Optimal Congestion Control of TCP Flows for Internet Routers

K. Avrachenkov, U. Ayesta, J. Doncel, P. Jacko

INRIA Sophia-Antipolis, France LAAS-CNRS, Toulouse, France BCAM-Basque Centre for Applied Mathematics

MAMA 2012, London, June 15

Fast and fair transmission of TCP data \Rightarrow avoidance of network congestion

• Modeling the interaction between a TCP source and a bottleneck queue \Rightarrow design optimal packet admission controls in the bottleneck queue

- Modeling the interaction between a TCP source and a bottleneck queue ⇒ design optimal packet admission controls in the bottleneck queue
- Formulate AIMD TCP protocol as a Markov Decision Process (MDP)

- Modeling the interaction between a TCP source and a bottleneck queue ⇒ design optimal packet admission controls in the bottleneck queue
- Formulate AIMD TCP protocol as a Markov Decision Process (MDP)
- Obtain approximate solution to MDP using index-policies

- Modeling the interaction between a TCP source and a bottleneck queue ⇒ design optimal packet admission controls in the bottleneck queue
- Formulate AIMD TCP protocol as a Markov Decision Process (MDP)
- Obtain approximate solution to MDP using index-policies
- Validate the model with simulations in Network Simulator 3 (ns-3)

1 Problem Description

Formulation of Markov Decision Process

2 Solution

- Analitical Results
- Numerical Results

3 Simulations in ns-3

MDP elements:

• Action space: $\mathcal{A} = \{0,1\}$, not transmitting or transmitting

- \bullet Action space: $\mathcal{A}=\{0,1\},$ not transmitting or transmitting
- State space: $\mathcal{N} = \{1, 2, ... N\}$, where N is the maximum congestion window

- \bullet Action space: $\mathcal{A}=\{0,1\},$ not transmitting or transmitting
- State space: $\mathcal{N} = \{1, 2, ... N\}$, where N is the maximum congestion window
- The transition matrix is **P**^a, if the router takes decision *a*.

- \bullet Action space: $\mathcal{A}=\{0,1\},$ not transmitting or transmitting
- State space: $\mathcal{N} = \{1, 2, ... N\}$, where N is the maximum congestion window
- The transition matrix is \mathbf{P}^a , if the router takes decision a.
- The number of packets that the router transmits in state n if takes action a is W_n^a .

- \bullet Action space: $\mathcal{A}=\{0,1\},$ not transmitting or transmitting
- State space: $\mathcal{N} = \{1, 2, ... N\}$, where N is the maximum congestion window
- The transition matrix is \mathbf{P}^a , if the router takes decision a.
- The number of packets that the router transmits in state n if takes action a is W_n^a .
- The expected reward of W_n^a is R_n^a .

MDP elements:

- \bullet Action space: $\mathcal{A}=\{0,1\},$ not transmitting or transmitting
- State space: $\mathcal{N} = \{1, 2, ... N\}$, where N is the maximum congestion window
- The transition matrix is \mathbf{P}^a , if the router takes decision a.
- The number of packets that the router transmits in state n if takes action a is W_n^a .
- The expected reward of W_n^a is R_n^a .

Figure: Example of one user sending TCP data

Josu Doncel (LAAS-CNRS)

Optimal Congestion Control

MAMA 2012, June 15 4 / 18

Problem Description: Formulation of MDP

 R_n is function of W_n :

$$R_n^a := \begin{cases} \frac{(1+W_n^a)^{1-\alpha}-1}{1-\alpha}, & \text{if } \alpha \neq 1, \\ \log(1+W_n^a), & \text{if } \alpha = 1; \end{cases}$$

э

Problem Description: Formulation of MDP

 R_n is function of W_n :

$$R_n^{a} := \begin{cases} \frac{(1+W_n^{a})^{1-\alpha}-1}{1-\alpha}, & \text{if } \alpha \neq 1, \\ \log(1+W_n^{a}), & \text{if } \alpha = 1; \end{cases}$$

AIMD TCP as a Markov Chain definition:

• We consider additive increasing always

 $\mathsf{cwnd}(t+1) = \mathsf{cwnd}(t) + 1$

• Multiplicative decrease factor ($\gamma \in [0, 1)$)

 $cwnd(t+1) = max\{floor(\gamma * cwnd(t)), 1\}$

Problem Description: Formulation of MDP

 R_n is function of W_n :

$$R_n^{a} := \begin{cases} \frac{(1+W_n^{a})^{1-\alpha}-1}{1-\alpha}, & \text{ if } \alpha \neq 1, \\ \log(1+W_n^{a}), & \text{ if } \alpha = 1; \end{cases}$$

AIMD TCP as a Markov Chain definition:

• We consider additive increasing always

$$\operatorname{cwnd}(t+1) = \operatorname{cwnd}(t) + 1$$

• Multiplicative decrease factor ($\gamma \in [0, 1)$)

 $cwnd(t+1) = max\{floor(\gamma * cwnd(t)), 1\}$

Maximization Problem

• Maximizing the multiflow problem

$$\max_{\pi \in \Pi} \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\mathbf{n}, B_0}^{\pi} \left[\sum_{t=0}^{T-1} \sum_{m \in \mathcal{M}(t)} R_{m, X_m(t)}^{\mathbf{a}_m(t)} \right]$$

• Subject to limited bandwidth and buffer space

$$\lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\mathbf{n},B_0}^{\pi} \left[\sum_{t=0}^{T-1} \sum_{m \in \mathcal{M}(t)} W_{m,X_m(t)}^{\mathbf{a}_m(t)} \right] \leq \overline{W}$$
$$B(t) + \sum_{m \in \mathcal{M}(t)} W_{m,X_m(t)}^{\mathbf{a}_m(t)} \leq B, \text{ for all } t$$

Josu Doncel (LAAS-CNRS)

MAMA 2012, June 15 6 / 18

Maximization Problem

• Maximizing the multiflow problem

$$\max_{\pi \in \Pi} \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\mathbf{n}, B_0}^{\pi} \left[\sum_{t=0}^{T-1} \sum_{m \in \mathcal{M}(t)} R_{m, X_m(t)}^{\mathbf{a}_m(t)} \right]$$

• Subject to limited bandwidth and buffer space

$$\lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\mathbf{n},B_0}^{\pi} \left[\sum_{t=0}^{T-1} \sum_{m \in \mathcal{M}(t)} W_{m,X_m(t)}^{\mathbf{a}_m(t)} \right] \leq \overline{W}$$
$$B(t) + \sum_{m \in \mathcal{M}(t)} W_{m,X_m(t)}^{\mathbf{a}_m(t)} \leq B, \text{ for all } t$$

• Hard to solve

Relax (omit) the buffer constraint

Relax (omit) the buffer constraint

2 The standard solution is by solving for each ν ,

$$\max_{\pi \in \Pi} \mathbb{E}_{\mathbf{n}}^{\pi} \left[\sum_{t=0}^{\infty} \sum_{k \in \mathcal{K}} \beta^{t} \left(R_{k, X_{k}(t)}^{\mathbf{a}_{k}(t)} - \nu W_{k, X_{k}(t)}^{\mathbf{a}_{k}(t)} \right) \right] + \nu \frac{\overline{W}}{1 - \beta}$$
(1)

where ν is the Lagrangian parameter (per-packet *transmission cost*).

Relax (omit) the buffer constraint

2 The standard solution is by solving for each ν ,

$$\max_{\pi \in \Pi} \mathbb{E}_{\mathbf{n}}^{\pi} \left[\sum_{t=0}^{\infty} \sum_{k \in \mathcal{K}} \beta^{t} \left(R_{k, X_{k}(t)}^{\mathbf{a}_{k}(t)} - \nu W_{k, X_{k}(t)}^{\mathbf{a}_{k}(t)} \right) \right] + \nu \frac{\overline{W}}{1 - \beta}$$
(1)

where ν is the Lagrangian parameter (per-packet *transmission cost*).
Lagrangian theory: there exists ν*, for which the Lagrangian relaxation (1) achieves optimum of the above problem.

