## Bounding the partition function of BCMP multiclass queueing networks

#### Jonatha Anselmi<sup>1</sup> and Paolo Cremonesi<sup>1</sup>

<sup>1</sup>Dipartimento of Elettronica e Informazione Politecnico di Milano

BWWQT 2009, Minsk

Jonatha Anselmi and Paolo Cremonesi Bounding the partition function of BCMP multiclass queueing network

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回日 のQ(~)

#### Outline



#### Motivation

- BCMP Queueing Networks
- Difficulties of BCMP Queueing Networks

#### Our Result

- Hölder's Inequality
- Bounding the Partition Function
- Load-Dependent Stations

▲□ ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 → の Q (~

BCMP Queueing Networks Difficulties of BCMP Queueing Networks

#### Outline



#### Motivation

- BCMP Queueing Networks
- Difficulties of BCMP Queueing Networks

#### 2 Our Result

- Hölder's Inequality
- Bounding the Partition Function
- Load-Dependent Stations



- Closed BCMP (Basket, Chandy, Muntz, Palacios, 1975) queueing networks have been widely adopted to analytically evaluate the performance of computer and communication systems,
- Extension of Gordon-Newell (1967) networks
- Jobs belong to multiple classes,
  - 2 more types of service disciplines,
  - more general service times probability distributions.

BCMP Queueing Networks Difficulties of BCMP Queueing Networks

### Notation of a Closed BCMP Network



 $\rho_{ir} = e_{ir} / \mu_{ir}$ : mean loading (service demand) of class-*r* jobs in station *i* 

| Motivation |  |
|------------|--|
| Our Result |  |
| Summary    |  |

BCMP Queueing Networks Difficulties of BCMP Queueing Networks

#### Main assumptions of Closed BCMP Networks

# Per-class service time distributionFCFSExponential (with mean $\mu_{ir}^{-1}$ , and $\mu_1 = \cdots = \mu_R$ )LCFS,PS,ISCoxian (with mean $\mu_{ir}^{-1}$ )

Routing probabilities  $p_{ij,r}$  are constants.

BCMP Queueing Networks Difficulties of BCMP Queueing Networks

#### Outline



#### Motivation

- BCMP Queueing Networks
- Difficulties of BCMP Queueing Networks

#### 2 Our Result

- Hölder's Inequality
- Bounding the Partition Function
- Load-Dependent Stations

BCMP Queueing Networks Difficulties of BCMP Queueing Networks

#### Stationary Distribution of Closed BCMP Networks The complexity of the model

BCMP models are CTMC, and the stationary distribution is

$$G(\mathbf{N}) = \sum_{\mathbf{S}(\mathbf{N})} \prod_{i=1}^{M} \left( \sum_{r=1}^{R} n_{ir} \right)! \prod_{r=1}^{R} \frac{D_{ir}^{n_{ir}}}{n_{ir}!}$$
(1)  
$$G(\mathbf{N}) = \sum_{\mathbf{S}(\mathbf{N})} \prod_{i=1}^{M} \left( \sum_{r=1}^{R} n_{ir} \right)! \prod_{r=1}^{R} \frac{D_{ir}^{n_{ir}}}{n_{ir}!}$$
(2)

$$\mathbf{S}(\mathbf{N}) = \left\{ n_{11}, \dots, n_{MR} : \sum_{i=1}^{M} n_{ir} = N_r, 1 \le r \le R \right\}.$$
 (3)

Then, the main problem is the computation of  $G(\mathbf{N})$ . In fact,

$$|\mathbf{S}(\mathbf{N})| = \prod_{r=1}^{R} \binom{N_r + M - 1}{M - 1}$$
(4)

 $\pi$ 

Bounding the partition function of BCMP multiclass queueing network

| Motivation |
|------------|
| Our Result |
| Summarv    |

BCMP Queueing Networks Difficulties of BCMP Queueing Networks

#### Stationary Distribution of Closed BCMP Networks The complexity of the model

BCMP models are CTMC, and the stationary distribution is

 $\pi$ 

$$F(n_{11}, \dots, n_{MR}) = \frac{1}{G(\mathbf{N})} \prod_{i=1}^{M} \left( \sum_{r=1}^{R} n_{ir} \right)! \prod_{r=1}^{R} \frac{D_{ir}^{n_{ir}}}{n_{ir}!}$$
(1)  
$$G(\mathbf{N}) = \sum_{\mathbf{S}(\mathbf{N})} \prod_{i=1}^{M} \left( \sum_{r=1}^{R} n_{ir} \right)! \prod_{r=1}^{R} \frac{D_{ir}^{n_{ir}}}{n_{ir}!}$$
(2)

$$\mathbf{S}(\mathbf{N}) = \left\{ n_{11}, \dots, n_{MR} : \sum_{i=1}^{M} n_{ir} = N_r, 1 \le r \le R \right\}.$$
 (3)

