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Abstract. This paper presents a parallel version for the Propagation
Algorithm which belongs to the region growing family of algorithms.
The main goal of our implementation is to decrease de Propagation Al-
gorithm execution time in order to allow its use on image interpolation
applications. Our solution is oriented to low cost high performance plat-
forms such as clusters of workstations. Four different input data sets
represented by pairs of images were chosen in order to carry out experi-
mental tests. The results obtained show that our parallel version of the
Propagation Algorithm presents significant speedups.

1 Introduction

Creating virtual in-between views from two scenes of the same subject taken
from different points of view can be a very interesting tool to economize re-
sources in some practical applications [1]. One main example is typically found
in teleconferencing with limited network bandwidth. Image-based interpolation
is a method to create smooth and realistic virtual views between two original
view points. Interpolation applications are usually based on a three-phase algo-
rithm [2]: construction of a dense matching map between the original images,
separations of matched areas from unmatched ones and finally the generation of
all in-between images. The matching phase is by far the most time consuming
one of this procedure. The general technique for matching areas from different
images is called region growing. Its basic principle is the use of images charac-
teristics to group neighbor pixels and thus creating regions. In [3], a new region
growing algorithm was proposed. It is based on the construction of a quasi-dense
matching map between the two original views and it is able to perform more ac-
curate matches. Its originality consists on the adoption of a “best first” strategy
to select the next match from a set of seed matches which is updated through the
addition of each new found match from the precedent algorithm iteration. This
new algorithm was called the Propagation Algorithm, and the improvements on
the matching procedure brought together an additional computational cost. This
paper proposes a parallel version for the Propagation Algorithm. The target ar-
chitecture is a cluster of workstations and the implementation was carried out
using the standard message passing library MPI [4].

⋆ This work was developed in collaboration with HP Brazil R&D.



The parallelization of the region growing technique has been the subject
of several different studies [5]. One of the most spread techniques is based on
the “Split and Merge” strategy [6]. On this approach, the merge phase is done
through the construction of a non-oriented graph to represent the problem. The
graph boundaries are the image regions and the connections between the extrem-
ities stand for the neighbors relation of the regions. The first parallel versions of
the regions growing algorithm based on the “Split and Merge” approach were im-
plemented over SIMD machines and dynamic structures were used to store image
regions information [7, 8]. Another experimental study of the parallel versions of
the image segmentation algorithm based on the regions growing technique (also
based on the “Split and Merge” approach) was presented by [9]. On this work,
the authors propose a new version of the algorithm to determinate the connected
components of an image and a new parallel approach is presented for the merge
phase.

The paper is organized as follows. In Section 2, the image interpolation ap-
plication is reviewed, with emphasis to the propagation (region growing) algo-
rithm. After, the proposed parallel approach is described in Section 3. Section 4
presents some experimental results for four different case studies. Finally, some
concluding remarks and future directions are given in Section 5.

2 Propagation Algorithm

Before starting the Propagation Algorithm, a preparation phase is necessary

to select the seed matches. Points of interest [10] are naturally good seed point
candidates because they represent the points of the image that have the high-
est texture. These points are detected in each separated image. Next, they are
matched using the ZNCC (zero-mean normalized cross correlation) measure [3].
At the end of this phase, a set of seed pairs is ready to be used to bootstrap a re-
gion growing type algorithm which propagates the matches in the neighborhood
of seed points from the most textured pixels to the less textured ones. The Propa-
gation Algorithm itself is based on a classic region growing method for image seg-
mentation [11] which uses pixel homogeneity. However, instead of using pixel ho-
mogeneity property, a similar mea-
sure based on the matches correla-
tion score is adopted. This propaga-
tion strategy could also be justified
by the fact that seed pairs are com-
posed by points of interest, which
are the local maxima of the texture.
Thus, these matches neighbors are
also strongly textured what allows
good propagation even though they
are not local maxima. The neigh-
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Fig. 1: Neighborhood propagation.

borhood N5(a,A) is defined as being all pixels within the 5x5 window centered
at these two points (one window per image). For each neighboring pixel in the



first image, a list of match candidates is constructed. This list consists of all
pixels of a 3x3 window in the corresponding neighborhood of the second image
(see Fig. 1). The complete definition of the neighborhood N (a, A) is given by:

N (a,A) = {(b,B), b ∈ N5(a),B ∈ N5(A), (B − A) − (b − a) ∈ {−1, 0, 1}2}.

The input of the algorithm is a set which contains the current seed pairs.
This set is implemented by a heap data structure for a faster selection of the
best pair. The output is an injective displacement mapping which contains all
the good matches found by the Propagation Algorithm. Briefly, all initial seed
pairs are starting points of concurrent propagations. At each step, a match (a, A)
with the best ZNCC score is removed from the current set of seed pairs. Then,
the algorithm looks for new matches in its match neighborhood and, when it
finds one, it is added to the current seed pairs set and also to the set of accepted
matches which is under construction.

