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Introduction

Definition (Mean-Field Games)
Mathematical models for the study of the behaviour of a very large
number of rational agents in interaction.

Theorem (Lasry and Lions, 2006)
All Nash equilibrium converges as N →∞ to a Mean Field equilibrium.
The equilibrium is unique under monotonicity conditions.

Assumptions:
A1 Homogeneous players
A2 Individual object action do not affect in the dynamics of the mass

N players⇒ continuous players
Simplification of games and equilibria in the continuous limit
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Introduction (cont.)

EDP approach to mean-field games: HJB and FP equations

⇒ Optimal stochastic control approach
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SIRV Model

SIRV dynamics:
Susceptible⇒ Infected: if it meets an infected with rate β
Infected⇒ Recovered: with rate γ
Susceptible⇒ Vaccinated: with rate b(t)

Susc Infec Reco

Vac

b(t)

β I(t) γ

Some applications:
Medicine
Biology
Computer networks: virus and adverts
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SIRV Model

When N →∞:
Ṡ(t) = −β · S(t) · I(t)− b(t) · S(t)
İ(t) = β · S(t) · I(t)− γ · I(t)
Ṙ(t) = γ · I(t)
V̇ (t) = b(t) · S(t)
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Classic MFG: interactions given only by the control
Mass dynamics depend on the control, Brownian motion...

Our model: mass dynamics depend also on S(t) · I(t)
⇒ Mean-Field Game with Interactions
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SIRV Model (cont.)

Vaccination policy: b(t) ∈ [0,bmax ]
Vaccination cost: cV
Infection cost: cI

Obj: choose b(t) to minimize cost

Example: Hospital
Decentralized⇒ each individual chooses how to vaccinate
Centralized⇒ central agent decides when people take medicine

Objective:
Compare cost of centralized and decentralized vaccination policies
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Related work

No much literature of MFG with interactions

(Laguzet and Turinici, 2015)
Approximation:
P(X (t) = infec) = P(X (t) = infec | no vac) and
P(X (t) = vac) = P(X (t) = vac | no infec)

Our solution: No approximation
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Decentralized Control

X (t) ∈ {S, I,R,V} state of object i ⇒ bi(t)

Susc Infec Reco

Vac

b
i
(t)

β I(t) γ

Generic player i : given b(t), choose vaccination policy bi(t) to
minimize his expected cost

E

(∫ T

0
(cV bi(t) P(X (t) = S) + cI P(X (t) = I)) dt

)
(1)

Continuous Time Markov Decision Process
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Decentralized Control (cont.)

Proposition
For any b(t), the solution of (1) is of threshold type
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Mean-Field Equilibrium

Assumption: Homogeneous individuals⇒ solve (1) equally
Symmetric MFE

Definition (Mean-Field Equilibrium):
A vaccination policy is a symmetric MFE if and only if it minimizes (1)
and it coincides with b(t)

Fixed point problem

Solution of (1) of threshold type⇒ MFE requirements:
b(t) of threshold type
Thresholds of b(t) and of solution of (1) coincide
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Mean-Field Equilibrium

Theorem
There exists a unique MFE and it is of threshold type.

Sketch of the proof: Monotonicity of MDP equations
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Centralized control

Definition: Global Cost

CGlo(b(t)) =
∫ T

0
(cV b(t) S(t) + cI I(t))dt

Definition: Social Optimum

bopt(t) = argminb(t)CGlo(b(t))

bopt(t) is of threshold type?
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Centralized control (cont.)

Theorem
Global optimum is of threshold type

Sketch of the proof: Policy improvement
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Mechanism Design
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Question:
Can we get that CGlo(bopt(t)) = CGlo(beq(t))?
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Mechanism Design

Observation:
For a fixed system parameters, except in the trivial cases, teq < topt .
Therefore, CGlo(bopt(t)) < CGlo(beq(t))

⇒ Change the model!

Different cost of vaccination for decentralized and centralized problem
Population vaccination cost: cV

Individual vaccination cost: c′
V = cV + p

Example: Hospital
c′

V : price to sell the medicine to each individual
cV : medicine production price

p is positive, negative or zero?
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Dynamics and Thresholds
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Dynamics and Thresholds
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OPT: NO
EQ: NO

OPT: MAX
EQ: MAX

OPT: MAX
EQ: NO

Conclusion
Except in the trivial cases, teq < topt
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Varying cV and Pricing Mechanism
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cV = 0.8 ⇒ p = 0.16 (20% of cV )
p: between 0% and 40% of cV

Conclusion: p < 0
Vaccination to individuals must be
cheaper!
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Conclusions

MFG⇒ Optimal stochastic control

Simple model: interactions and control

Susc Infec Reco

Vac

b
i
(t)

β I(t) γ

MFE is unique and of threshold type, as well as the global optimum

Pricing mechanism
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Thank you

Questions?
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