Economies of Scale in Parallel-Server Systems

Josu Doncel¹ Inria (France)

joint work with S. Aalto (Aalto University) and U. Ayesta (IRIT-CNRS, Ikerbasque and UPV/EHU)

IEEE Infocom 2017 Atlanta, USA

May 3, 2017

Decentralization

Performance Degradation

Symmetric ⇒ Equal performance!

Economies of Scale

Arrival rate and number of servers

Application

Outline

- Model Description
- Main Results
- Numerical Experiments
- Conclusions and Future Work

Outline

- Model Description
- Main Results
- 3 Numerical Experiments
- Conclusions and Future Work

Degradation Factor

 $\mathbb{E}(W(K, n, x_m, x_M, \lambda))$

- K: FCFS homogeneous servers
- n: number of groups
- x_m : minimum job size
- x_M : maximum job size
- λ: arrival rate (Poisson)

$$K=6, n=3$$

Degradation Factor

 $\mathbb{E}(W(K,n,x_m,x_M,\lambda))$

- K: FCFS homogeneous servers
- n: number of groups
- x_m : minimum job size
- x_M: maximum job size
- λ: arrival rate (Poisson)

$$K=6, n=3$$

$$\mathbb{E}(W(K, n, x_m, x_M, \lambda)) = \mathbb{E}\left(W\left(\frac{K}{n}, 1, x_m, x_M, \frac{\lambda}{n}\right)\right)$$

Degradation Factor

$\mathbb{E}(W(K, n, x_m, x_M, \lambda))$

- K: FCFS homogeneous servers
- n: number of groups
- x_m : minimum job size
- x_M : maximum job size
- λ : arrival rate (Poisson)

$$K=6, n=3$$

$$\mathbb{E}(W(K, n, x_m, x_M, \lambda)) = \mathbb{E}\left(W\left(\frac{K}{n}, 1, x_m, x_M, \frac{\lambda}{n}\right)\right)$$

Definition (Degradation Factor)

$$D(K, n, x_{m}, x_{M}, \lambda) = \frac{\mathbb{E}\left(W\left(\frac{K}{n}, 1, x_{m}, x_{M}, \frac{\lambda}{n}\right)\right)}{\mathbb{E}\left(W\left(K, 1, x_{m}, x_{M}, \lambda\right)\right)}$$

Degradation Factor (cont.)

$$D(K, n, x_m, x_M, \lambda) = \frac{\mathbb{E}\left(W\left(\frac{K}{n}, 1, x_m, x_M, \frac{\lambda}{n}\right)\right)}{\mathbb{E}\left(W\left(K, 1, x_m, x_M, \lambda\right)\right)}$$

$$\Rightarrow \mathbb{E}\left(W\left(R,1,x_{m},x_{M},\bar{\lambda}
ight)
ight)$$

- R = K/n and $\bar{\lambda} = \lambda/n$
- R = K and $\bar{\lambda} = \lambda$

Degradation Factor (cont.)

$$D(K, n, x_m, x_M, \lambda) = \frac{\mathbb{E}\left(W\left(\frac{K}{n}, 1, x_m, x_M, \frac{\lambda}{n}\right)\right)}{\mathbb{E}\left(W\left(K, 1, x_m, x_M, \lambda\right)\right)}$$

$$\Rightarrow \mathbb{E}\left(W\left(R,1,x_{m},x_{M},\bar{\lambda}
ight)
ight)$$

- R = K/n and $\bar{\lambda} = \lambda/n$
- R = K and $\bar{\lambda} = \lambda$

Case: n=K

• Queue with arrival rate λ/K

SITA-E Scheduling

Out-offs:
$$x_0, x_1, ..., x_{K-1}, x_K$$

 $(x_m = x_0, x_M = x_K)$

- Server i: $[x_{i-1}, x_i]$
- Equal load

Short Long jobs

$$\int_{x_0=x_m}^{x_1} x f(x) dx = \int_{x_1}^{x_2} x f(x) dx = \dots = \int_{x_{K-1}}^{x_K=x_M} x f(x) dx.$$

SITA-E Scheduling

Cut-offs:
$$x_0, x_1, ..., x_{K-1}, x_K$$

($x_m = x_0, x_M = x_K$)

- Server i: $[x_{i-1}, x_i]$
- Equal load

Short Long jobs jobs

$$\int_{x_0=x_m}^{x_1} xf(x)dx = \int_{x_1}^{x_2} xf(x)dx = \dots = \int_{x_{K-1}}^{x_K=x_M} xf(x)dx.$$

Disadvantages

 Not optimal JSQ, Po2, SITA Optimal...
 ⇒ Difficult

Advantages

- No signaling
- Easy implementation
- Cut-offs expression

Thresholds in SITA-E

Thresholds in SITA-E

Lemma

If
$$f(x) > 0$$
, then $x_{i \cdot n} = y_i$, $i = 0, ..., K/n$

Thresholds in SITA-E

Lemma

If
$$f(x) > 0$$
, then $x_{i \cdot n} = y_i$, $i = 0, ..., K/n$

 \Rightarrow Only required: x_0, \ldots, x_K

Influence of x_m and x_M

$$\gamma = \frac{x_m}{x_M} \in [0, 1]$$

Lemma

If $\gamma = 1$, then $D(K, n, x_m, x_M, \lambda) = 1$.

⇒ Deterministic

Influence of x_m and x_M

$$\gamma = \frac{x_m}{x_M} \in [0, 1]$$

Lemma

If $\gamma = 1$, then $D(K, n, x_m, x_M, \lambda) = 1$.

