A Mean Field Game with Interactions for Epidemic Models

Optimal Stochastic Control Approach

Josu Doncel INRIA

joint work with N. Gast and B. Gaujal

Groupe de Travail COS (Contrôle Optimal Stochastique) LAAS-CNRS, Toulouse

September 10, 2015

MFG with Interactions for Epidemic Models

Outline

Introduction

- 2 Decentralized Control
- 3 Centralized Control
- Pricing Technique
- 5 Numerical Experiments
- 6 Conclusions

Outline

Introduction

- 2 Decentralized Control
- 3 Centralized Control
- Pricing Technique
- 5 Numerical Experiments
- 6 Conclusions

A (10) A (10) A (10)

Definition (Mean-Field Games)

Mathematical models for the study of the behaviour of a very large number of rational agents in interaction.

Definition (Mean-Field Games)

Mathematical models for the study of the behaviour of a very large number of rational agents in interaction.

Theorem (Lasry and Lions, 2006)

All Nash equilibrium converges as $N \rightarrow \infty$ to a Mean Field equilibrium. The equilibrium is unique under monotonicity conditions.

Assumptions:

- A1 Homogeneous players
- A2 Individual object action do not affect in the dynamics of the mass

< ロ > < 同 > < 回 > < 回 >

Definition (Mean-Field Games)

Mathematical models for the study of the behaviour of a very large number of rational agents in interaction.

Theorem (Lasry and Lions, 2006)

All Nash equilibrium converges as $N \rightarrow \infty$ to a Mean Field equilibrium. The equilibrium is unique under monotonicity conditions.

Assumptions:

- A1 Homogeneous players
- A2 Individual object action do not affect in the dynamics of the mass

N players \Rightarrow continuous players Simplification of games and equilibria in the continuous limit

EDP approach to mean-field games: HJB and FP equations

$$\begin{cases} -\nu\Delta u + H(x,\nabla u) + \lambda = V(x,m) \\ -\nu\Delta m - \operatorname{div}\left(\frac{\partial H}{\partial p}(x,\nabla u)m\right) = 0 \\ m > 0, \int m \, dx = 1 \end{cases}$$

 \Rightarrow Optimal stochastic control approach

• • • • • • • • • • • •

SIRV dynamics:

- Susceptible \Rightarrow Infected: if it meets an infected with rate β
- Infected \Rightarrow Recovered: with rate γ
- Susceptible \Rightarrow Vaccinated: with rate b(t)

< 🗇 🕨 < 🖃 >

SIRV dynamics:

- Susceptible \Rightarrow Infected: if it meets an infected with rate β
- Infected \Rightarrow Recovered: with rate γ
- Susceptible \Rightarrow Vaccinated: with rate b(t)

Some applications:

- Medicine
- Biology
- Computer networks: virus and adverts

Josu Doncel (INRIA)

When
$$N \to \infty$$
:

$$\begin{cases}
\dot{S}(t) = -\beta \cdot S(t) \cdot I(t) - b(t) \cdot S(t) \\
\dot{I}(t) = \beta \cdot S(t) \cdot I(t) - \gamma \cdot I(t) \\
\dot{R}(t) = \gamma \cdot I(t) \\
\dot{V}(t) = b(t) \cdot S(t)
\end{cases}$$

(日) (四) (日) (日) (日)

When
$$N \to \infty$$
:

$$\begin{cases} \dot{S}(t) = -\beta \cdot S(t) \cdot I(t) - b(t) \cdot S(t) \\ \dot{I}(t) = \beta \cdot S(t) \cdot I(t) - \gamma \cdot I(t) \\ \dot{R}(t) = \gamma \cdot I(t) \\ \dot{V}(t) = b(t) \cdot S(t) \end{cases}$$

Classic MFG: interactions given only by the control Mass dynamics depend on the control, Brownian motion...

- 24

A (10) A (10)

Classic MFG: interactions given only by the control Mass dynamics depend on the control, Brownian motion...

Our model: mass dynamics depend also on $S(t) \cdot I(t)$ \Rightarrow Mean-Field Game with Interactions

SIRV Model (cont.)

