr in various model instances.

In [6], it is shown that this is particularly the case when thenetwork is operating in the critically loaded regime [5].

This motivated the authors to investigate alternative approximation algorithms for the exact loss probabilities and to

develop the family of slice methods.

2.3 Slice Methods

The Erlang loss model can be thought of as a stable system where admitted calls experience an average delay of1 and

lost calls experience a delay of0. Hence, the average delay experienced by calls on router is given by

Dr = (1 − Lr) × 1 + Lr × 0 = (1 − Lr),

which together with Little’s law [11] yields

1 − Lr =
E[nr]

νr
, (2)

and thereforeLr can be obtained throughE[nr]. By definition,

E[nr] =
∞
∑

k=0

k Pr[nr = k]

and thusE[nr] can be obtained through approximations ofPr[nr = k]. Note thatPr[nr = k] corresponds to the

probability mass along the “slice” of the polytope defined bynr = k. An exact solution forE[nr] can be obtained

by using the exact values ofPr[nr = k], but obtaining the probability mass along a “slice” can be ascomputationally

hard as the original problem. The family of slice methods introduced in [6] is therefore based on approximations for

Pr[nr = k] which assume that the mass along each slice is concentrated around the mode of the distribution restricted

to the slice.

From the definition of the stationary distributionπ(·), the moden∗ corresponds to a solution of the optimization

problem

max
∑

r

nr log νr − log nr!

s.t. n ∈ S(C).

A natural continuous relaxation of the state spacen ∈ S(C) is

S̄(C) =
{

x ∈ R
K
+ : Ax ≤ C

}

, (3)

for which we obtain the corresponding optimization problem(P1):

max
∑

r

xr log νr − log Γ(xr + 1)

s.t. x ∈ S̄(C),
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where the Gamma function is an extension of the factorial function to real numbers,

Γ(x + 1) =

∫ ∞

0

e−ttxdt, Γ(n + 1) = n!.

For each value ofk ∈ {nr : n ∈ S(C)} that is along eachslice, we definex∗(k, r) to be the solution of the

optimization problem (P2):

max
∑

r

xr log νr − log Γ(xr + 1) (4)

s.t. x ∈ S̄k,r(C) ≡ S̄(C) ∩ {x : xr = k}.

A computationally implementable version of the primal problems (P1) and (P2) can be obtained by using Stirling’s

approximation,log Γ(xr + 1) = xr log xr − xr + O(log xr), and ignoring theO(log nr) term. In particular, this

respectively yields the following convex relaxations for (P1) and (P2):

max
∑

r

xr log νr + xr − xr log xr (5)

s.t. x ∈ S̄(C)

and

max
∑

r

xr log νr + xr − xr log xr (6)

s.t. x ∈ S̄k,r(C).

In the general slice method [6], for each router, the optimization problem (5) is solved for the mode of the

distributionx∗ and the optimization problem (6) is solved for each slice defined bynr = k, k ∈ {nr : n ∈ S(C)}. To

obtain a variation of the general slice method that reduces this computational complexity and provides computational

complexity similar to that of the EFPA, a 3-point slice method is presented in [6]. Instead of computingx∗(k, r) for all

k ∈ {nr : n ∈ S(C)}, the 3-point slice algorithm consists of solving the optimization problem (6) fork = 0 and the

maximum value ofk, and also obtaining the mode of the distributionx∗ by solving (5). Thenx∗(k, r) is approximated

for all other values ofk by linear interpolation between pairs of the 3 computed modes. Formally, the interpolation

scheme to calculatex∗(k, r) is as follows:

(a) If k ≤ x∗
r , then

x∗(k, r) = x∗ · k

x∗
r

+ x∗(0, r) · x∗
r − k

x∗
r

.

That is,x∗(k, r) is the point of intersection (in the spaceR
K
+ ) of the slicexr = k with the line passing through

the two pointsx∗ andx∗(0, r).

(b) Forx∗
r < k ≤ nmax

r , wherenmax(r) = max{nr : n ∈ S(C)}, set

x∗(k, r) = x∗(nmax(r), r) · k − x∗
r

nmax(r) − x∗
r

+ x∗ · nmax(r) − k

nmax(r) − x∗
r

.
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Finally, let us denote the objective function from (5) of theStirling approximated primal problem (P1) (also (P2)) by

q(x) =
∑

r

xr log νr + xr − xr log xr.

The estimate ofE[nr] is then obtained as

E[nr] =

∑

k k exp(q(x∗(k, r)))
∑

k exp(q(x∗(k, r)))
,

from which, using (2), we calculateLr = 1 − E[nr]/νr.