Then, the main problem is the computation of  $G(\mathbf{N})$ . In fact,

$$|\mathbf{S}(\mathbf{N})| = \prod_{r=1}^{R} \binom{N_r + M - 1}{M - 1}$$
(4)

BCMP Queueing Networks Difficulties of BCMP Queueing Networks

#### What are the solutions? A number of alternative analyses

#### Given that

 no (exact) polynomial algorithm is known for the solution of closed BCMP models,

alternative solutions are available:

- Bounding Analysis
- Asymptotic Analysis
- Approximate Analysis
- Bottleneck Analysis

| <b>Notivation</b> | Hölder's Inequality             |
|-------------------|---------------------------------|
| our Result        | Bounding the Partition Function |
| Summary           | Load-Dependent Stations         |

#### Outline



- BCMP Queueing Networks
- Difficulties of BCMP Queueing Networks

#### Our Result

- Hölder's Inequality
- Bounding the Partition Function
- Load-Dependent Stations

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = り へ ()



#### Hölder's Inequality in two dimensions

- Let *p* and *q* be positive real numbers such that 1/p + 1/q = 1.
- If S is a measurable subset on R<sup>n</sup>, and f<sub>1</sub> and f<sub>2</sub> are measurable real-valued functions on S, then

$$\int_{\mathcal{S}} \left| f_1(x) f_2(x) \right| \mathrm{d}x \le \left( \int_{\mathcal{S}} |f_1(x)|^p \, \mathrm{d}x \right)^{1/p} \left( \int_{\mathcal{S}} |f_2(x)|^q \, \mathrm{d}x \right)^{1/q}.$$
(5)

| Motivation | Hölder's Inequality             |
|------------|---------------------------------|
| Our Result | Bounding the Partition Function |
| Summary    | Load-Dependent Stations         |

#### Outline



- BCMP Queueing Networks
- Difficulties of BCMP Queueing Networks

#### Our Result

- Hölder's Inequality
- Bounding the Partition Function
- Load-Dependent Stations

Image: 1

| Motivation | Hölder's Inequality             |
|------------|---------------------------------|
| Our Result | Bounding the Partition Function |
| Summary    | Load-Dependent Stations         |

#### **Our Objective**

To apply the Hölder's Inequality (in the general case)

$$\int_{\mathcal{S}} \left| \prod_{r=1}^{R} f_r(x) \right| \mathrm{d}x \leq \prod_{r=1}^{R} \left( \int_{\mathcal{S}} |f_r(x)|^{p_r} \,\mathrm{d}x \right)^{1/p_r} \tag{6}$$

with  $\sum_{r=1}^{R} 1/p_r = 1$ , to the partition function of closed BCMP queueing networks

$$G(\mathbf{N}) = \sum_{\mathbf{S}(\mathbf{N})} \prod_{i=1}^{M} \left( \sum_{r=1}^{R} n_{ir} \right)! \prod_{r=1}^{R} \frac{D_{ir}^{n_{ir}}}{n_{ir}!}$$
(7)

to obtain a computationally efficient bound.

| Motivation | Hölder's Inequality             |
|------------|---------------------------------|
| Our Result | Bounding the Partition Function |
| Summary    | Load-Dependent Stations         |

#### Integral representation of $G(\mathbf{N})$

It is possible to show that

$$G(\mathbf{N}) = \frac{1}{\prod_{r=1}^{R} N_{r}!} \int_{\Re^{+M}} \prod_{r=1}^{R} H(r, \mathbf{u})^{N_{r}} e^{-(u_{1}+...+u_{M})} d\mathbf{u}$$
(8)

where  $H(r, \mathbf{u}) = \rho_{0r} + \rho_{1r}u_1 + \cdots + \rho_{Mr}u_M$ .

