
Modeling and Simulation of Hybrid Systems

Luka Stanisic Samuel Thibault Arnaud Legrand Brice Videau
Jean-François Méhaut

CNRS/Inria/University of Grenoble, France

University of Bordeaux/Inria, France

JointLab Workshop, Sophia-Antipolis
June 9, 2014

1 / 16



Context

Hybrid machines with both multi-core CPUs and GPUs are now
commonplace and need to be e�ciently exploited.
Obtaining portable performances across architectures is extremely
challenging ; adaptive task-based runtime (StarPU, StarSs, QUARK,
DAGuE, KAAPI, . . . )

Typical Performance Evaluation Issues

Checking the impact of a parameter/algorithm modi�cation
(granularity, scheduling, application structure, . . . ) is time
consumming and wastes precious resources

Debugging is even worse, errors are generally hard to reproduce

Machine miscon�guration can be di�cult to detect

Making sure new feature work on a wide variety of setups

Extrapolate behavior on larger/unavailable machines

Possible solution: Simulation

2 / 16



Context

Hybrid machines with both multi-core CPUs and GPUs are now
commonplace and need to be e�ciently exploited.
Obtaining portable performances across architectures is extremely
challenging ; adaptive task-based runtime (StarPU, StarSs, QUARK,
DAGuE, KAAPI, . . . )

Typical Performance Evaluation Issues

Checking the impact of a parameter/algorithm modi�cation
(granularity, scheduling, application structure, . . . ) is time
consumming and wastes precious resources

Debugging is even worse, errors are generally hard to reproduce

Machine miscon�guration can be di�cult to detect

Making sure new feature work on a wide variety of setups

Extrapolate behavior on larger/unavailable machines

Possible solution: Simulation

2 / 16



Context

Hybrid machines with both multi-core CPUs and GPUs are now
commonplace and need to be e�ciently exploited.
Obtaining portable performances across architectures is extremely
challenging ; adaptive task-based runtime (StarPU, StarSs, QUARK,
DAGuE, KAAPI, . . . )

Typical Performance Evaluation Issues

Checking the impact of a parameter/algorithm modi�cation
(granularity, scheduling, application structure, . . . ) is time
consumming and wastes precious resources

Debugging is even worse, errors are generally hard to reproduce

Machine miscon�guration can be di�cult to detect

Making sure new feature work on a wide variety of setups

Extrapolate behavior on larger/unavailable machines

Possible solution: Simulation

2 / 16



StarPU + SimGrid

StarPU

Dynamic runtime for hybrid architectures: opportunistic scheduling of a
task graph guided by resource performance models

SimGrid

Versatile simulator of distributed systems

3 / 16



Work�ow

StarPU

Performance Pro�le

Calibration

Run once!
4 / 16



Work�ow

StarPU

SimGrid

Simulation

Quickly Simulate Many Times

StarPU

Performance Pro�le

Calibration

Run once!
4 / 16



StarPU + SimGrid Implementation

StarPU

Dynamic runtime for hybrid architectures: opportunistic scheduling of a
task graph guided by resource performance models

SimGrid

Versatile simulator of distributed systems

Implementation:

StarPU applications and runtime are emulated

All operations related to thread synchronization, actual computations
and data transfer are simulated

Control part of StarPU is modi�ed to dynamically inject computation
and communication tasks into the simulator

StarPU calibration and platform description is used by SimGrid

5 / 16



(In)Validation Experimental Protocol

Machines:

Name Processor Number of Cores GPUs

hannibal Intel Xeon X5550 2× 4 3×QuadroFX5800
attila Intel Xeon X5650 2× 6 3×TeslaC2050
conan Intel Xeon E5-2650 2× 8 3×TeslaM2075
frogkepler Intel Xeon E5-2670 2× 8 2×K20
mirage Intel Xeon X5650 2× 6 3×TeslaM2070
froggy - - K40

Applications: Cholesky and LU implementations from StarPU

Protocol:

1 Calibrate model on target machine

2 Run StarPU over SimGrid on laptop

3 Run StarPU on target machine

4 Compare results (3) with predictions (2)

6 / 16



Modeling Runtime

Inserting delays for:
1 Process synchronizations
2 Memory allocations of CPU or GPU
3 Submission of data transfer requests

Taking GPU memory size into account is crucial

Conan: TeslaM2075 4GB Attila: TeslaC2050 3GB

Conan Cholesky Attila LU

0

500

1000

1500

20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s

Experimental
Condition

SimGrid (naive
runtime modeling)
SimGrid (smart)

Native

7 / 16



Modeling Runtime

Inserting delays for:
1 Process synchronizations
2 Memory allocations of CPU or GPU
3 Submission of data transfer requests

Taking GPU memory size into account is crucial

Conan: TeslaM2075 4GB Attila: TeslaC2050 3GB

Conan Cholesky Attila LU

0

500

1000

1500

20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s

Experimental
Condition

SimGrid (naive
runtime modeling)
SimGrid (smart)

Native

7 / 16



Modeling Communication

Due to the relatively low bandwidth of the PCI bus, applications spend
a lot of time transferring data
Components of hybrid platforms have di�ering characteristics
Correctly modeling communication is of primary importance

Why SimGrid?