2.4 Asymptotic Optimality

Kelly [8, 9] established that the EFPA is asymptotically exact in a large network limiting regime where the traffic

intensities and resource capacities are increased in a proportional manner. More formally, given a SLN with parameters

C andν, a scaled version of the system is defined by the scaled capacities

CN = NC = (NC1, . . . , NCK)

and the scaled arrival rates

νN = Nν = (Nν1, . . . , NνK),

whereN ∈ N is the system scaling parameter. The corresponding feasible region of calls is given byS(NC). Notice

that a normalized version of this region, defined as

SN (C) =

{

1

N
n : n ∈ S(NC)

}

,

tends in the largeN limit to the continuous relaxation(3), that is,S̄(C) = {x ∈ R
K
+ : Ax ≤ C}.

In [6], it is shown that the slice method is also asymptotically exact in the above large network limiting regime.

The slice method is further established to provide improvedaccuracy over the EFPA in the critically loaded regime [5].

Numerical results presented in [6] provide additional evidence that the slice methods produce better results than the

EFPA.

3 Refined Slice Method

In this section, we present a refinement to the 3-point slice method which computes approximations for the stationary

loss probabilitiesL using pointsx∗(k, r) that have higher probability content than the points used bythe 3-point slice

method. Before introducing the method, we present some notation and results that will be used below.

Consider the unnormalized stationary probability distribution

π̂(n) = π(n)G(C), (7)
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and let

x∗(k, r) = argmaxx∈S̄k,r(C)π̂(x) (8)

be the mode at slicenr = k in the continuous case, which is the solution of (4). Given that the elements of the matrix

A are non-negative, the projection ofS̄k,r(C) must be a subset of the projection ofS̄k−1,r(C), k ≥ 1, from which the

next proposition follows.

Proposition 1. Assumek ≥ 1 and(k, x2, . . . , xK) ∈ S̄k,r(C). Then the following identity holds true

argmaxx2,...,xK
π̂(k, x2, . . . , xK) = argmaxx2,...,xK

π̂(k − 1, x2, . . . , xK). (9)

From Proposition 1, the modes at slicesnr = k andnr = k − 1 are related by the equation

x∗(k, r) = x∗(k − 1, r) + er (10)

if x∗(k − 1, r) + er ∈ S̄k,r(C), k ≥ 1. This can be rewritten as

x∗(k, r) = x∗(0, r) + ker (11)

if x∗(0, r) + ker ∈ S̄k,r(C), k ≥ 1. Hence, once the value ofx∗(0, r) is known, then the modes along a number of

route-r slices are immediately given by (11).

The next proposition covers the cases in whichx∗(0, r) + ker /∈ S̄k,r(C).

Proposition 2. Assumex∗(0, r) + ker /∈ S̄k,r(C) for k ∈ {nr : n ∈ S(C)}. Then▽π̂(x) > 0 for all x ∈ S̄k,r(C)

where the inequality holds component-wise. Consequently,along each slicenr = k, x∗(k, r) must belong to the

boundary ofS̄k,r(C) and, thus, ofS̄(C).

Proof. Follows simply from the fact that̂π (the unnormalized stationary distribution), within the polytope S̄k,r(C),

is a monotonically increasing function since the univariate Poisson distribution is increasing prior to the mode, as

assumed in the proposition.

3.1 Description of the Method

For the slicenr = k of router, define

proj(x) = x + dαr, x ∈ S̄(C), (12)

whereαr is a given vector with therth element fixed to 0 andd is the maximum positive real number such that

x + dαr ∈ S̄k,r(C). Namely,proj(x) represents the projection ofx on the boundary of̄Sk,r(C) along the direction

of αr. The value ofd can be efficiently computed by a suitable binary search.

Our method is based on refining the interpolation of the mode of each slice from that of the 3-point slice method.

We first compute the fundamental points characterizing the 3-point slice method, i.e.,x∗, x∗(0, r) andx∗(nmax(r), r),
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as described in [6]. Next, denote byk∗ the positive integer such thatx∗(k∗, r) ∈ S̄(C) andx∗(k∗, r) + er /∈ S̄(C).

Then, fork = 1, . . . , k∗, compute the modes at slicenr = k as

x∗(k, r) = x∗(k − 1, r) + er. (13)

Proposition 1 ensures that the modes computed through (13) are exact.