(8) can be rewritten as

$$G(\mathbf{N}) = \frac{1}{\prod_{r=1}^{R} N_r!} \int_{\Re^{+M}} \prod_{r=1}^{R} \left[ H(r, \mathbf{u})^N e^{-(u_1 + \dots + u_M)} \right]^{\beta_r} d\mathbf{u}$$
(9)
where  $\beta_r = N_r/N.$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ ④ ●

| Motivation | Hölder's Inequality             |
|------------|---------------------------------|
| Our Result | Bounding the Partition Function |
| Summary    | Load-Dependent Stations         |

#### Integral representation of $G(\mathbf{N})$

It is possible to show that

$$G(\mathbf{N}) = \frac{1}{\prod_{r=1}^{R} N_{r}!} \int_{\Re^{+M}} \prod_{r=1}^{R} H(r, \mathbf{u})^{N_{r}} e^{-(u_{1}+...+u_{M})} d\mathbf{u}$$
(8)

where  $H(r, \mathbf{u}) = \rho_{0r} + \rho_{1r}u_1 + \cdots + \rho_{Mr}u_M$ .

• (8) can be rewritten as

$$G(\mathbf{N}) = \frac{1}{\prod_{r=1}^{R} N_{r}!} \int_{\Re^{+M}} \prod_{r=1}^{R} \left[ H(r, \mathbf{u})^{N} e^{-(u_{1} + \dots + u_{M})} \right]^{\beta_{r}} d\mathbf{u}$$
(9)

where  $\beta_r = N_r/N$ .

#### Applying Hölder's result

Therefore, Hölder's inequality yields

$$G(\mathbf{N}) \leq \prod_{r=1}^{R} \frac{1}{N_{r}!} \left[ \int_{\Re^{+M}} H(r, \mathbf{u})^{N} e^{-(u_{1}+\ldots+u_{M})} d\mathbf{u} \right]^{\beta_{r}} \quad (10)$$

• Now, multiplying and dividing by N!, we obtain

$$\boldsymbol{G}(\mathbf{N}) \leq N! \prod_{r=1}^{R} \frac{1}{N_r!} \left[ \frac{1}{N!} \int_{\Re^{+M}} H(r, \mathbf{u})^N e^{-(u_1 + \ldots + u_M)} d\mathbf{u} \right]^{\beta_r}$$
(11)

 ⇒ the expression in the brackets can be interpreted as the integral representation of the partition function of a singleclass network populated by N class-r jobs only.

#### Applying Hölder's result

Therefore, Hölder's inequality yields

$$G(\mathbf{N}) \leq \prod_{r=1}^{R} \frac{1}{N_r!} \left[ \int_{\Re^{+M}} H(r, \mathbf{u})^N e^{-(u_1 + \ldots + u_M)} d\mathbf{u} \right]^{\beta_r} \quad (10)$$

• Now, multiplying and dividing by N!, we obtain

$$G(\mathbf{N}) \leq N! \prod_{r=1}^{R} \frac{1}{N_r!} \left[ \frac{1}{N!} \int_{\Re^{+M}} H(r, \mathbf{u})^N e^{-(u_1 + \dots + u_M)} d\mathbf{u} \right]^{\beta_r}$$
(11)

 ⇒ the expression in the brackets can be interpreted as the integral representation of the partition function of a singleclass network populated by N class-r jobs only.

#### Applying Hölder's result

Therefore, Hölder's inequality yields

$$G(\mathbf{N}) \leq \prod_{r=1}^{R} \frac{1}{N_r!} \left[ \int_{\Re^{+M}} H(r, \mathbf{u})^N e^{-(u_1 + \ldots + u_M)} d\mathbf{u} \right]^{\beta_r} \quad (10)$$

• Now, multiplying and dividing by N!, we obtain

$$G(\mathbf{N}) \leq N! \prod_{r=1}^{R} \frac{1}{N_r!} \left[ \frac{1}{N!} \int_{\Re^{+M}} H(r, \mathbf{u})^N e^{-(u_1 + \ldots + u_M)} d\mathbf{u} \right]^{\beta_r}$$
(11)

 → the expression in the brackets can be interpreted as the integral representation of the partition function of a singleclass network populated by N class-r jobs only.

| Motivation | Hölder's Inequality             |
|------------|---------------------------------|
| Our Result | Bounding the Partition Function |
| Summary    | Load-Dependent Stations         |

#### Main Result

#### • Hence,

$$G(\mathbf{N}) \leq \prod_{r=1}^{R} \frac{[N!G(N\mathbf{e}_{r})]^{\beta_{r}}}{N_{r}!} = \binom{N}{N_{1}, \dots, N_{R}} \prod_{r=1}^{R} G(N\mathbf{e}_{r})^{\beta_{r}}$$
(12)

where  $\mathbf{e}_r$  is the unit vector in direction r.