Relax (omit) the buffer constraint

2 The standard solution is by solving for each ν ,

$$\max_{\pi \in \Pi} \mathbb{E}_{\mathbf{n}}^{\pi} \left[\sum_{t=0}^{\infty} \sum_{k \in \mathcal{K}} \beta^{t} \left(R_{k, X_{k}(t)}^{\mathbf{a}_{k}(t)} - \nu W_{k, X_{k}(t)}^{\mathbf{a}_{k}(t)} \right) \right] + \nu \frac{\overline{W}}{1 - \beta}$$
(1)

where ν is the Lagrangian parameter (per-packet *transmission cost*).

- Solution Lagrangian theory: there exists ν^* , for which the Lagrangian relaxation (1) achieves optimum of the above problem.
- We can decompose (1) into K individual-flow

$$\max_{\pi_k \in \Pi_k} \mathbb{E}_{n_k}^{\pi_k} \left[\sum_{t=0}^{\infty} \beta^t \left(R_{k, X_k(t)}^{\mathbf{a}_k(t)} - \nu W_{k, X_k(t)}^{\mathbf{a}_k(t)} \right) \right]$$
(2)

Relax (omit) the buffer constraint

2 The standard solution is by solving for each ν ,

$$\max_{\pi \in \Pi} \mathbb{E}_{\mathbf{n}}^{\pi} \left[\sum_{t=0}^{\infty} \sum_{k \in \mathcal{K}} \beta^{t} \left(R_{k, X_{k}(t)}^{\mathbf{a}_{k}(t)} - \nu W_{k, X_{k}(t)}^{\mathbf{a}_{k}(t)} \right) \right] + \nu \frac{\overline{W}}{1 - \beta}$$
(1)

where ν is the Lagrangian parameter (per-packet *transmission cost*).

- Solution Lagrangian theory: there exists ν^* , for which the Lagrangian relaxation (1) achieves optimum of the above problem.
- We can decompose (1) into K individual-flow

$$\max_{\pi_k \in \Pi_k} \mathbb{E}_{n_k}^{\pi_k} \left[\sum_{t=0}^{\infty} \beta^t \left(R_{k, X_k(t)}^{\mathbf{a}_k(t)} - \nu W_{k, X_k(t)}^{\mathbf{a}_k(t)} \right) \right]$$
(2)

If for a given parameter ν , each policy π_k^* for $k \in \mathcal{K}$ optimizes the individual-flow problem then π^* optimizes the multi-flow problem (1).

7 / 18

- For finite-state finite-action MDPs there exists an optimal policy that is deterministic, stationary, and independent of the initial state
 - we narrow our focus to those policies
 - policy S prescribes to *transmit* in states in S and *warn* in states in $S^{\complement} := N \setminus S$

- For finite-state finite-action MDPs there exists an optimal policy that is deterministic, stationary, and independent of the initial state
 - we narrow our focus to those policies
 - policy S prescribes to *transmit* in states in S and *warn* in states in $S^{\complement} := \mathcal{N} \setminus S$
- **2** Combinatorial problem $\max_{\mathcal{S}\subseteq\mathcal{N}} \mathbb{R}_n^{\mathcal{S}} \nu \mathbb{W}_n^{\mathcal{S}}$, where

$$\mathbb{R}_n^{\mathcal{S}} := \mathbb{E}_n^{\mathcal{S}} \left[\sum_{t=0}^{\infty} \beta^t R_{X(t)}^{\mathfrak{a}(t)} \right], \qquad \mathbb{W}_n^{\mathcal{S}} := \mathbb{E}_n^{\mathcal{S}} \left[\sum_{t=0}^{\infty} \beta^t W_{X(t)}^{\mathfrak{a}(t)} \right]$$

Definition

We say that the above problem is indexable, if it exists real numbers ν_n , $n \in \mathcal{N}$ such that for all states the following holds:

- **1** if $\nu_n \geq \nu$, is optimal transmitting in state n
- 2 if $\nu_n \leq \nu$ is not optimal transmitting in state n

The function $n \rightarrow \nu_n$ is called *index* and ν_n is the *index value of n*.