Now, turning to the case wherek > k∗, the mode at slicenr = k must belong to the boundary of̄Sk,r(C) by

Proposition 2. There are two cases to consider:

1. If k∗ > x∗
r , then fork = k∗ + 1, . . . , nmax(r), approximatex∗(k, r) by interpolation using the formula

x∗(k, r) = proj

(

x∗(nmax(r), r)
k − k∗

nmax(r) − k∗
+ x∗(k∗, r)

nmax(r) − k

nmax(r) − k∗

)

, (14)

which represents the projection to the boundary ofS̄(C) of the line segment connecting pointsx∗(k∗, r) and

x∗(nmax(r), r), i.e.,αr in (12) is given byx∗(k∗, r) − x∗(nmax(r), r) and setting therth component to 0.

2. If k∗ ≤ x∗
r , then

(a) Fork = k∗ + 1, . . . , ⌊x∗
r⌋, approximatex∗(k, r) by interpolation as follows

x∗(k, r) = proj

(

x∗ k − k∗

x∗
r − k∗

+ x∗(k∗, r)
x∗

r − k

x∗
r − k∗

)

, (15)

which represents the projection to the boundary ofS̄(C) of the line segment connecting pointsx∗(k∗, r)

andx∗, i.e.,αr in (12) is given byx∗(k∗, r) − x∗ and setting therth component to 0.

(b) Fork = ⌊x∗
r⌋ + 1, . . . , nmax(r), interpolatex∗(k, r) using the formula

x∗(k, r) = proj

(

x∗(nmax(r), r)
k − x∗

r

nmax(r) − x∗
r

+ x∗ nmax(r) − k

nmax(r) − x∗
r

)

, (16)

which represents the projection to the boundary ofS̄(C) of the line segment connecting pointsx∗ and

x∗(nmax(r), r), i.e.,αr in (12) is given byx∗ − x∗(nmax(r), r) and setting therth component to 0.

Thus, whenk∗ ≤ x∗
r , the refined method interpolates the modes at different slices among thefour pointsx∗(0, r),

x∗(k∗, r), x∗ andx∗(nmax(r), r). On the other hand, whenk∗ > x∗
r the refined method interpolates among the

threepointsx∗(0, r), x∗(k∗, r) andx∗(nmax(r), r). Notice that in this case by definition, the modex∗ belongs to the

interpolation line (13). We further remark that (14), (15) and (16) provide approximations of the mode for each slice.

Once the pointsx∗(k, r) are computed, the mean number of route-r calls is given by

E[nr] =

∑nmax(r)
k=0 k π̂(x∗(k, r))
∑nmax(r)

k=0 π̂(x∗(k, r))
(17)

and the stationary loss probability of route-r calls is obtained from (2).
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3.2 Comparison with the Original 3-Point Slice Method

Denoting the unconstrained mode ofπ̂(·) by

ν̂ = argmaxx∈R
K
+

π̂(x), (18)

we have the following comparison between the original 3-point slice method and our refinement of this method.

Theorem 1. The points identified by the refined method have higher probability than those identified by the 3-point

slice method when

1. ν̂ ∈ S̄(C) andx∗
r 6= x∗

r(n
max(r), r),

2. ν̂ /∈ S̄(C) andx∗
r 6= x∗

r(0, r).

In all other cases, both methods are equivalent.

Proof. In the first case, we note that the interpolation line segmentconnecting pointsx∗ andx∗(nmax, r) is in general

not on the boundary of̄S(C). However, the refined method chooses the line segment along therth dimension accord-

ing to (13), and then chooses a line segment belonging to the boundary ofS̄(C). Within a given slice, the fact that

the points (13) have higher probability is implied by Proposition 1 and the fact that the boundary points have higher

probability is implied by the monotonically increasing behavior of π̂ for statesn such thatns ≤ x∗
s , ∀s 6= r.

In the second case, we note that the interpolation line segment connecting pointsx∗(0, r) andx∗ cannot be on the

boundary ofS̄(C). However, the refined method always chooses a line segment belonging to the boundary of̄S(C).

The fact that these boundary points have higher probabilityis implied by the monotonically increasing behavior ofπ̂

for statesn such thatns ≤ x∗
s, ∀s 6= r.

Finally, the equivalence of the two methods in all other cases follows by definition.

