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Abstract—Price of Anarchy is an oft-used worst-case
measure of the inefficiency of non-cooperative decentral-
ized architectures. In practice, though, the worst-case
scenario may occur rarely, if at all. For non-cooperative
decentralized load-balancing in server farms, we show that
the Price of Anarchy is an overly pessimistic measure that
does not reflect the performance obtained in most instances
of the problem. In the case of two classes of servers, we
show that non-cooperative load-balancing provides a close-
to-optimal solution in most cases, and that the worst-case
performance given by the Price of Anarchy occurs only
in a very specific setting, namely, when the slower servers
are infinitely more numerous and infinitely slower than
the faster ones. We explicitly characterize the worst-case
traffic conditions for the efficiency of non-cooperative load-
balancing schemes, and show that, contrary to a common
belief, the worst inefficiency is in general not achieved in
heavy-traffic or close to saturation conditions.

I. INTRODUCTION

Server farms are commonly used in a variety of
applications, including cluster computing, web hosting,
scientific simulation or even the rendering of 3D com-
puter generated imagery. A central problem arising in
the management of the distributed computing resources
of a data center is that of balancing the load over the
servers so that the overall performance is optimized. In a
centralized architecture, a single dispatcher, or a routing
agent, routes incoming jobs to a set of servers so as to op-
timize a certain performance objective, such as the mean
processing time of jobs for instance. However, modern
data centers commonly have thousands of processors
and up, and it becomes difficult or even impossible to
centrally implement a globally optimal load-balancing
solution. For instance, Akamai Technologies revealed,
in march 2012, that it operates 105,000 servers [1].
Similarly, it is estimated that Google has more than

900,000 servers, and the company recently revealed that
container data center holds more than 45,000 servers in
a single facility built in 2005 [2]. The ever growing size
and complexity of modern server farms thus calls for
decentralized control schemes.

In a decentralized routing architecture, several dis-
patchers are used with each one routing a certain portion
of the traffic. There are several possible approaches
for the implementation of decentralized routing mech-
anisms. Approaches based on distributed optimization
techniques [3], [4], can be cumbersome to implement
and can have significant synchronisation and commu-
nication overheads, thus reducing the scalability of the
decentralized routing scheme.

An alternative approach is based on autonomous, self-
interested agents [5]. Such routing schemes are also
known as ”selfish routing” since each dispatcher inde-
pendently seeks to optimize the performance perceived
by the jobs it routes. This setting can be analysed within
the framework of a non-cooperative routing game. The
strategy that rational agents will choose under these
circumstances is called a Nash Equilibrium and it is such
that a unilateral deviation will not help any routing agent
in improving the performance perceived by the traffic it
routes. When the number of dispatcher grows to infinity
(every incoming job is handled by a dispatcher and it
takes its own routing decision) the corresponding equi-
librium is given by the notion of Wardrop Equilibrium
[6].

Apart from the obvious gain in scalability with respect
to a centralized setting, there are wide-ranging advan-
tages to non-cooperative routing schemes: ease of de-
ployment, no need for coordination between the routing
agents that just react to the observed performances of
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the servers, and robustness to failures and environmen-
tal disturbances. However, it is well-known that non-
cooperative routing mechanisms are potentially ineffi-
cient. Indeed, in general, the Nash equilibrium resulting
from the interactions of many self-interested routing
agents with conflicting objectives does not correspond to
an optimal routing solution; hence, the lack of regulation
carries the cost of decreased overall performance.

A standard measure of the inefficiency of selfish rout-
ing is the Price of Anarchy (PoA) which was introduced
by Koutsoupias and Papadimitriou [7]. It is defined as
the ratio between the performance obtained by the worst
Nash equilibrium and the global optimal solution. Thus
the PoA measures the cost of having no central authority,
irrespective of a specific data center architecture. A value
of the PoA close to 1 indicates that, in the worst case,
the gap between a Nash Equilibrium and the optimal
routing solution is not significant, and thus that good
performances can be achieved even without a centralized
control. On the contrary, a high PoA value indicates
that, under certain circumstances, the selfish behaviour
of the dispatchers leads to a significant performance
degradation.