Definition

We say that the above problem is indexable, if it exists real numbers ν_n , $n \in \mathcal{N}$ such that for all states the following holds:

- **1** if $\nu_n \geq \nu$, is optimal transmitting in state n
- 2 if $\nu_n \leq \nu$ is not optimal transmitting in state n

The function $n \rightarrow \nu_n$ is called *index* and ν_n is the *index value of n*.

Definition

We say that the above problem can be solved under threshold policies if $\nu_1 \ge \nu_2 \ge ... \ge \nu_N$.

Main results: Analitical Results

From previous work, always indexable and solvable under threshold policies:

- 1-state and 2-state TCP flows
- **2** 3-state TCP flow with decrease factor γ less than $\frac{2}{3}$

Main results: Analitical Results

From previous work, always indexable and solvable under threshold policies:

- 1-state and 2-state TCP flows
- **2** 3-state TCP flow with decrease factor γ less than $\frac{2}{3}$

Proposition

Three state TCP flow with $\gamma > \frac{2}{3}$ is indexable and:

 if α < 1, the threshold policies are optimal and the values of the indices are ν_{k,1} = ^{R_{k,1}}/_{W_{k,1}}, ν_{k,2} = ^{R_{k,2}-βR_{k,1}}/_{W_{k,2}-βW_{k,1}}, ν_{k,3} = ^{R_{k,3}+β(R_{k,3}-R_{k,2})}/_{W_{k,3}+β(W_{k,3}-W_{k,2})}.
 if α ≥ 1, threshold policies are not optimal in general (ν_{k,1} > ν_{k,3} > ν_{k,2}) and the values of the indices are ν_{k,1} = ^{R_{k,1}}/_{W_{k,1}}, ν_{k,2} = ^{R_{k,2}+β(R_{k,3}-R_{k,1})+β²(R_{k,3}-R_{k,2})}/_{W_{k,2}+β(W_{k,3}-W_{k,1})+β²(W_{k,3}-W_{k,2})}, ν_{k,3} = <sup>R_{k,3}-β²R_{k,1}/_{W_{k,3}-β²W_{k,1}}.
</sup> Indexability of the problem tested over a large number of flows with different parameters \Rightarrow always indexable. Conjecture: the scheme is always indexable.

Figure: Seven Heterogeneous TCPs

Network Simulator-3:

3

Network Simulator-3:

Implementing the model:

• AIMD with no slow start

Network Simulator-3:

Implementing the model:

• AIMD with no slow start

We compare the behaviour of this model with droptail and RED

Network Simulator-3:

Implementing the model:

• AIMD with no slow start

We compare the behaviour of this model with droptail and RED

Packet Size: 536 Bytes Buffer size = Bandwidth-Delay Product = 14 Packet-level heuristic index policy: Upon a packet arrival,

- if the buffer is not full, then accept the packet
- otherwise, drop the packet (either the new one or from the queue) with *smallest index* value
- in case of ties, drop the packet that has been the *longest* in the queue

Packet-level heuristic index policy: Upon a packet arrival,

- if the buffer is not full, then accept the packet
- otherwise, drop the packet (either the new one or from the queue) with *smallest index* value
- in case of ties, drop the packet that has been the *longest* in the queue Implementation in ns3:
 - We calculate the indices for each user when program starts.
 - (a) We get the congestion window of the user that want to send a packet.
 - We send the packet with the corresponding index, according to the congestion window.
 - In the queue of the router the index is read and it is taken the decision of transmitting it or not.

Simulation Results: 2 users and $\gamma = \frac{1}{2}$

Droptail policy

14 / 18

Simulation Results: 2 users and $\gamma = \frac{1}{2}$

RED

15 / 18

Simulation Results: 2 users and $\gamma = \frac{1}{2}$

Index policies model with $\alpha = 1$.

Main conclusions:

- Throughput increases
- More efficient buffer management
- Developed a packet implementation of index-policy

Future Work:

- Development new TCP models (Slow-start, users with different decrease factor...)
- Calculation of the index in the router ⇒ not needed to assume compliant end-users (index estimating and learning techniques)
- Investigate more complicate topologies.

Thank you!!!