As will be demonstrated in Section 5, instances belonging toeither one of cases1 or 2 of Theorem 1 occur

quite frequently in practice (recall that the refined slice method and the 3-point slice method are identical when these

cases do not occur). Moreover, the refined slice method is computationally comparable to the original 3-point slice

method. In particular, we observe that once the value ofk∗ is known, the firstk∗ terms appearing in the numerator

and denominator ofE[nr] in (17) respectively sum to12k∗(k∗ + 1)π̂(x(0, r)) and(k∗ + 1)π̂(x(0, r)). The efficient

computation ofE[nr] is facilitated by obtaining the value ofk∗ using binary search between0 andnmax(r). Finally,

if T (x∗) andT (x∗(k, r)) are the (polynomial-time) costs of computing the modesx∗ andx∗(k, r) using a standard

convex programming solver, then the computational complexity of the refined slice method is given by

O

(

T (x∗) +

K
∑

r=1

[T (x∗(0, r)) + T (x∗(nmax(r), r)) + nmax(r)]

)

. (19)
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4 Contour Method

Our refined slice method provides an efficient means to approximate the stationary loss probabilitiesL. However,

it does not adequately exploit geometric properties of the multidimensional Poisson distribution with respect to the

underlying polytope. To address this, we propose randomized approximation algorithms that are essentially based

on a piece-wise approximation ofπ̂ and on the volume computation of convex bodies. Approximations are provided

for both the normalizing constantG(C) and the loss probabilitiesLr for each router = 1, 2, . . . , K. While these

contour-based methods have a polynomial computational complexity and thus require a greater computational effort

than our refined slice method, they generate sample estimation of the desired quantities with probabilistic guarantees

on estimation accuracy. In addition, we establish expliciterror bounds on the piece-wise approximation ofπ̂. Hence,

there is a tradeoff between computational complexity and (probabilistic) accuracy guarantees in choosing among our

refined slice method and our contour methods.

4.1 Normalizing Constant Algorithm

By definition, estimating the normalizing constantG(C) is equivalent to estimating a summation over a subset of the

high dimensional latticeZK
+ . To be more precise,

G(C) =
∑

n∈S(C)

π̂(n).

For anyǫ > 0, select an integerM > 0 and̟i, i = 0, 1, . . . , M + 1 such that∆̟i = ̟i+1 − ̟i are sufficiently

small so that

∣

∣G(C) −
∑

i

(̟i+1 − ̟i)|χi|
∣

∣ <
ǫ

2
,

where

χi = {n ∈ S(C) : π(n) ≥ ̟i} , i = 0, 1, . . . , M,

partitionsS(C) into M disjoint subsetsχ1 − χ0, . . . , χM − χM−1. Meanwhile, define

Hi = {x ∈ S̄(C) :
∑

r

xr log νr + xr − xr log xr ≥ log ̟i},

i.e., the polytope that roughly contains all the points inχi. We know that the only difference between|χi| andV ol(Hi)

occurs for some integer points around the boundary, so

∣

∣|χi| − V ol(Hi)
∣

∣ = o(V ol(Hi)).

Hence, we can refine the selection ofM and̟i to make∆̟i sufficiently small such that

∣

∣

∣G(C) −
∑

i

(̟i+1 − ̟i)V ol(Hi)
∣

∣

∣ <
ǫ

2
.
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Therefore, the key task is to calculate the volumes ofHi for i = 1, 2, . . . , M . For this purpose, we adapt a multi-

phase Monte-Carlo based volume calculation algorithm of Lovász and Vempala [13]. The basic idea is to calculate a

sequence of multivariate integrations through Monte-Carlo methods.

First, we need to apply an affine transformation to make sure that the image of eachHi contains the unit ball

B(0, 1) in R
K and is contained inB(0, D) whereD = O(

√
K log(1/ǫ)). Second, for eachHi, define

H ′
i = ([0, 2D] × Hi) ∩ F,

where

F =







x = (x0, x1, . . . , xK) ∈ R
K+1 : 2

√

√

√

√

K
∑

i=1

x2
i ≤ x0







.

Lovász and Vempala [13] note that, for anya ≤ ǫ/D, the quantity

Zi(a) =

∫

H′

i

e−ax0dx

serves as a good approximation forV ol(Hi). Now, consider a sequence of positive numbersa0 > a1 > . . . > am for

m = 2⌈
√

K log K
ǫ ⌉, satisfyinga0 > 2K andam ≤ ǫ2/D. Then the volume ofHi can be approximated by

Zi = Zi(a0)

m−1
∏

i=0

Z(ai+1)

Z(ai)
.

At each stepi = 1, 2, . . . , m of the algorithm,k = 8
ǫ2

√
K log(K

ǫ ) samplesX1
i , X2

i , . . . , Xk
i will be drawn from

the distribution ofe−aix0/ZM (ai). Then for eachj = 1, 2, . . . , M , those samples that belong toHj can be treated as

samples drawn from the distributione−aix0/Zj(ai). This feature of the algorithm enables us to adapt the algorithm to

estimate the volumes ofM convex bodies together, instead of running the original algorithmM times. Therefore, our

contour algorithm has the same complexity as the volume calculation algorithm in [13]. (We note that this is the only

part of our algorithm which is different from that of Lovászand Vempala [13].) As for the output, the quantity

W j
i =

1

m

m
∑

ℓ=1

e(ai−ai+1)(X
ℓ
i )0

can serve as an unbiased estimator ofZj(ai+1)/Zj(ai). The output of the algorithm then will be a vector(Z1, Z2, . . . , ZM ),

where

Zj = K!̟Ka−(K+1)
m W j

1 . . . W j
m, j = 1, 2, . . . , M.