Several recent works have shown that non-cooperative
load-balancing1 can be very inefficient in the presence
of non-linear delay functions, see, for example, [8], [9],
[10], and [11]. We just mention two of them here. First,
Haviv and Roughgarden have considered in [8] the so-
called non-atomic scenario where every arriving job can
select the server in which it will be served. They have
shown that in this scenario the PoA corresponds to the
number of servers, implying that, in a server farm with S
servers, the mean response time of jobs can be as high as
S times the optimal one! Another important result on the
PoA was proved by Ayesta et al. in [10]. They investigate
the price of anarchy of a load balancing game with a
finite number, say K, of dispatchers, and with a price per
unit time to be paid for processing a job, which depends
on the server. They prove that for a system with two or
more servers, the price of anarchy is of the order of

√
K,

independently of the number of servers, implying that
when the number of dispatchers grows large, the PoA
grows unboundedly. The fact that the Nash equilibrium
can be very inefficient has paved the way to a lot of
research on mechanism design that aims at coming up
with Nash equilibria that are efficient with respect to the

1We shall use the terms load-balancing and routing interchange-
ably.

centralized setting [12], [13], [5].

In this paper, we adopt the view that the worst-
case analysis (PoA) of the inefficiency of selfish routing
is overly pessimistic and that high PoAs are obtained
in pathological instances that hardly occur in practice.
For example, in [8], the worst-case architecture has
one server whose capacity is much larger (tending to
infinity) compared to that of the other servers. It is
doubtful that such asymmetries will occur in data-centers
where processors are more than likely to have similar
characteristics.

While the architecture of a data-center is more or less
fixed, the incoming traffic volume can vary as a function
of time. Thus, for applications such as data-centers, it
seems more appropriate to compare the performance of
selfish routing and the centralized setting for different
traffic profiles and a fixed data-center architecture (num-
ber of servers and their capacities). For this reason, we
define the inefficiency for a fixed architecture of a data-
center as the performance ratio between the worst-case
Nash equilibrium and the global optimal. The worst-
case case is taken over all possible traffic profiles that
the routing agents can be asked to route. As is true of
the PoA, inefficiency can take values between 1 and
∞. A higher value of inefficiency indicates a worse
performance of selfish routing compared to centralized
routing. As opposed to the PoA, the inefficiency depends
on the parameters (the server speeds and the number of
servers in our case) of the architecture. By calculating
the worst possible inefficiency, one retrieves the PoA.

The main contributions in this work are the following:

• For an arbitrary architecture in the system, we char-
acterize the traffic conditions (or load) associated
with the inefficiency. Contrary to classical queueing
theory, we show that the inefficiency is in general
not achieved in heavy-traffic or close to saturation
conditions. In fact, we show that the inefficiency
is close to 1 in heavy-traffic. We also provide
examples for which the inefficiency is obtained for
fairly low values of the utilization rate.

• In the case of two server classes, we show that the
inefficiency is obtained when selfish routing uses
only one class of servers and is marginally using
the second class of servers. This scenario was used
in [8], [10] to obtain a lower bound on the PoA
for their models. We give a formal proof on why
this is indeed the worst-case scenario for selfish
routing. Further, we obtain a closed-form formula
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for the inefficiency which in particular depends only
on the ratio of the number of servers in each class
and on the ratio of the capacities of each class (but
not on the total nor on their capacities). When the
number of servers is large, we also show that the
PoA is equal to K

2
√
K−1

, where K is the number of
dispatchers.

• We then show that the inefficiency is very close to
1 in most cases, and that it approaches the known
upper bound (given by the PoA) only in a very
specific setting, namely, when the slower servers
are infinitely more numerous and infinitely slower
than the faster ones.

The rest of the paper is organized as follows. In section
II we describe the model. In section III we show that the
inefficiency of selfish routing does not occur in heavy-
traffic. In section IV, we give more precise results for
server farms with two classes of servers. We give the
expression for the load which leads to inefficiency, and
the corresponding value of the inefficiency. Finally, the
main conclusions of this work are presented in section
V.

Due to lack of space we have omitted the proofs of
our main results and for full details we refer to [14].

II. PROBLEM FORMULATION

We consider a non-cooperative routing game with
K dispatchers and S Processor-Sharing servers. Denote
C = {1, . . . ,K} to be the set of dispatchers and
S = {1, . . . , S} to be the set of servers. Jobs received
by dispatcher i are said to be jobs of stream i.

Server j ∈ S has capacity rj . It is assumed that servers
are numbered in the order of decreasing capacity, i.e., if
m ≤ n, then rm ≥ rn . Let r = (rj)j∈S denote the
vector of server capacities and let r =

∑
n∈S rn denote

the total capacity of the system.