1 Modeling with threads rather than states and transitions

2 Basic and �exible contention model

CPU

GPU2

GPU1

GPU0

(a) Crude modeling

CPU

GPU2

GPU1

GPU0

(b) More elaborated modeling

8 / 16



Modeling Communication

Due to the relatively low bandwidth of the PCI bus, applications spend
a lot of time transferring data
Components of hybrid platforms have di�ering characteristics
Correctly modeling communication is of primary importance

Why SimGrid?

1 Modeling with threads rather than states and transitions

2 Basic and �exible contention model

0

250

500

750

20K 40K 60K 80K
Matrix dimension

G
Fl

op
/s

Experimental
Condition

SimGrid (naive
network modeling)
SimGrid (heterogeneous
network but no pitch)
SimGrid (smart)

Native

8 / 16



Modeling Computation

Actual computation results are irrelevant

We only care about the time it takes to produce them

Execution of each kernel is replaced by a delay accounting for its
duration

Mean duration works just �ne for dense linear algebra kernels

We also implemented histogram sampling (accounts for possible
variability)

9 / 16



Recap

hannibal: 3 QuadroFX5800 attila: 3 TeslaC2050 conan: 3 TeslaM2075 frogkepler: 2 K20

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C
holesky

LU

20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s Experimental
Condition

SimGrid

Native

Checking predictive capability of the simulation

10 / 16



Analyzing Traces

Focusing on GFlops may hide a lot of things so we also looked at the
details

Comparing non-deterministic executions is tricky

But global application behavior is perfectly modeled

11 / 16



Comparing Di�erent Schedulers

Simulation is precise enough to explain performance issues and to faithfully
compare di�erent alternatives

In the former cases, the DMDA does not balance memory usage
between GPUs, which causes "swapping" for large matrices

Scheduler DMDA Scheduler DMDAR

0

500

1000

1500

C
holesky

attila: 3 TeslaC
2050

20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s Experimental
Condition

SimGrid

Native

12 / 16



Conclusion

Works great for hybrid setups with StarPU implementation of
Cholesky and LU

Our solution allows to:
1 Quickly and accurately evaluate the impact of various parameters or

scheduling alternatives
2 Tune and debug applications on a commodity laptop in a reproducible

way
3 Obtain reliable comparison of performance estimations that may allow

to detect problems with real experiments

Unlikely to work so well on machines with important NUMA factor

But we have other challenges in mind for a near future

13 / 16



Ongoing Work: MPI

With Samuel Thibault and Augustin Degomme

StarPU MPI can use MPI to leverage larger machines

SimGrid MPI works well

Could we combine these two approaches to faithfully simulate large
scale hybrid architectures?

In Theory: Should work �ne as well

In Practice: Many technical issues to address
1 � Intercepting StarPU calls by SimGrid
2 � Variable privatization
3 � SimGrid initialization
4 � Handling several main functions
5 � Topology modeling with private network parameters

Expecting �rst experiment results in the next months

14 / 16



Ongoing Work: MAGMA/MORSE

With Samuel Thibault, Suraj Kumar, Emmanuel Agullo, Lionel Eyraud, . . .

MAGMA/MORSE is an extension to the MAGMA library that relies
on StarPU to handle hybrid architectures

MAGMA/MORSE/StarPU developers are starting to bene�t from fast
and reliable simulations and users will follow

Initial simulation of the MORSE implementation of Cholesky was
overestimating performance

1 MORSE was actually not properly using CUDA streams
2 Error has been corrected, improving real execution

Now results match with a di�erence around 6%

Plan to (in)validate simulation of all other MORSE applications in a
near future

15 / 16



Ongoing Work: QR_mumps

With Abdou Guermouche, Emmanuel Agullo, Alfredo Buttari, Florent
Lopez

QR_mumps: a software package to solve sparse linear systems on
hybrid computers

qrm_starpu: implementation of QR_mumps using StarPU

More challenging than dense linear algebra applications, because
computations/communications are extremely irregular

Already have a working prototype

Initial investigations are promising but reveal that kernel calibration
will be more challenging than in the dense case

16 / 16


	Introduction
	Performance Models
	Evaluation
	Conclusion
	Ongoing Work