 → the upper bound on the partition function of a closed, multiclass BCMP queueing network is provided.

#### Notes on $G(N\mathbf{e}_r)$

 $G(Ne_r)$  refers to a single-class queueing network. Therefore,

- it can be computed efficiently
  - The computational complexity of the MVA is O(MN)
  - The computational complexity of Koenigsberg's formula is O(M<sup>2</sup>))
- Koenigsberg's formula provides the asymptotic behavior

$$G(N\mathbf{e}_r) \approx \frac{(\max_{i \ge 1} \rho_{ir})^{N+M-1}}{\prod_{j=1, j \neq \arg\max_{i \ge 1} \rho_{jr}}^{M} (\max_{i \ge 1} \rho_{ir} - \rho_{jr})}$$
(13)

i.e., the order of magnitude of  $G(Ne_r)$ .

#### Notes on $G(N\mathbf{e}_r)$

 $G(Ne_r)$  refers to a single-class queueing network. Therefore,

- it can be computed efficiently
  - The computational complexity of the MVA is O(MN)
  - The computational complexity of Koenigsberg's formula is O(M<sup>2</sup>))
- Koenigsberg's formula provides the asymptotic behavior

$$G(N\mathbf{e}_r) \approx \frac{(\max_{i \ge 1} \rho_{ir})^{N+M-1}}{\prod_{j=1, j \neq \arg\max_{i \ge 1} \rho_{jr}}^{M} (\max_{i \ge 1} \rho_{ir} - \rho_{jr})}$$
(13)

i.e., the order of magnitude of  $G(Ne_r)$ .

| Motivation | Hölder's Inequality             |
|------------|---------------------------------|
| Our Result | Bounding the Partition Function |
| Summary    | Load-Dependent Stations         |

#### Outline



- BCMP Queueing Networks
- Difficulties of BCMP Queueing Networks

#### Our Result

- Hölder's Inequality
- Bounding the Partition Function
- Load-Dependent Stations

Image: 1

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = り へ ()

#### Extension to LD Stations

- Load-Dependent (LS) station: service rates μ<sub>ir</sub> are multiplied by queue-lenght functions, i.e., x<sub>i</sub>(n) or y<sub>ir</sub>(n).
- Making the following replacements

$$\rho_{ir} \leftarrow \begin{cases} \rho_{ir} / \inf_n x_i(n) \\ \rho_{ir} / \inf_n y_{ir}(n) \end{cases}$$
(14)

the resulting queueing network is composed of only LI stations and the new value of the partition function bounds from above the original one, and

• Bound (12) can be applied again.

#### Extension to LD Stations

- Load-Dependent (LS) station: service rates μ<sub>ir</sub> are multiplied by queue-lenght functions, i.e., x<sub>i</sub>(n) or y<sub>ir</sub>(n).
- Making the following replacements

$$\rho_{ir} \leftarrow \begin{cases} \rho_{ir} / \inf_n x_i(n) \\ \rho_{ir} / \inf_n y_{ir}(n) \end{cases}$$
(14)

the resulting queueing network is composed of only LI stations and the new value of the partition function bounds from above the original one, and

• Bound (12) can be applied again.



- We proposed a new inequality upper bounding the partition function of multiclass, closed BCMP queueing networks in terms of *R* partition functions related to single-class, closed BCMP queueing networks,
- The upper bound can be computed efficiently,
- Beyond the theoretical interest, it can provide an estimate of the minimum amount of memory that exact solution algorithms implementations should allocate to avoid numerical instabilities.



- We proposed a new inequality upper bounding the partition function of multiclass, closed BCMP queueing networks in terms of *R* partition functions related to single-class, closed BCMP queueing networks,
- The upper bound can be computed efficiently,
- Beyond the theoretical interest, it can provide an estimate of the minimum amount of memory that exact solution algorithms implementations should allocate to avoid numerical instabilities.



- We proposed a new inequality upper bounding the partition function of multiclass, closed BCMP queueing networks in terms of *R* partition functions related to single-class, closed BCMP queueing networks,
- The upper bound can be computed efficiently,
- Beyond the theoretical interest, it can provide an estimate of the minimum amount of memory that exact solution algorithms implementations should allocate to avoid numerical instabilities.

#### For Further Reading I



🦠 Jonatha Anselmi.

New Analyses in BCMP Queueing Networks Theory. PhD Thesis, March 2009. Politecnico di Milano, Italy