Jobs of stream i ∈ C arrive to the system according
to a Poisson process and have generally distributed
service-times. We do not specify the arrival rate and the
characteristics of the service-time distribution due to the
fact that in an M/G/1 − PS queue the mean number
of jobs depends on the arrival process and service-time
distribution only through the traffic intensity, i.e., the
product of the arrival rate and the mean service-time.
Let λi be the traffic intensity of stream i. It is assumed
that λi ≤ λj for i ≤ j. Moreover, it will also be
assumed that the vector λ of traffic intensities belongs to

the following set: Λ(λ̄) =
{
λ ∈ IRK :

∑
i∈C λi = λ

}
,

where λ̄ denotes the total incoming traffic intensity. It
will be assumed throughout the paper that λ̄ < r, which
is the necessary and sufficient condition to guarantee the
stability of the system.

Let xi = (xi,j)j∈S denote the routing strategy of
dispatcher i, with xi,j being the amount of traffic it sends
towards server j. Dispatcher i seeks to find a routing
strategy that minimizes the mean sojourn times of its
jobs, which, by Little’s law, is equivalent to minimizing
the mean number of jobs in the system as seen by this
stream. This optimization problem can be formulated as
follows:

minimize Ti(x) =
∑
j∈S

xi,j
rj − yj

(ROUTE-i)

subject to∑
j∈S

xi,j = λi, i = 1, . . . ,K, (1)

0 ≤ xi,j ≤ rj , ∀j ∈ S, (2)

where yj =
∑

k∈C xk,j is the traffic offered to server j.
Note that the optimization problem solved by dispatcher
i depends on the routing decisions of the other dispatch-
ers since yj = xi,j +

∑
k 6=i xk,j . We let Xi denote the

set of feasible routing strategies for dispatcher i, i.e., the
set of routing strategies satisfying constraints (1)-(2). A
vector x = (xi)i∈C belonging to the product strategy
space X =

⊗
i∈C Xi is called a strategy profile.

A Nash equilibrium of the routing game is a strategy
profile from which no dispatcher finds it beneficial to
deviate unilaterally. Hence, x ∈ X is a Nash Equilibrium
Point (NEP) if xi is an optimal solution of problem
(ROUTE-i) for all dispatcher i ∈ C.

Let x be a NEP for the system with K dispatchers.
The global performance of the system can be assessed
using the global cost

DK(λ, r) =
∑
i∈C

Ti(x) =
∑
j∈S

yj
rj − yj

, (3)

where the offered traffic yj are those at the NEP. The
above cost represents the mean number of jobs in the
system. Note that when there is a single dispatcher, we
have a single dispatcher with λ1 = λ̄. The global cost
can therefore be written as D1(λ̄, r) in this case.
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We shall use the ratio between the performance ob-
tained by the Nash equilibrium and the global optimal
solution as a metric in order to assess the inefficiency of a
decentralized scheme with K dispatchers and S servers.
We define the inefficiency as the performance ratio under
the worst possible traffic conditions, namely:

inefficiency ISK(r) = sup
λ∈Λ(λ̄),λ̄<r

DK(λ, r)

D1(λ̄, r)
. (4)

The rationale for this definition is that in practice the
system administrator controls neither the total incom-
ing traffic nor how it is split between the dispatchers,
whereas the number of servers and their capacities are
fixed. Therefore it makes sense to consider the worst
traffic conditions for the inefficiency of selfish routing,
provided the system is stable.

The PoA for this system as defined in [10] can be
retrieved by looking at the worst inefficiency, i.e.,

PoA(K,S) = sup
r
ISK(r). (5)

III. INEFFICIENCY IS NOT IN HEAVY-TRAFFIC

The main difficulty in determining the behaviour of
the inefficiency stems from the fact that for most cases
there are no easy-to-compute explicit expressions for the
NEP. A first simplification results from the following
theorem which was proved in one of our previous works
[10]. It states that, among all traffic vectors with total
traffic intensity λ̄, the global cost DK(λ, r) achieves its
maximum when all dispatchers control the same fraction
of the total traffic. Formally,

Theorem 1 ([10]):

DK(λ, r) ≤ DK(
λ̄

K
e, r). ∀λ ∈ Λ(λ̄),

where e is the all-ones vector.

