On the Efficiency of Non-Cooperative Load Balancing

J. Doncel (jdoncel@laas.fr) U. Ayesta, O. Brun, B. Prabhu

LAAS-CNRS

Networking Conference New York, USA 23rd May 2013

Outline

Introduction

2 Problem Formulation

Inefficiency is not in heavy-traffic

Inefficiency for two-server classes

- Inefficiency for a given architecture
- Price of Anarchy

5 Conclusions

Routing problem in server farms

(a) Centralized architecture.

(b) Non-cooperative decentralized architecture.

Decentralized architecture based on autonomous, selfish agents: each one minimizes the sojourn time of its jobs

J. Doncel (LAAS-CNRS)

Decentralized Routing Efficiency

Comparison of both settings:

Problem addressed using the Price of Anarchy (PoA)

 $PoA = \frac{\text{decentralized setting worst performance}}{\text{optimal performance}} \ge 1$

Comparison of both settings:

Problem addressed using the Price of Anarchy (PoA)

 $PoA = \frac{\text{decentralized setting worst performance}}{\text{optimal performance}} \ge 1$

From previous results

Selfish routing can be inefficient

- [Ayesta, Brun, Prabhu]: $PoA \le \sqrt{K}$ (sqrt of num dispatchers)
- [Haviv, Roughgarden]: $PoA \leq S$ (num servers)

Heavy-traffic is always the most inefficient situation

Comparison of both settings:

Problem addressed using the Price of Anarchy (PoA)

 $PoA = rac{ ext{decentralized setting worst performance}}{ ext{optimal performance}} \geq 1$

From previous results

Selfish routing can be inefficient

- [Ayesta, Brun, Prabhu]: $PoA \le \sqrt{K}$ (sqrt of num dispatchers)
- [Haviv, Roughgarden]: $PoA \leq S$ (num servers)

Heavy-traffic is always the most inefficient situation

We show that

- Selfish routing is almost always efficient
- The worst case traffic condition is not the heavy-traffic

Model Description

- < A

For each dispatcher i

$$\begin{array}{l} \underset{\mathbf{x}_{i}}{\text{minimize }} T_{i}(\mathbf{x}) = \sum_{j \in \mathcal{S}} \frac{x_{ij}}{r_{j} - y_{j}} \\ \text{s. t. } \sum_{j \in \mathcal{S}} x_{ij} = \lambda_{i}, \ i = 1, \dots, K \\ \text{and} \quad 0 \leq x_{ij} \leq r_{j}, \ \forall j \in \mathcal{S} \end{array}$$

J. Doncel (LAAS-CNRS)

For each dispatcher *i*

$$\begin{array}{l} \underset{\mathbf{x}_{i}}{\text{minimize }} T_{i}(\mathbf{x}) = \sum_{j \in \mathcal{S}} \frac{x_{ij}}{r_{j} - y_{j}} \\ \text{s. t.} \sum_{j \in \mathcal{S}} x_{ij} = \lambda_{i}, \ i = 1, \dots, K \\ \text{and} \quad 0 \leq x_{ij} \leq r_{j}, \ \forall j \in \mathcal{S} \end{array}$$

Decentralized setting: Nash Equilibrium

No dispatcher has incentive to change the strategy

Performance

Performance of the decentralized setting:

$$D_{\mathcal{K}}(\boldsymbol{\lambda},\mathbf{r}) = \sum_{i\in\mathcal{C}} T_i(\mathbf{x}) = \sum_{j\in\mathcal{S}} \frac{y_j}{r_j - y_j},$$

where \mathbf{x} is the NEP.

Centralized architecture: $\lambda_1 = \overline{\lambda} \Rightarrow D_1(\overline{\lambda}, \mathbf{r})$ Measuring:

 $rac{D_{\mathcal{K}}(oldsymbol{\lambda}, \mathbf{r})}{D_1(ar{\lambda}, \mathbf{r})} \geq 1$

Inefficiency

For a fixed data-center architecture (S and capacities)

$$U_{\mathcal{K}}^{\mathcal{S}}(\mathbf{r}) = \sup_{ar{\lambda} < ar{r}, \ oldsymbol{\lambda} \in \Lambda(ar{\lambda})} rac{D_{\mathcal{K}}(oldsymbol{\lambda},\mathbf{r})}{D_1(ar{\lambda},\mathbf{r})},$$

where
$$\overline{r} = \sum_{j \in S} r_j$$
.

Inefficiency

For a fixed data-center architecture (S and capacities)

$$M^{\mathcal{S}}_{\mathcal{K}}(\mathbf{r}) = \sup_{ar{\lambda} < ar{\mathbf{r}}, \ \mathbf{\lambda} \in \Lambda(ar{\lambda})} rac{D_{\mathcal{K}}(\mathbf{\lambda},\mathbf{r})}{D_1(ar{\lambda},\mathbf{r})},$$

where
$$\overline{r} = \sum_{j \in S} r_j$$
.

Price of Anarchy

$$PoA(K,S) = \sup_{\mathbf{r}} I_K^S(\mathbf{r})$$

Previous Result [Ayesta et al]

The worst case occurs when each player routes exactly the same amount of traffic.

Corollary

We focus on the total amount of incoming traffic

$$I_{\mathcal{K}}^{S}(\mathbf{r}) = \sup_{\bar{\lambda} < \bar{r}, \ \boldsymbol{\lambda} \in \Lambda(\bar{\lambda})} \frac{D_{\mathcal{K}}(\boldsymbol{\lambda}, \mathbf{r})}{D_{1}(\bar{\lambda}, \mathbf{r})} = \sup_{\bar{\lambda} < \bar{r}} \frac{D_{\mathcal{K}}(\frac{\lambda}{K}e, \mathbf{r})}{D_{1}(\bar{\lambda}, \mathbf{r})}$$

where e is the all-ones vector.