Note that the vector(Z1, Z2, . . . , ZM ) is a probabilistic estimation of the volumes ofH1, H2, . . . , HM that satisfy,

with probability at least1 − δ,

|Zi − V ol(Hi)|
V ol(Hi)

<
ǫ

2
.
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Therefore,

∣

∣

∣G(C) −
∑

i

(̟i+1 − ̟i)Zi

∣

∣

∣ < ǫ.

The variance and covariance of the sequence of random samplings have been calculated, or estimated, by Lovász

and Vempala [13]. All of those results can be directly applied here to guarantee the accuracy and complexity of our

algorithm. In summary, we have

Theorem 2. For anyǫ > 0 andδ > 0, then, with probability at least1 − δ, G(C) can be approximated with error no

more thanǫ by an algorithm whose complexity is

O

(

K4M

ǫ2
log7 K

ǫδ

)

. (20)

.

4.2 Loss Probability Algorithm

4.2.1 Algorithm Description

Our algorithm computes the loss probabilityLr through the following macro steps:

1. For each slicenr = k, chooseM points on the segment connectingerk andx∗(k, r). Let p
m

= p
m

(k, r), 1 ≤

m ≤ M , denote these points such thatπ̂(p
m

) ≤ π̂(p
m+1

), 1 ≤ m < M . Also letp
0

= argminn∈Sk,r(C)π̂(n)

andp
M+1

= x∗(k, r).

2. ComputeE[nr] as

E[nr] =

∑nmax(r)
k=0 k

∑M
m=0 |Φ(m, k, r)| (π̂(p

m
) + π̂(p

m+1
))

∑nmax(r)
k=0

∑M
m=0 |Φ(m, k, r)| (π̂(p

m
) + π̂(p

m+1
))

(21)

where|Φ(m, k, r)| is the cardinality of the set

Φ(m, k, r) =
{

n ∈ S(C) : nr = k, π̂(p
m

) < π̂(n) ≤ π̂(p
m+1

)
}

. (22)

The stationary loss probabilityLr is obtained from (2).

Along each slice, in Step 1 the algorithm initially selects anumber of points on the segments connecting ther-axis

and the modesx∗(k, r). The details of such selection will be discussed below. Then, in Step 2, our algorithm computes

the average per-route number of calls through a piece-wise approximation of̂π defined on each slice and among pairs

of the points identified in Step 1. In particular, this piece-wise approximation ensures that the unnormalized stationary

probability of the network states along slicenr = k is given by

π̂(p
m−1

) + π̂(p
m

)

2
(23)
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for all n ∈ Φ(m, k, r), 0 < m ≤ M . The rationale behind approximation (23) is to take the average value between

two piece-wise functions representing an upper and a lower bound ofπ̂. These bounds are respectively given by

π̂upper(n) = π̂(p
m

) iff n ∈ Φ(m, k, r) (24)

and

π̂lower(n) = π̂(p
m−1

) iff n ∈ Φ(m, k, r). (25)

For a two-route network and a given slice, Figure 1 depicts anexample of such piece-wise functions with respect to the

continuous representation ofπ̂ and assumingM = 2. With approximation (23), several pointsn ∈ S(C) are charac-

 

 

π(p1)

π(p2)

p1 p2

π
upper

π
lower

Figure 1: Graphical representation ofπ̂lower andπ̂upperin the single-route case.

terized by the same value of (23) (see, e.g., Figure 1) and these are captured by the cardinalities of the setsΦ(m, k, r).

In fact, these sets can be interpreted as the inverse images of π̂ associated with the subsets[π̂(p
m

), π̂(p
m+1

)]. For-

mula (21) is then obtained by the exact definition ofE[nr], which can be expressed as

E[nr] =

∑nmax(r)
k=0 k

∑

n∈Sk,r(C) π̂(n)
∑nmax(r)

k=0

∑

n∈Sk,r(C) π̂(n)
, (26)

and grouping together all statesn having the same value of (23). This allows us to significantlyspeed up the compu-

tation of (26).

We now focus on two remaining issues concerning our algorithm, with the first being the selection of the pointsp
1
, . . . , p

M
.