⇒ Deterministic

If the degradation decreases with γ

$$\lim_{\gamma \to 1} D(K, n, x_m, x_M, \lambda) \leq D(K, n, x_m, x_M, \lambda) \leq \lim_{\gamma \to 0} D(K, n, x_m, x_M, \lambda)$$

Question: Is it always true?

Outline

- Model Description
- Main Results
- 3 Numerical Experiments
- Conclusions and Future Work

Uniform Distribution

$$f(x) = \frac{1}{x_M - x_m}, \ x_m \le x \le x_M$$

Two servers

$$1 \leq D(K, n, x_m, x_M, \lambda) \leq 1.138.$$

K > 2 servers

Assume that the degradation decreases with γ ,

$$1 \leq \mathsf{D}(K, n, x_m, x_M, \lambda) \leq 4/3.$$

⇒ Small: Higher variability?

Bounded Pareto

$$f(x) = \frac{\alpha X_m^{\alpha}}{1 - (x_m/x_M)^{\alpha}} x^{-\alpha - 1}, \ x_m \le x \le x_M$$

Case $\alpha = 1$

$$1 \leq \mathsf{D}(K, n, x_m, x_M, \lambda) \leq \infty$$

Case $\alpha \neq 1$

Assume the degradation decreases with γ

$$1 \leq \mathsf{D}(K, n, x_m, x_M, \lambda) \leq n^{\frac{1}{|1-\alpha|}}.$$

⇒ Increases with variability of jobs.

Two Points

$$f(x) = \begin{cases} p, & \text{if } x = x_m, \\ 1 - p, & \text{if } x = x_M. \end{cases}$$

Maximizes variance (bounded and fixed support)

Two Points

$$f(x) = \begin{cases} \rho, & \text{if } x = x_m, \\ 1 - \rho, & \text{if } x = x_M. \end{cases}$$

Maximizes variance (bounded and fixed support)

2 servers and equal load

$$1 \leq \mathsf{D}(K, n, x_m, x_M, \lambda) \leq \infty$$

2 servers and unequal load

$$1 \leq \mathsf{D}(K, n, x_m, x_M, \lambda) \leq \infty$$

Outline

- Model Description
- Main Results
- Numerical Experiments
- Conclusions and Future Work

Degenerate Hyper-exponential

Exponential
$$\begin{cases} \text{rate } \mu p, & \text{w.p. } p, \\ \text{rate } \infty, & \text{w.p. } 1 - p, \end{cases}$$

- Mean: $1/\mu$
- Variance: $\frac{1}{\rho\mu^2}$

Degenerate Hyper-exponential

Exponential
$$\begin{cases} \text{rate } \mu p, & \text{w.p. } p, \\ \text{rate } \infty, & \text{w.p. } 1 - p, \end{cases}$$

- Mean: 1/μ
- Variance: $\frac{1}{\rho\mu^2}$

SITA Optimal Thresholds

[Harchol and Vesilo, 2010]

- Mean response time: unknown (two servers)
- \bullet 2 servers and $\gamma = 9/10^{14}$

SITA Optimal Thresholds

[Harchol and Vesilo, 2010]

- Mean response time: unknown (two servers)
- ullet 2 servers and $\gamma = 9/10^{14}$

-	Optimal SITA Degradation Factor		
	Optimal STA Degradation Factor		
	ho = 0.005	ho = 0.5	ho = 0.8
$\alpha = 0.25$	333.74	87.77	8.6594
$\alpha = 0.5$	$2.2476 \cdot 10^4$	4219.9	18.7679
$\alpha = 0.75$	$3.3604 \cdot 10^5$	1.3187 · 10 ⁵	133.8889
$\alpha =$ 1.25	$3.3604 \cdot 10^5$	1.3187 · 10 ⁵	133.8889
lpha= 1.5	$2.2476 \cdot 10^4$	4219.9	18.7679
$\alpha = 1.75$	333.74	87.77	8.6594

Outline

- Model Description
- Main Results
- 3 Numerical Experiments
- Conclusions and Future Work

Conclusions

- SITA-E
- FCFS homogeneous servers
- Particular distributions: Uniform, Bounded Pareto and Two Points

Conclusion

Scaling ⇒ non-negligible degradation

Variability of jobs is high

- SITA-E
- FCFS homogeneous servers
- Particular distributions: Uniform, Bounded Pareto and Two Points

- SITA-E
 - ⇒ JSQ, Po2, SITA Optimal...
- FCFS homogeneous servers
- Particular distributions: Uniform, Bounded Pareto and Two Points

- SITA-E
 - ⇒ JSQ, Po2, SITA Optimal...
- FCFS homogeneous servers
 - ⇒ Heterogeneous servers? PS queues?
- Particular distributions: Uniform, Bounded Pareto and Two Points

- SITA-E
 - ⇒ JSQ, Po2, SITA Optimal...
- FCFS homogeneous servers
 - ⇒ Heterogeneous servers? PS queues?
- Particular distributions: Uniform, Bounded Pareto and Two Points
 - \Rightarrow General distribution? Lower-bounded by 1, monotonicity with γ

- SITA-E
 - ⇒ JSQ, Po2, SITA Optimal...
- FCFS homogeneous servers
 - ⇒ Heterogeneous servers? PS queues?
- Particular distributions: Uniform, Bounded Pareto and Two Points
 - \Rightarrow General distribution? Lower-bounded by 1, monotonicity with γ

Other performance measures:

- Tail-probabilities?
- Second moment of waiting time?

Thank you / Questions

Thank you very much

Questions?