Thus, we have identified the traffic vector in the set Λ(λ̄)
which has the worst-ratio of global cost at the NEP to
the global optimal cost. It follows from the above result
that

Corollary 1:

ISK(r) = sup
λ̄<r

DK( λ̄K e, r)

D1(λ̄, r)
. (6)

Routing games in which players have exactly the same
strategy set are known as symmetric games. These games
belong to the class of potential games [15], that is, they

have the property that there exists a function, called
the potential such that the NEP can be obtained as the
solution of an optimization problem with the potential as
the objective. This property considerably simplifies the
computation of the NEP. Another important consequence
of the above results is that the inefficiency depends only
on the total traffic intensity and not on individual traffic
flows to each of the dispatcher.

Another consequence of theorem 1 is that the in-
efficiency of decentralized routing increases with the
number of dispatchers, that is,

Lemma 1:

ISK(r) ≤ ISK+1(r), ∀K ≥ 1. (7)

Proof: We have for all λ̄ < r, DK( λ̄K e, r) =

DK+1(
(
λ̄
K e, 0

)
, r) ≤ DK+1( λ̄

K+1 e, r), where the last
inequality follows from theorem 1. It yields

sup
λ̄<r

DK( λ̄K e, r)

D1(λ̄, r)
≤ sup

λ̄<r

DK+1( λ̄
K+1 e, r)

D1(λ̄, r)
,

i.e., IK(r) ≤ IK+1(r).

Before going further, let us take a look at the ratio
DK( λ̄

K
e,r)

D1(λ̄,r)
as a function of the load ρ = λ̄/r, as is shown

in figure 1 for two and five dispatchers. The data-center
characteristics are the following: 200 servers of speed 6,
100 servers of speed 3, 300 servers of speed 2, and 200
servers of speed 1.

It can be observed that as the load increases the
ratio goes through peaks and valleys, and finally it
moves towards 1 as the load moves towards saturation.
In the numerical experiments, we noted that the peaks
corresponded to the total traffic intensity when selfish
routing started to use one more server. Moreover, just
after these peaks the number of servers used by selfish
routing and the centralized one was the same. A similar
behaviour was observed on different sets of experiments.

In general, it is not easy to make formal the above
observation, that is to say, there are no simple expres-
sions for the value of loads which corresponds to the
peaks and the valleys. However, in heavy-traffic, it helps
to observe that both selfish and centralized routing will
be using the same number of servers. Then, in order to
show that heavy-traffic conditions are not inefficient, it
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Fig. 1. Evolution of the ratio of social costs for K = 2 and K = 5
as the utilization rate ranges from 0% to 100%.

is sufficient to show that the ratio decreases with load
when both the setting use the same number of servers.

Proposition 1: If the total traffic intensity λ̄ is such
that centralized and the decentralized settings use the
same number of servers (more than one), then the ratio
of social costs DK( λ̄K e, r)/D1(λ̄, r) is decreasing with
λ̄.

In the above result we exclude the case of one server
so as to obtain a stronger result. If both the settings use
just one server, then the ratio remains 1, which is non-
increasing.

For a sufficiently high load all the servers will be used
by both settings in order to guarantee the stability of
the system. It then follows that in a server farm with
an arbitrary number of servers and with arbitrary server
capacities, heavy-traffic regime is not inefficient.

In fact, we can prove a stronger result which states
that the inefficiency of the heavy-traffic regime is close
to 1, that is, in heavy-traffic both the settings have similar
performance. Formally,

Theorem 2: For a fixed K <∞,

lim
λ̄→r

DK( λ̄K e, r)

D1(λ̄, r)
= 1.

It is important that the number of dispatchers be finite
for the above result to hold. If the number of dispatchers
is infinite, as in the case of non-atomic games, the above
limit may be a value larger than 1.

This result is important because it is widely believed
that the maximum inefficiency of the decentralized rout-
ing scheme is obtained in heavy-traffic regime. Theorem
2 shows that this belief is false. As can be observed
in figure 1, the worst case traffic conditions can occur
at low or moderate utilization rates (in fact, the worst
total traffic intensity can be arbitrary close to 0 if the
server capacities are sufficiently close from each other).
In heavy-traffic, even though the cost in both the settings
will grow, the rate of growth is the same which results
in a ratio close to 1. This result is in sheer contrast
with classical queueing theory as well. For example, in
a M/M/1 queue the mean sojourn time is characterized
by a factor (1− ρ)−1, thus, as the load approaches one
the mean sojourn time explodes.