The simplest approach one can choose is to distribute the points on such segments in a balanced manner, i.e., choosing

the points

m · x∗(k, r)

M + 1
, (27)
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1 ≤ m ≤ M . Given that the structure of the polytopeSk,r(C) is in general different fromSk+1,r(C), even the

arrangement of points at different slices are different. Such arrangements are efficient and in the experimental results

section we show that they yield very accurate results.

The second issue is the computation of the number of elementsin Φ(m, k, r). By the same arguments as those

in Section 4.1, such a task can be achieved with high accuracyby computing the volume of the body defined by

Φ(m, k, r). To determine the volume ofΦ(m, k, r), we again exploit the randomized algorithm of Lovász and Vempala

[13] which computes the volume of convex bodies in polynomial time and within a given precision threshold. However,

Φ(m, k, r) is in general not convex and, thus, we solve this issue with auxiliary sets.

For router, slicenr = k and pointp
m

, consider the set

Φ′(m, k, r) =
{

n ∈ S(C) : nr = k, π̂(p
m

) < π̂(n)
}

. (28)

The following relations are straightforward:

Φ(m, k, r) = Φ′(m, k, r) \ Φ′(m + 1, k, r), 0 ≤ m < M ; (29)

Φ(M, k, r) = Φ′(M, k, r). (30)

We further note that all setsΦ′(m, k, r) are convex because they represent the inner points of contours of π̂, and

Φ′(m+1, k, r) ⊆ Φ′(m, k, r) for eachm = 0, . . . , M−1. Hence, to compute the volume ofΦ(m, k, r), 0 ≤ m ≤ M ,

we first compute the volume ofΦ′(m, k, r) and then we exploit relations (29) and (30).

Once again, adapting the algorithm in [13], the volume ofΦ′(m, k, r) can be approximated within a relative error

of ǫ with probability at least1 − δ and with (polynomial) computational complexity

O

(

K4M

ǫ2
log7 K

ǫδ

)

. (31)

4.2.2 Analysis of the Algorithm

Computational Complexity

In summary, for anyǫ > 0 andδ > 0, to obtain the stationary loss probabilities of all routes within a relative error of

ǫ with probability at least1 − δ, the computational complexity of our contour method is

O





K
∑

r=1

nmax(r)
∑

k=0

[T (x∗(k, r)) + T (Φ(0, k, r), ..., Φ(M, k, r))]



 (32)

whereT (x∗(k, r)) is the cost of computing the modex∗(k, r) andT (Φ(0, k, r), ..., Φ(M, k, r)) is the cost of comput-

ing the cardinalities for the vector(Φ(0, k, r), ..., Φ(M, k, r)) with the randomized algorithm. Thus, the computational

requirement is polynomial with respect to the input parameters.
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Error Analysis

Another source of error of the algorithm comes from the selection of M andp1, . . . , pM . It is evident that the approx-

imation (23) converges tôπ (in the continuous case) whenM → ∞. Hence, the choice of whichM must be used is

related to the computational costs that we are willing to incur to solve SLN models. We now explicitly compute such

costs. In what follows, we establish error bounds for the contour method as a function of the number of pointsM to

distribute on each slice. From this error bound, we can conclude that the error decays exponentially asM grows.

Let us consider the unnormalized distributionπ̂ in the continuous case. From its definition, we know that there are

positive constantsc1 andc2 determined only bȳS(C) andνr such that

c1 ≤ dπ̂

dx
≤ c2, (33)

i.e., the likelihood ratio between̂π and the Lebesgue measure is bounded from below and above. Since the approxima-

tion (23) converges tôπ asM → ∞, the error of the contour method approaches zero asM → ∞ (in the continuous

case). We now evaluate the rate of such convergence.

Within slicenr = k, let

Errk,r(M) =

∣

∣

∣

∣

∣

∫

Sk,r(C)

1

2
(π̂upper(x) + π̂lower(x)) − π̂(x) dx

∣

∣

∣

∣

∣

(34)

be the error of the proposed piece-wise approximation whereπ̂upperandπ̂lower are given by (24) and (25). Given that

the average distance betweenπ̂(x) and (23) is never greater than the distance betweenπ̂upper(x) andπ̂lower(x) (see,

for instance, Figure 1), we must have

Errk,r(M) ≤ G+
k,r(M) − G−

k,r(M) = Err∗k,r(M), (35)

where

G+
k,r(M) =

∫

Sk,r(C)

π̂upper(x) dx =

M
∑

m=1

|Φ(m, k, r)|π̂(p
m

), (36)

G−
k,r(M) =

∫

Sk,r(C)

π̂lower(x) dx =

M
∑

m=1

|Φ(m, k, r)|π̂(p
m−1

). (37)

We now focus on Err∗k,r(M) to determine its rate of convergence asM increases.