3 Parallel Propagation

The parallel implementation for the Propagation Algorithm discussed on this
section was developed in order to allow the use of this new algorithm on realistic
situations. Thus, it was necessary to achieve better performances without using
parallel programming models oriented to very expensive (but not frequently
used) machines. Therefore, the natural choice was a cluster with a message
passing programming model.

As seen before, the Propagation Algorithm advances by comparing neighbors

pixels through out the source images surface. From some seed pairs, it can form
large matching regions on both images surface. In fact, a single seed pair can
start a propagation that grows through a large region over the images surface.
This freedom of evolution guarantees
the algorithm to achieve good results
in terms of matched surfaces. Another
characteristic is that the algorithm is
based on global “best-first” strategy to
choose the next seed pair that will start
a new propagation, which also has a
direct effect on the final match qual-
ity. These two characteristics are hard
to deal with if one wants to propose
a parallel distributed version of the al-
gorithm without loosing quality at the
final match. The “best-first” strategy
implementation is based on a global
knowledge of the seed pairs set, which is
not appropriated to a non-shared mem-
ory context. In addition, the freedom of
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Fig. 2: Redundancy problem.



evolution through out the images surface assumes that the algorithm knows the
entire surface of the images, and this can create a situation where several pro-
cessors are propagating over the same regions at the same time creating a re-
dundancy of computation (Fig. 2). Besides, it is not possible to know in advance
how many new matches a seed pair will generate. Thus, from a parallel point
of view, the Propagation Algorithm is an irregular and dynamic problem which
exhibits unpredictable load fluctuations. Therefore, it requires the use of some
load balancing scheme in order to achieve a more efficient parallel solution.

The parallel solution proposed in this paper is based on a master-slave
scheme. One processor will be responsible for distributing the work and cen-
tralizing the final results. The others processors will be running the Propagation
Algorithm, each one using a sub-set of the seed pairs and knowing a pair of
corresponding slices over the images surface (coordinates of target slice). The
master distributes the seed pairs over the nodes considering their location over
the slices. This procedure replaces the global “best-first” strategy by several lo-
cal “best-first” ones. Each local seed pairs sub-set is still implemented as a heap
which is ordered by the pair ZNCC score. This strategy minimizes the problem
of loosing quality at the final match.

Once the problem with the global “best-first” strategy is solved, it still re-
mains the problem of the algorithm limitation of evolution over the images sur-
face. As said before, each node can propagate just over the surface of its asso-
ciated slice in order to avoid computation redundancy. However, forbidding the
evolution out of the associated slice generates two kinds of losses. First, some
matches are not done because they are just at the border of one slice and one
of its points is placed outside it. Second, some regions in one slice may not be
reached by any propagation started by a seed pair located inside of its surface,
but instead they could be reached by a propagation started at a neighbor slice.

Such a limitation is partially solved by a technique called flexible slices. This
technique allows the Propagation Algorithm to expand through the surface of its
neighbor slices in a controlled way. As
shown on Fig. 3, each processor works
over its own associated slice, but it also
knows its neighbor slices and it has the
permission to propagate over them. But
still, it is not interesting to leave the
Propagation Algorithm free to compute
its neighbors entire surface. This may
cause the computation of too many re-
peated matches. To avoid that, each
processor has the permission to com-
pute just over a percentage of its neigh-
bors surface. This percentage is related
to the number of slices. A large number
of slices implies in thinner slices. In this
case, it is acceptable to allow a proces-
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sor to advance over a large percentage of its neighbors surfaces. On the other
hand, a small number of slices implies in larger slices. Here, the algorithm must
not propagate too much over the neighbors surface. Finally, it is important to
mention that the master must receive all matches generated by the slaves and it
must filter the unavoidable duplicated ones. In order to send these final matches
to the master, each slave has a communication buffer which is filled progressively
as the Propagation Algorithm advances. When the buffer is full, it is sent to the
master. After that, the slave immediately returns to its execution. All slaves do
the same procedure, in a way that forces the master to have a receiving queue.
This queue is dimensioned to avoid buffer losses by the master. When a slave
reaches the end of its seed pairs sub-set, it sends an incomplete buffer to the mas-
ter. When the master receives an incomplete buffer, it knows that the sender has
finished its work and sends a new slice (seed pairs sub-set) back to it (if there is
still sub-sets available). Figure 4 shows the complete flow-chart for the parallel
Propagation Algorithm.

Propagation Propagation Propagation

Seed pairs local heap 1 Seed pairs local heap 2 Seed pairs local heap n

Slave 1 Slave 2 Slave nMaster

Selection

Final matches Local matches Local matches Local matches

Seed pairs global heap

Fig. 4. Flow-chart of the parallel Propagation Algorithm.