The characterization of the exact traffic vector which
results in ISK proves to be a difficult task. As a first
attempt, in the following section we restrict ourselves to
two server classes, which turns out to be more tractable
than more number of classes.

IV. INEFFICIENCY FOR TWO-SERVER CLASSES

Consider the case of two classes of servers: there are
S1 ”fast” servers of capacity r1, and S2 = S−S1 ”slow”
servers, each one of capacity r2 < r1

2. The behaviour
of the ratio of social costs is illustrated in figure 2 in
the case of a server farm with S1 = 100 fast servers
of capacity r1 = 100, and S2 = 300 slow servers of
capacity r2 = 10. We plot the evolution of the ratio
DK/D1 as the load on the system ranges from 0% to
100% for K = 2, K = 5. It was observed that for low
loads both the settings used the fast servers. The ratio in
this regime was 1. After a certain point, the centralized
setting started to use the slow servers as well, and the
ratio increased with the load until the point when the
decentralized setting also started to use the slow servers.
From this point on, the ratio decreased with increase in
load.

We shall now characterize the point where the ratio
starts to increase and where the peak occurs. Define

λ̄OPT = S1
√
r1(
√
r1 −

√
r2), (8)

2In the case r2 = r1, it is easy to see that the NEP is always an
optimal routing solution, whatever the total traffic intensity.
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Fig. 2. Evolution of the ratio of social costs for K = 2 and K = 5
as the utilization rate ranges from 0% to 100%.

and

λ̄NE = S1r1

1− 2√
(K − 1)2 + 4K r1

r2
− (K − 1)

 .

(9)

The following lemma gives the conditions on λ̄ under
which the centralized setting and the decentralized one
use only the fast class of servers, or both classes.

Lemma 2: λ̄OPT < λ̄NE , and

1) if λ̄ ≤ λ̄OPT , both settings use only the ”fast”
servers,

2) if λ̄OPT ≤ λ̄ ≤ λ̄NE , the decentralized setting
uses only the ”fast” servers, while the centralized
one uses all servers,

3) if λ̄ > λ̄NE , both settings use all servers.

Since λ̄OPT < λ̄NE , a consequence of lemma 2 is
that the decentralized setting always uses a subset of
the servers used by the centralized one. We immediately
obtain expressions of the social cost in the centralized
and decentralized settings, as given in corollary 2.

Corollary 2: For the centralized setting, if λ̄ ≤ λ̄OPT

D1(λ̄, r) = λ̄/(r1 −
λ̄

S1
),

otherwise

D1(λ̄, r) =

[
λ̄

√
r1

r2
+ S1y1

(
1−

√
r1

r2

)]
1

r1 − y1
,

(10)

where y1 =
√
r1

λ̄−S2

√
r2(
√
r2−
√
r1)

S1

√
r1+S2

√
r2

, and y2 = (λ̄ −
S1y1)/S2 are the loads on each fast server and on
each slow server in the case λ̄ ≥ λ̄OPT , respectively.
Similarly, if λ̄ ≤ λ̄NE

DK(
λ̄

K
e, r) = λ̄/(r1 −

λ̄

S1
),

and

DK(
λ̄

K
e, r) =

1

2

2∑
j=1

Sj

[√
(K − 1)2+4Krjγ(K)

− (K + 1)

]
otherwise.

In lemma 2, we identified three intervals, namely,
[0, λ̄OPT ), [λ̄OPT , λ̄NE), [λ̄NE , r), each one correspond-
ing to a different set of servers used by the two settings.
In proposition 2, we describe how the ratio of the social
costs evolves in each of these three intervals.

Proposition 2: The ratio DK( λ̄K e, r)/D1(λ̄, r) is

(a) equal to 1 for 0 ≤ λ̄ ≤ λ̄OPT ,
(b) strictly increasing over the interval

(
λ̄OPT , λ̄NE

)
,

(c) and strictly decreasing over the interval
(
λ̄NE , r

)
.

Moreover, the ratio of social costs has the following
property.

Lemma 3: The ratio DK( λ̄K e, r)/D1(λ̄, r) is a con-
tinuous function of λ̄ over the interval [0, r).

We can now state the main result of this section.