It is easy to see from (33) that

|Φ(m, k, r)| ≈ αm
1

M + 1
. (38)
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Hence, we have

Err∗k,r(M) ≤ max
m≤M∗

αm

M

M∗

∑

m=0

π̂(p
m+1

) − π̂(p
m

) + min
m>M∗

αm

M

M−1
∑

m=M∗+1

π̂(p
m+1

) − π̂(p
m

)

= O
(

max
m

π̂(p
m+1

) − π̂(p
m

)
)

= O

(

max
m

∏

r

ν
pmr+βr/M
r

(pmr + βr/M)!
− νpmr

r

pmr!

)

= O

(

max
m

∏

r

νpmr
r

pmr!

(

νβr/M
r

pmr!

(pmr − βr/M)!
− 1

)

)

≈ O

(

∏

r

(νβr/M
r − 1)

)

(39)

whereβr = x∗
r(k, r)/(M + 1) is obtained from (27) andM∗ is such that̂π(p

M∗+1
)− π̂(p

M∗
) ≥ 0 andπ̂(p

M∗+2
)−

π̂(p
M∗+1

) < 0 if it exists, otherwise it isM . This means that the error on each slice approaches zero exponentially.

5 Experimental Results

In this section, we numerically assess the accuracy of the refined slice method and of both contour methods. Our

approximations are validated against exact solutions, andthe refined slice method is also compared with the 3-point

slice method [6]. Numerical results are presented relativeto two different sets of experiments: first, we perform a

validation against a small canonical network to emphasize the fundamental properties of the proposed solutions, and

then we focus on a wide test-bed of randomly generated modelsto assess the general quality of the relative error

percentages.

5.1 A Canonical Network

Consider first a small network characterized by

A =





1 0
1 1
0 1



 , C =





5
7
5



 , (40)

i.e., link 2 is shared by both routes while links1 and3 are dedicated to route1 and2, respectively. Without loss of

generality, we focus on the average number of calls of route1, i.e.,E[n1]. To quantify the benefits of the refined slice

method, we consider the following cases for the value ofν:

• Stress case 1: ν /∈ S(C) andx∗
1 6= x∗

1(0, 1), e.g.,ν = (6, 8);

• Stress case 2: ν ∈ S(C) andx∗
1 6= x∗

1(n
max(1), 1), e.g.,ν = (1, 5).

Note that for an evaluation of two-route networks, these classes of values ofν suffice since outside this load region the

3-point slice method and the refined slice method are identical.
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Figure 2: Comparison of the refined and the 3-point slice methods for (a) Stress case 1 and (2) Stress case 2.

With respect to the above stress cases and by varying the scaling parameterN , Figure 2 illustrates the relative error

percentages ofE[n1], i.e.,

|E[n1]approximate − E[n1]exact|
E[n1]exact

· 100%, (41)

when the 3-point slice method and the refined slice method areused. In Figure 2(a), we note that the refined slice

method provides a remarkable improvement in accuracy for eachN and the error (41) converges to zero much faster

when compared to the 3-point slice method. In Figure 2(b), weobserve that in stress case 2, the proposed method

provides better results only whenN > 3. This can be explained by the fact that whenN is small, states close to

the mode significantly affect the behavior of the slice methods. On the other hand, whenN is large the shape of the

distributionπ concentrates around its mode making negligible the effect of the states in its neighborhood. Therefore

the mode closely approximates the mean number of calls in thesystem only forN relatively large. In fact, we note

that our results are very close to exact values forN > 7.

To provide a geometric explanation for the improvements in Figure 2, we depict in Figures 3(a) and 3(b) the

polytopeS(C) and the interpolation points calculated by the 3-point and the refined slice methods, respectively2.

Along each slice, i.e.,n1 = 0, . . . , 5, we notice that the points identified by our method are alwaysthe ones with

highest probability. From Figure 3(a) this is true because these points belong to the boundary of the polytope and the

distributionπ̂ is monotonically increasing inS(C). On the other hand, the 3-point slice method initially chooses the

points which follow the dashed segment connectingx∗(0, 1) = (0, 5) and the (global) modex∗ = (3, 4). Clearly, these

points have less probability than the respective ones belonging to the boundary ofS(C). Likewise from Figure 3(b)

we observe that the points connecting the (global) modex∗ = (1, 5) andx∗(5, 1) = (5, 2) chosen by the 3-point slice

method have less probability than the corresponding ones chosen by the refined slice method. Therefore, the results

shown in Figure 2 agree with our intuition that better results are obtained if we interpolate over states with higher

2It suffices to consider the unscaled case, i.e., whenN = 1, since the structure of the polytope and the interpolation lines chosen by both

methods do not change withN .