Josu Doncel (INRIA)

```
Vaccination policy: b(t) \in [0, b_{max}]
Vaccination cost: c_V
Infection cost: c_I
```

Obj: choose b(t) to minimize cost

SIRV Model (cont.)

```
Vaccination policy: b(t) \in [0, b_{max}]
Vaccination cost: c_V
Infection cost: c_I
```

Obj: choose b(t) to minimize cost

Example: Hospital

- Decentralized ⇒ each individual chooses how to vaccinate
- Centralized \Rightarrow central agent decides when people take medicine

< □ > < □ > < □ > < □ >

SIRV Model (cont.)

```
Vaccination policy: b(t) \in [0, b_{max}]
Vaccination cost: c_V
Infection cost: c_I
```

Obj: choose b(t) to minimize cost

Example: Hospital

- Decentralized ⇒ each individual chooses how to vaccinate
- Centralized \Rightarrow central agent decides when people take medicine

Objective:

Compare cost of centralized and decentralized vaccination policies

< ロ > < 同 > < 回 > < 回 >

No much literature of MFG with interactions

э

・ロト ・日下 ・ ヨト ・

No much literature of MFG with interactions

- (Laguzet and Turinici, 2015) Approximation: P(X(t) = infec) = P(X(t) = infec | no vac) and P(X(t) = vac) = P(X(t) = vac | no infec)
- Our solution: No approximation

Introduction

2 Decentralized Control

- 3 Centralized Control
- Pricing Technique
- 5 Numerical Experiments
- 6 Conclusions

< 回 ト < 三 ト < 三

Decentralized Control

 $X(t) \in \{S, I, R, V\}$ state of object $i \Rightarrow b_i(t)$

Decentralized Control

 $X(t) \in \{S, I, R, V\}$ state of object $i \Rightarrow b_i(t)$

Generic player *i*: given b(t), choose vaccination policy $b_i(t)$ to minimize his expected cost

$$\mathbb{E}\left(\int_0^T \left(c_V \ b_i(t) \ \mathbb{P}(X(t) = S) + c_I \ \mathbb{P}(X(t) = I)\right) \ dt\right) \tag{1}$$

< 🗇 🕨 < 🖃 >

Decentralized Control

 $X(t) \in \{S, I, R, V\}$ state of object $i \Rightarrow b_i(t)$

Generic player *i*: given b(t), choose vaccination policy $b_i(t)$ to minimize his expected cost

$$\mathbb{E}\left(\int_0^T \left(c_V \ b_i(t) \ \mathbb{P}(X(t) = S) + c_I \ \mathbb{P}(X(t) = I)\right) \ dt\right)$$
(1)

Continuous Time Markov Decision Process

Josu Doncel (INRIA)

Decentralized Control (cont.)

Proposition

For any b(t), the solution of (1) is of threshold type

MFG with Interactions for Epidemic Models

Assumption: Homogeneous individuals \Rightarrow solve (1) equally Symmetric MFE

Definition (Mean-Field Equilibrium):

A vaccination policy is a symmetric MFE if and only if it minimizes (1) and it coincides with b(t)

Fixed point problem

Josu Doncel (INRIA)

A D b 4 A b

Assumption: Homogeneous individuals \Rightarrow solve (1) equally Symmetric MFE

Definition (Mean-Field Equilibrium):

A vaccination policy is a symmetric MFE if and only if it minimizes (1) and it coincides with b(t)

Fixed point problem

Solution of (1) of threshold type \Rightarrow MFE requirements:

- *b*(*t*) of threshold type
- Thresholds of *b*(*t*) and of solution of (1) coincide

Mean-Field Equilibrium

Theorem

There exists a unique MFE and it is of threshold type.

Sketch of the proof: Monotonicity of MDP equations

4 A N

Introduction

2 Decentralized Control

- 3 Centralized Control
- Pricing Technique
- 5 Numerical Experiments
- 6 Conclusions

< 回 ト < 三 ト < 三

Centralized control

Definition: Global Cost

$$C_{Glo}(b(t)) = \int_0^T (c_V b(t) S(t) + c_I I(t)) dt$$

Centralized control

Definition: Global Cost

$$C_{Glo}(b(t)) = \int_0^T (c_V \ b(t) \ S(t) + c_I \ I(t)) \ dt$$

Definition: Social Optimum

$$b^{opt}(t) = \operatorname{argmin}_{b(t)} C_{Glo}(b(t))$$

MFG with Interactions for Epidemic Models

Centralized control

Definition: Global Cost

$$C_{Glo}(b(t)) = \int_0^T (c_V b(t) S(t) + c_I I(t)) dt$$

Definition: Social Optimum

$$b^{opt}(t) = \operatorname{argmin}_{b(t)} C_{Glo}(b(t))$$

$b^{opt}(t)$ is of threshold type?