Theorem 3: The inefficiency is worst when the total
arriving traffic intensity equals λ̄NE , namely,

ISK(r) =
DK( λ̄

NE

K e, r)

D1(λ̄NE , r)
, (11)

Proof: It was shown in lemma 3 that
DK( λ̄K e, r)/D1(λ̄, r) is a continuous function of
λ̄ over the interval [0, r). Proposition 2.(a) states that
the ratio is minimum for 0 ≤ λ̄ ≤ λ̄OPT . For λ̄ in(
λ̄OPT , λ̄NE

)
, we know from proposition 2.(b) that

this ratio is strictly increasing, which implies that
ISK(r) ≥ DK( λ̄

NE

K e, r)/D1(λ̄NE , r) by continuity.
Since, according to proposition 2.(c), the ratio is
decreasing over the interval (λ̄NE , r), we can conclude
that its maximum value is obtained for λ̄ = λ̄NE .
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Fig. 3. The evolution of the ratio of social costs for K = 2 and
K = 5 with respect to ρ in a server farm with 3 server classes.

Theorem 3 fully characterizes the worst case traffic
conditions for a server farm with two classes of servers.
It states that the worst inefficiency of the decentralized
setting is achieved when (a) each dispatcher controls the
same amount of traffic and (b) the total traffic intensity
is such that the decentralized setting only starts using the
slow servers.

The behaviour described by proposition 2 can easily
be observed in figure 2.

For more than two classes of servers, we were unfortu-
nately not able to prove the above results concerning the
worst traffic conditions. Nevertheless, we conjecture that
a similar behaviour happens also in this case. As another
illustration of this behaviour, in figure 3 we plot the ratio
of social costs as a function of the load on the system,
for a server farm with 3 server classes (and for K = 2,
K = 5) with S1 = 100 fast servers of capacity r1 = 30,
S2 = 200 intermediate servers of capacity r2 = 20 and
S3 = 100 slow servers of capacity r3 = 10.

A. Inefficiency for a given architecture

We now give the expression for the inefficiency of self-
ish routing for data-centers with two classes of servers.
Using theorem 3 we assume the worst traffic conditions
for the inefficiency of selfish routing, i.e., the symmetric
game obtained for λ̄ = λ̄NE .

Fig. 4. Evolution of the inefficiency as a function of α and β for
K = 5 dispatchers.

Proposition 3:

ISK(r) =
1

2

√
(K − 1)2 + 4Kβ − (K + 1)

( 1

α
+
√
β)2

1

α
+ 2β√

(K−1)2+4Kβ−(K−1)

− ( 1
α + 1)

(12)

where β = r1
r2
≥ 1 and α = S1

S2
> 0.

Proof: According to theorem 3, we have ISK(r) =

DK( λ̄
NE

K e, r)/D1(λ̄NE , r). The proof is then obtained
after some algebra by using the expressions for
DK( λ̄

NE

K e, r) and D1(λ̄NE , r) given in corollary 2, and
with the expression for λ̄NE given in lemma 2.

The inefficiency ISK(r) does not depend on the total
number of servers S, but only on the ratio of server ca-
pacities and on the ratio of the numbers of servers of each
type. In figure 4, we plot the inefficiency IK(r) of the
non-cooperative routing scheme with K = 5 dispatchers
as the parameters α and β change. It can be observed
that even for unbalanced scenarios (α small and β large),
the inefficiency is always fairly close to 1, indicating
that, even in the worst case traffic conditions, the gap
between the NEP and the optimal routing solution is not
significant.

With slight abuse of notation, let us denote the RHS
of (12) by IK(α, β).

Lemma 4: The function IK(α, β) is decreasing with
α.

A consequence of the above result is that given the
ratio of server speeds in a data-center, the inefficiency
is largest when there is one fast server and all the other
servers are slow. Selfish routing has the tendency to use
the fast servers more than the slow ones. When there is
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just one fast server, its performance tends to be the worst
as compared to that of the centralized routing which
reduces its cost by sending traffic to the slower ones
as well. Thus, in decentralized routing architectures, it
is best to avoid server configurations with this particular
kind of asymmetry.

B. Price of Anarchy

The PoA is defined as the worst possible inefficiency
when the server capacities are varied. Then, from (4),
(5) and proposition 3,

PoA(K,S) = sup
α,β

IK(α, β).