17



0 1 2 3 4 5 6
0

1

2

3

4

5

n
1

n
2

Points chosen by the
3−point slice method

Points chosen by
the refined slice
method

(a)

0 1 2 3 4 5 6
0

1

2

3

4

5

n
2

n
1

Points chosen by the
3−point slice method

Points chosen by
the refined slice
       method

(b)

Figure 3: Interpolation points of both methods for (a) Stress case 1 and (2) Stress case 2.
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Figure 4: Percentage relative error vs. number of contoursM for (a) the normalizing constant and (b)E[n1].

probability.

We now compare the accuracy of both contour methods when applied to the small network under stress cases 1

and 2 while varying the number of contoursM from 5 to 40 in steps of size2. Figure 4(a) shows the relative error

percentage of the normalizing constant from the contour method. Stress case 2 yields better results than stress case

1 because the unnormalized probability distributionπ̂ in the former case is easier to approximate through contours.

Analogously, Figure 4(b) depicts the error in computingE[n1] by the contour method. Once again the proposed

method yields very good results and the errors tend to0.1% (stress case 2) and0.5% (stress case 1) forM large.

As in Figure 4(a), better results are obtained for stress case 2. Additionally, in both Figures 4(a) and (b) we observe

small oscillations. These are caused simply because of the discrete nature of the approximating distribution used in

the contour method, which while convergent to the continuous version ofπ̂ for largeM has an oscillating error for

smallerM .
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Figure 5: Comparison between the error in computingE[n1] for the refined and the 3-point slice methods.

5.2 Random Models

To assess the accuracy of the proposed methods in a more general setting, we consider a test-bed of thousands of

randomly-generated models larger than the canonical example discussed in the previous section. The input parameters

used to validate our methods are shown in Table 1. We compare the quality of the refined slice method and of both

Interval
Number of routes {2, 3, 4}
Number of links {3, . . . , 10}
Links capacities {20, . . . , 50}
Arrival rates [1, 50]

Table 1: Input parameters used in the validation.

contour methods with the exact results which we obtain by brute-force enumeration over the set of feasible states, i.e.,

S(C), for each random model. We do not consider networks with larger capacities or a larger number of routes because

of the prohibitively expensive computational effort required to obtain the exact solution and the consequent cost of

calculating robust accuracy results for the large number oftest cases. Further, we consider only random instances such

that no single link simultaneously limits the maximum number of calls onall routes. In fact, in this particular case the

normalizing constant admits a very efficient expression by means of Newton’s multinomial theorem.

In Figure 5 we compare the accuracies of the refined and 3-point slice methods for different values of the scaling

parameterN = 0.5, . . . , 2.5 in steps of size0.5 and, to emphasize the trend of the slice methods, forN = 5. Each

point in the graphs of Figure 5 represents the average of the errors (41) over 3,000 models. Even though the errors of

both methods are small and converge to zero asN increases, we observe that the refined slice method providesmore

accurate results for eachN . In the worst case, i.e.,N = 0.5, our results have an average error of2.2%.

In Figure 6(a), we show the quality of the results obtained bythe contour method which computes the normalizing

constant by varying the number of contoursM from 5 to 40 in steps of size5. In the figure, each point represents the
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Figure 6: Average errors in computing (a) the normalizing constants and (b)E[n1] using the contour method.

relative error percentage in computing the normalizing constant, averaged over 3,000 models. The results show that

the average relative error percentage of the normalizing constant tends to around4%. As discussed above, we note

that the piece-wise function characterizing our contour methods converges to the continuous version of distributionπ̂

whenM increases. However, since the distributionπ̂ is discrete, the small limiting error in the graph of Figure 6(a) is

essentially due to the error in assuming thatπ̂ is continuous. In Figure 6(b), we analogously show the quality of the

results obtained by the contour method in computingE[nr]. In this figure, we observe that our approach provides very

accurate and robust results which tend to an average error of0.2% asM increases.

Hence, at the cost of higher computational complexity than our refined slice algorithm, the contour method can be

adapted to obtain nearly exact estimates of the average numbers of per-route calls and loss probabilities. It is worth

recalling that the two sets of proposed algorithms differ intheir applicability: the refined slice method is exact in

the large network limiting regime (N → ∞), while the contour algorithms give approximations corresponding to the

unscaled network with error bounds that tend to zero as the computational costs increase (M → ∞). Thus we cannot

make a meaningful comparison between the accuracy of the refined slice and contour methods since it depends upon

the respective parametersN andM . In practice, one can choose among the methods based upon which properties best

suit their needs.
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