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Nash Equilibrium

The set of decisions such that no player has benefit of unilateral
deviation

Theorem (Nash)

There exists a solution for every non-cooperative game.
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Computing a Nash equilibrium is PPAD-complete.
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Nash Equilibrium

The set of decisions such that no player has benefit of unilateral
deviation

Theorem (Nash)
There exists a solution for every non-cooperative game.

Theorem (Papadimitriou et al)

Computing a Nash equilibrium is PPAD-complete.
(Polynomial Parity Arguments on Directed graphs)

= Huge number of players or strategies: not tractable

Mean-Field Games (Lions and Lasry)

Infinite number of rational objects in interaction.
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Infinite Homogeneous Players
@ State: S={1,...,S}
@ Actions: A= {1,...,A}
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Infinite Homogeneous Players

@ State: S={1,...,S}

@ Actions: A= {1,...,A}

@ Population distribution: mé(t), ae A
Player 0

e acA
@ Instan. cost: ¢(a°(t), ma(t))

V(& (1—96) Zaf a(t), ma(t))
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Mean-Field Equilibrium

Best Response to a
Set of strategies

BR(a) = argmin V(&°, a)
20
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Mean-Field Equilibrium

Best Response to a
Set of strategies

BR(a) = argmin V(&°, a)
20

Mean-Field Equilibrium

2VFE ¢ BR(aMFE)

= Fixed-point problem
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N-Player Repeated Game

@ Player 0 = &°
@ Others = a
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@ M?4(t) : population distribution at time ¢
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N-Player Repeated Game

@ Player 0 = &°
@ Others = a

@ M?4(t) : population distribution at time ¢
@ Instan. cost: ¢(a°, Ma(t))

VN (1-5)25t (&%, M2(1))

N-player game equilibrium
For all &

VN(a,a) < VN(4, a)
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9 Convergence Results
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MFE existence

Continuity assumptions on m
o P,'ja(m)
@ ¢(a’ m)
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MFE existence

Continuity assumptions on m
o P;ja(m)
@ ¢(a’ m)

Any discrete time mean-field game with discounted cost that satisfies
the continuity assumptions has a mean-field equilibrium.

Best-response has a fixed-point: Kakutani
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Convergence

Every repeated game Nash equilibria converge to a MFE?
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Convergence
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Player Strategies of N-player repeated game
@ Local: depend on state and time = a(i, t)
@ Markov: depend on m, state and time = a(i, m(t))
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Convergence

Every repeated game Nash equilibria converge to a MFE?

Player Strategies of N-player repeated game
@ Local: depend on state and time = a(i, t)
@ Markov: depend on m, state and time = a(i, m(t))

Every local equilibrium converges to a mean-field equilibrium.

Proof: VN(x',7) — V(r',7) when N — oo

(H. Tembine, J.-Y. L. Boudec, R. El-Azouzi, and E. Altman. Mean-field asymptotics of
markov decision evolutionary games and teams. GameNets’ 09.)
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Prisoner’s dilemma

S=A={C,D}
C|D

C| 1,130

D[03]22
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S=A={C,D}
C|D
C| 1,130
D[03]22

N Players: mean-field version
= Mc+ mp =1

, i mC+3mD ifi=C
C(”m)—{ 2mp if i = D
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Prisoner’s dilemma

S=A={C,D}
C|D
C| 1,130
D[03]22

N Players: mean-field version
= Mc+ mp =1

, i mC+3mD ifi=C
C(”m)—{ 2mp if i = D

Static game equilibrium = Always D

e MFE?
@ Repeated Game NE?
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Mean-Field Equilibrium

, . mC+3mD ifi=C
C(”m)_{ 2mp if i = D

b = BR(a)
The best response to any action ais always D.

V@i,m) = (1-9) 25’ (xc(t) - (me(t) + 3mp(t)) + xo(t) - 2mp(t))
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Mean-Field Equilibrium

, . mC+3mD ifi=C
C(”m)_{ 2mp if i = D

b = BR(a)
The best response to any action ais always D.

V@i,m) = (1-9) 25’ (xc(t) - (me(t) + 3mp(t)) + xo(t) - 2mp(t))

(1) Z §'(xc(t) +2mp(t))

t=0
Minimum when x¢(f) = 0
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Mean-Field Equilibrium

.~ [ mc+3mp ifi=C
C(”m)_{ 2mp ifi=D

b = BR(a)
The best response to any action ais always D.

V@i,m) = (1-9) 25’ (xc(t) - (me(t) + 3mp(t)) + xo(t) - 2mp(t))

(1) Z §'(xc(t) +2mp(t))

t=0

Minimum when x¢(t) = 0= BR(a): Always D
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Mean-Field Equilibrium

.~ [ mc+3mp ifi=C
C(”m)_{ 2mp ifi=D

b = BR(a)
The best response to any action ais always D.