From lemma 4 and the fact that, for a fixed S, α can
take values in { 1

S−1 ,
2

S−2 , . . . , S − 1}, we can deduce
that

PoA(K,S) = sup
β
IK

(
1

S − 1
, β

)
. (13)

While there is no simple expression for the PoA in
terms of K and S, we can nonetheless derive a certain
number of properties from the preceding set of results.

Proposition 4: The Price of Anarchy has the follow-
ing properties.

1) For fixed K, PoA(K,S) is increasing in S,
2) for a fixed S, PoA(K,S) is increasing in K.

Proof: For fixed K and for every β, from lemma 4
and (13),

IK

(
1

S − 1
, β

)
≤ IK

(
1

S
, β

)
≤ sup

β
IK

(
1

S
, β

)
= PoA(K,S + 1),

where the last equality follows from (13). Taking the
supremum over β in the above inequality, we obtain, for
a fixed K,

PoA(K,S) ≤ PoA(K,S + 1),

which proves the first property.

For a fixed S and β, from lemma 1,

IK

(
1

S − 1
, β

)
≤ IK+1

(
1

S − 1
, β

)
≤ sup

β
IK+1

(
1

S − 1
, β

)
= PoA(K + 1, S),
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Fig. 5. The Price of Anarchy as a function of the number of servers
for different values of the number of dispatcher

Again, taking the supremum over β in the above inequal-
ity, we obtain, for a fixed S,

PoA(K,S) ≤ PoA(K + 1, S),

which proves the second property.

In figure 5, the PoA is plotted as a function of S
for different values of K. It is observed that this value
remains modest even when the number of servers is
10, 000.

We now give an upper bound of the PoA. For this, we
first need the following result.

Lemma 5: For a server farm with two server classes
and K dispatchers,

lim
S→∞

PoA(K,S) =
K

2
√
K − 1

. (14)

Proposition 5: For a server farm with two server
classes and K dispatchers, and for all K and S,

PoA(K,S) ≤ min

(
K

2
√
K − 1

, S

)
. (15)

Proof: From proposition 4, PoA(K,S) is increas-
ing with S. Combining this fact with lemma 5, we can
conclude that

PoA(K,S) ≤ K

2
√
K − 1

.

Moreover, it was shown in [8] that, for the Wardrop case
which is the limit of K →∞, PoA(∞, S) ≤ S. Thus,

PoA(K,S) ≤ S.
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We can deduce the desired result from the above two
inequalities.

In server farms with large number of servers, it follows
from lemma 5 that the PoA will be K

2
√
K−1

. In [10], it
was shown that this value was a lower bound on the PoA.
The model in that paper had server dependent holding
cost per unit time. The lower bound was obtained in
an extreme case with negligible (tending to 0) holding
cost on the fast servers and the decentralized setting
marginally using the slow servers. Our present results
show that the lower bound is indeed tight. Moreover,
even in a less asymmetrical setting of equal holding costs
per unit time, one can construct examples in which the
PoA is attained.

The PoA obtained in the non-atomic case in [8] comes
into play when there are few servers and a relatively
large number of dispatcher. However, for data-centers the
configuration is reversed : there are a few dispatchers
and a large number of servers. In this case it is more
appropriate to use the upper bound given in (15).

V. CONCLUSIONS

Price of Anarchy is an oft-used worst-case measure of
the inefficiency of non-cooperative decentralized archi-
tectures. In spite of its popularity, we have shown that
the Price of Anarchy is an overly pessimistic measure
that does not reflect the performance obtained in most
instances of the problem. For an arbitrary architecture in
the system, we have seen that, contrary to a common
belief, the inefficiency is in general not achieved in
heavy-traffic or close to saturation conditions. Surpris-
ingly, we have shown that inefficiency might be achieved
at arbitrarily low load. In the case of two classes of
servers, we have explicitly characterized the traffic con-
ditions (or load) associated with the inefficiency. This
has allowed us to obtain a refined upper bound on the
Price of Anarchy and to show that non-cooperative load-
balancing has close-to-optimal performances in most
cases. The worst-case performances given by the Price of
Anarchy occur only in a very specific setting, namely,
when the slower servers are infinitely more numerous
and infinitely slower than the faster ones. In future
research we plan to generalize some of the results to
an arbitrary number of classes of servers. It will also
be worthwhile to investigate what happens when the
number of dispatchers grows to infinity, that is, when
the equilibrium traffic pattern is characterized by the so-
called Wardrop equilibrium.
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