Josu Doncel (INRIA)

MFG with Interactions for Epidemic Models

∃ → < ∃ →

Theorem

Global optimum is of threshold type

イロト イ団ト イヨト イヨ

Theorem

Global optimum is of threshold type

Sketch of the proof: Policy improvement

- 4 ∃ →

Left policy \Rightarrow less cost

Introduction

- 2 Decentralized Control
- 3 Centralized Control
- Pricing Technique
- 5 Numerical Experiments
- 6 Conclusions

< 回 ト < 三 ト < 三

Question:

Can we get that $C_{Glo}(b^{opt}(t)) = C_{Glo}(b^{eq}(t))$?

Josu Doncel (INRIA)

MFG with Interactions for Epidemic Models

10 Sept 2015 19 / 26

Observation:

For a fixed system parameters, except in the trivial cases, $t^{eq} < t^{opt}$. Therefore, $C_{Glo}(b^{opt}(t)) < C_{Glo}(b^{eq}(t))$

 \Rightarrow Change the model!

・ロト ・ 同ト ・ ヨト ・ ヨ

Observation:

For a fixed system parameters, except in the trivial cases, $t^{eq} < t^{opt}$. Therefore, $C_{Glo}(b^{opt}(t)) < C_{Glo}(b^{eq}(t))$

 \Rightarrow Change the model!

Different cost of vaccination for decentralized and centralized problem

- Population vaccination cost: c_V
- Individual vaccination cost: $c'_V = c_V + p$

Observation:

For a fixed system parameters, except in the trivial cases, $t^{eq} < t^{opt}$. Therefore, $C_{Glo}(b^{opt}(t)) < C_{Glo}(b^{eq}(t))$

 \Rightarrow Change the model!

Different cost of vaccination for decentralized and centralized problem

- Population vaccination cost: c_V
- Individual vaccination cost: $c'_V = c_V + p$

Example: Hospital

 c'_V : price to sell the medicine to each individual c_V : medicine production price

Observation:

For a fixed system parameters, except in the trivial cases, $t^{eq} < t^{opt}$. Therefore, $C_{Glo}(b^{opt}(t)) < C_{Glo}(b^{eq}(t))$

 \Rightarrow Change the model!

Different cost of vaccination for decentralized and centralized problem

- Population vaccination cost: c_V
- Individual vaccination cost: $c'_V = c_V + p$

Example: Hospital

 c'_{V} : price to sell the medicine to each individual c_V : medicine production price

p is positive, negative or zero?

< ∃⇒

< □ > < □ > < □ > < □ >

Introduction

- 2 Decentralized Control
- 3 Centralized Control
- Pricing Technique
- 5 Numerical Experiments

6 Conclusions

Josu Doncel (INRIA)

A

Dynamics and Thresholds

MFG with Interactions for Epidemic Models

। 10 Sept 2015 22 / 26

< ロ > < 回 > < 回 > < 回 > < 回</p>

Dynamics and Thresholds

। 10 Sept 2015 22 / 26

Dynamics and Thresholds

Conclusion

Except in the trivial cases, teq < topt

Josu Doncel (INRIA)

MFG with Interactions for Epidemic Models

イロト イヨト イヨト イヨト

Varying c_V and Pricing Mechanism

10 Sept 2015 23 / 26

æ

▲ 伊 ▶ ▲ 臣 ▶

Varying c_V and Pricing Mechanism

 $c_V = 0.8 \Rightarrow p = 0.16$ (20% of c_V) p: between 0% and 40% of c_V

10 Sept 2015 23 / 26

Varying c_V and Pricing Mechanism

 $c_V = 0.8 \Rightarrow p = 0.16 (20\% \text{ of } c_V)$ p: between 0% and 40% of c_V

Conclusion: p < 0

Vaccination to individuals must be cheaper!

Introduction

- 2 Decentralized Control
- 3 Centralized Control
- Pricing Technique
- 5 Numerical Experiments

A D A D A A D

 $\text{MFG} \Rightarrow \text{Optimal stochastic control}$

$\text{MFG} \Rightarrow \text{Optimal stochastic control}$

Simple model: interactions and control

< 🗇 🕨 < 🖃 🕨

$\text{MFG} \Rightarrow \text{Optimal stochastic control}$

Simple model: interactions and control

MFE is unique and of threshold type, as well as the global optimum

Pricing mechanism

4 A N

Questions?

MFG with Interactions for Epidemic Models

t + ৰ ≣ ► ≣ ৩৭০ 10 Sept 2015 26 / 26

イロト イヨト イヨト イヨト