V@i,m) = (1-9) 25’ (xc(t) - (me(t) + 3mp(t)) + xo(t) - 2mp(t))

(1) Z §'(xc(t) +2mp(t))

t=0

Minimum when x¢(t) = 0= BR(a): Always D

aP € BR(a")
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Repeated Game Nash Equilibrium

C o ay mec+3mp ifi=C
C(”m)_{sz if i = D

Action a*
@ First k rounds, play D

@ From k, play C if all play C
Otherwise, play D for ever
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Action a*
@ First k rounds, play D

@ From k, play C if all play C
Otherwise, play D for ever
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No player gets benefit from unilateral deviation
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Repeated Game Nash Equilibrium

C o ay mc—l—st ifi=0C
C(”m)_{zmo ifi =D

Action a*
@ First k rounds, play D

@ From k, play C if all play C
Otherwise, play D for ever

Nash Equilibrium
No player gets benefit from unilateral deviation
@ First k rounds, cost increases

@ From Kk, if play D, an immediate advantage = punished until the
end
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What happened?

Theorem (Folk Theorem)

Let G be a symmetric matricial game, and let V* be the cost under the
strategy that repeats the Nash equilibrium of the static game G. Then

any feasible cost V smaller than V* is the cost of an equilibrium of the
repeated game if the discount factor is large enough.

Reward and Punishment Principle
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MFG assumption: Individuals action does not influence the mass

@ The mass can not punish
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What happened?

Theorem (Folk Theorem)

Let G be a symmetric matricial game, and let V* be the cost under the
strategy that repeats the Nash equilibrium of the static game G. Then
any feasible cost V smaller than V* is the cost of an equilibrium of the
repeated game if the discount factor is large enough.

Reward and Punishment Principle

= None of these equilibria convergence to a mean-field equilibrium

MFG assumption: Individuals action does not influence the mass

@ The mass can not punish

The Folk Theorem do not scale
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e Some Extensions
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Continuous Time and Discounted Case

Qjja(m): transition rate matrix
Assump: Qjjz(m) continuous in m

Under the continuity assumptions, a MFE exists. \
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@ R(t) = choose strategy
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Continuous Time and Discounted Case

Qjja(m): transition rate matrix
Assump: Qjjz(m) continuous in m

Under the continuity assumptions, a MFE exists. \

Asynchronous N-player repeated game
e 7n={0,1/N,2/N,...}
@ R(t) = choose strategy

In continuous time, under the continuity assumptions and if
E(|R(1)[?) < oo, every local strategy converge to a MFE

Markov strategies do not converge MEE = gP
= Prisoner’s dilemma

. ay_ | mc+3mp ifi=C
C(”m)_{zmn ifi=D
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Continuous Time and Discounted Case

Qjja(m): transition rate matrix
Assump: Qjjz(m) continuous in m

Under the continuity assumptions, a MFE exists. \

Asynchronous N-player repeated game
e 7n={0,1/N,2/N,...}
@ R(t) = choose strategy

In continuous time, under the continuity assumptions and if
E(|R(1)[?) < oo, every local strategy converge to a MFE

Markov strategies do not converge MFE — a0
= Prisoner’s dilemma

s ay me +3mp ifi=C ﬂ_m:{C !fmC:1
C("m)_{2mo ifi=D (M=1D itme<1
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Continuous Time and Finite Horizon

Under the continuity assumptions, a MFE exists. \

Previous example = MFE=NE (Always D)
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Continuous Time and Finite Horizon

Under the continuity assumptions, a MFE exists. \

Previous example = MFE=NE (Always D)

Prisoner’s dilemma =- P: punish

cC| D|P
C|1,1]30]30
D|03]|22|40
P|03|04]33

Static Nash Equilibria: D and P
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Continuous Time and Finite Horizon

Under the continuity assumptions, a MFE exists. \

Previous example = MFE=NE (Always D)

Prisoner’s dilemma =- P: punish

cC| D|P
C|1,1]30]30
D|03]|22|40
P|03|04]33

Static Nash Equilibria: D and P

Repeated Game Nash Equilibrium:
e ift<1,play Cif mg =1, play P otherwise
e ift > 1, play Dif mp =0, play P otherwise.
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e Conclusions
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Conclusions

Convergence:

@ Local strategy — MFE

@ Markov strategies do not
Discrete and continuous time
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Conclusions

Convergence:

@ Local strategy — MFE

@ Markov strategies do not
Discrete and continuous time

MFE existence:
@ Discrete and continuous time
@ Discounted and finite horizon
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Convergence:
@ Best class of actions = convergence
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@ Uniqueness conditions

Josu Doncel (INRIA) MFG Convergence 16/03/2016 21/21


https://hal.inria.fr/hal-01277098

Convergence:
@ Best class of actions = convergence

MFE:
@ Uniqueness conditions

Full version available:
Josu Doncel, Nicolas Gast, Bruno Gaujal. Mean-Field Games with
Explicit Interactions. https://hal.inria.fr/hal-01277098
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