Example

Server farm of S = 800 servers with 4 different values

Figure: Evolution of $\frac{D_{K}(\frac{1}{K}e,\mathbf{r})}{D_{1}(\lambda,\mathbf{r})}$ over the load of the system (K=2 and K=5)

Proposition

If the total traffic intensity $\bar{\lambda}$ is such that the centralized and the decentralized setting use the same number of servers (more than one), then the ratio of the social costs $D_K(\frac{\bar{\lambda}}{K}e, \mathbf{r})/D_1(\bar{\lambda}, \mathbf{r})$ is decreasing with $\bar{\lambda}$.

Corollary

For a sufficient high load all the servers will be used by both settings, then heavy-traffic regime is not the worst case

Proposition

If the total traffic intensity $\bar{\lambda}$ is such that the centralized and the decentralized setting use the same number of servers (more than one), then the ratio of the social costs $D_K(\frac{\bar{\lambda}}{K}e, \mathbf{r})/D_1(\bar{\lambda}, \mathbf{r})$ is decreasing with $\bar{\lambda}$.

Corollary

For a sufficient high load all the servers will be used by both settings, then heavy-traffic regime is not the worst case

Theorem

For a fixed $K < \infty$,

$$\lim_{\bar{\lambda}\to\bar{r}}\frac{D_{\mathcal{K}}(\frac{\bar{\lambda}}{K}\mathbf{e},\mathbf{r})}{D_{1}(\bar{\lambda},\mathbf{r})}=1.$$

11 / 18

< <>></>

Server farm with two classes of servers

 S_1 servers of capacity r_1 S_2 servers of capacity r_2 , where $r_1 > r_2$

Definition

Let $\bar{\lambda}^{OPT}$ be a threshold value of the total incoming traffic such that • if $\bar{\lambda} \leq \bar{\lambda}^{OPT}$ the centralized setting uses only the "fast" servers, • if $\bar{\lambda} > \bar{\lambda}^{OPT}$ all servers are used by the centralized setting. Let $\bar{\lambda}^{NE}$ be a threshold value of the total incoming traffic such that • if $\bar{\lambda} \leq \bar{\lambda}^{NE}$ the decentralized setting uses only the "fast" servers, • if $\bar{\lambda} > \bar{\lambda}^{NE}$ all servers are used by the decentralized setting.

イロト 不得下 イヨト イヨト

2 classes of servers

Proposition

$$ar{\lambda}^{OPT} < ar{\lambda}^{\sf NE}$$
 and the ratio $D_{K}(rac{ar{\lambda}}{K}e,{f r})/D_{1}(ar{\lambda},{f r})$ is

- equal to 1 for $0 \leq \bar{\lambda} \leq \bar{\lambda}^{OPT}$
- strictly increasing over the interval $(\bar{\lambda}^{OPT}, \bar{\lambda}^{NE})$
- and strictly decreasing over the interval $(\bar{\lambda}^{\rm NE},\bar{r})$

Theorem

Inefficiency is achieved when $\bar{\lambda} = \bar{\lambda}^{NE}$

Let $\alpha = \frac{S_1}{S_2}$ and $\beta = \frac{r_1}{r_2} > 1$ parameters of a data-center $I_K^S(\mathbf{r})$ does not depend on S and only on α and β \Rightarrow Notation: $I_K(\alpha, \beta)$ Evaluating the ratio $\frac{D_K(\frac{\bar{\lambda}}{K}e,\mathbf{r})}{D_1(\bar{\lambda},\mathbf{r})}$ in $\bar{\lambda} = \bar{\lambda}^{NE}$

$$I_{\mathcal{K}}(\alpha,\beta) = \frac{1}{2} \frac{\sqrt{(\mathcal{K}-1)^2 + 4\mathcal{K}\beta} - (\mathcal{K}+1)}{\frac{(\frac{1}{\alpha} + \sqrt{\beta})^2}{\frac{1}{\alpha} + \frac{2\beta}{\sqrt{(\mathcal{K}-1)^2 + 4\mathcal{K}\beta} - (\mathcal{K}-1)}} - (\frac{1}{\alpha}+1)}$$

J. Doncel (LAAS-CNRS)

Decentralized Routing Efficiency

Networking Conference

14 / 18

For a given architecture

Conclusion

The worst inefficiency occurs when the slower servers are infinitely more numerous and infinitely slower than the faster ones.

15 / 18

2 classes: PoA

Proposition

$$PoA(K,S) = \sup_{\alpha,\beta} I_K(\alpha,\beta) = \sup_{\beta} I_K(\frac{1}{S-1},\beta) = \lim_{\beta \to \infty} I_K(\frac{1}{S-1},\beta)$$

Proposition

For a server farm with two server classes and K dispatchers

$$PoA(K,S) \leq min(rac{K}{2\sqrt{K}-1},S)$$

Conclusion

PoA high when K and S large, but inefficiency is low!!

- < A

Arbitrary architecture:

- Inefficiency is not in heavy-traffic
- Obtained at low loads

Two classes of servers:

- Characterize the traffic conditions for inefficiency
- A refined upper-bound on the PoA
- Non-cooperative load-balancing is almost always efficient
- Give the parameters of a data-center to achieve the PoA

Thank you for your attention.

э