The last problem to deal with in the parallelization of the Propagation Al-
gorithm is the workload distribution. If the source images are divided into more
slices than the number of nodes available, the following strategy is adopted:

1. the master divides the set of seed pairs into sub-sets based on their location
over the slices;

2. each slave receives one slice with its associated sub-set;
3. each slave computes its own sub-set of seed pairs;
4. when there is no more seed pairs to compute, the slave sends a signal to the

master;
5. if there is some available slices remaining, the master choose a new one and

send it to the available slave.

In fact, the master has a queue of slices, organized by their position over
the images surface. In order to choose which slice will be sent to an available



slave, the master just gets the first slice of this queue. This procedure is sufficient
to avoid the workload unbalance problem originated by the different amount of
seed matches each slice has.

4 Experimental Results

In order to perform the experimental tests of the parallel implementation of the
Propagation Algorithm, four case studies were selected. Table 1 presents the size
of the images that compose those case studies with their respective sequential
execution times obtained using a Pentium III 1 Ghz with 256 MB RAM.

Table 1. Execution times for the sequential Propagation Algorithm.

Image Flower House Rock Trunk

Size (pxs) 368x384 768x512 512x768 360x240

Propagation time (s) 6.32 15.24 14.32 3.20

Each pair of images shows specific characteristics. The Flower pair is the only
one based on non-realistic images. Both, the House and the Rock pairs have the
same size, but the House pair has more textured regions and presents occluded
elements. Finally, the Trunk pair is the only one based on a gray scale of colors
and it has the smallest number of textured regions. This set of input images is
clearly not exhaustive, but the pairs of images were carefully chosen to make it
possible to verify the the parallel Propagation Algorithm behavior on different
situations.

For all input images, experimental tests were carried out varying on the
number of processors1(N), number of slices per slave (fine grain and coarse
grain) and the redundancy extension allowed over the slices. The number of
slices per slaves is obtained by 2 × N (coarse grain) and by 3 × N (fine grain).
Moreover, the slices redundancy extension used was 30% and 100% of the slices
height. Figure 5 shows the speedup, execution time (T) and efficiency (E) of
the parallel Propagation Algorithm for each case study. The experimental tests
showed that, for all input images pairs, our parallel implementation achieved
an execution time reduction about 81% (≃ 79.26% for the Rock, ≃ 80.01%
for the Trunk, ≃ 81.49% for the House and ≃ 83.86 for the Flower) using 9
processors. On the other hand, all executions carried out with more than 9
processors presented a significant lost of performance.

The analysis of the curves on the graphs of Fig. 5, one can clearly identify
that the 30% of redundancy extension always results in a better efficiency. This
result was expected, since with a lower redundancy allowed there are less pairs to
match. We could then expect even better results with less than 30% extension,
however this is not possible due to the lost of matches at boundaries of each slice
what compromises the final match quality.

1 The target architecture was a cluster with 8 nodes Pentium III 1 Ghz dual and 256
MB RAM connected by a 100 Mb Fast-Ethernet network.
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ideal

number of processors
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(a)
T 4.75 3.31 2.90 2.82 2.62 2.26 1.66
E 44.35 47.73 43.59 37.35 34.46 34.96 42.30

(b)
T 4.14 4.23 3.07 2.87 2.45 2.01 1.42
E 50.89 37.35 41.17 36.70 36.85 39.30 49.45

(c)
T 3.62 3.17 2.19 1.89 1.60 1.20 1.02
E 58.20 49.84 57.72 55.73 56.43 65.83 68.85

(d)
T 3.62 3.10 2.51 2.30 2.01 1.31 1.09
E 58.20 50.97 50.36 45.80 44.92 60.31 64.42

number of processors
3 4 5 6 7 8 9

(a)
T 2.32 2.12 1.55 1.33 1.18 1.08 1.00
E 45.98 37.74 41.29 40.10 38.74 37.04 35.56

(b)
T 2.60 2.45 2.33 2.12 1.58 1.44 1.20
E 41.03 32.65 27.47 25.16 28.93 27.78 29.63

(c)
T 2.37 2.21 1.03 0.90 0.82 0.78 0.64
E 45.01 36.20 62.14 59.26 55.75 51.28 55.56

(d)
T 2.40 2.32 2.20 1.98 1.30 1.02 0.89
E 44.44 34.48 29.09 26.94 35.16 39.22 39.95
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ideal

number of processors
3 4 5 6 7 8 9

(a)
T 12.84 11.96 10.20 8.12 7.38 5.83 5.05
E 39.56 31.86 29.88 31.28 29.50 32.68 33.53

(b)
T 12.66 9.85 8.84 7.77 6.95 6.06 4.77
E 40.13 38.68 34.48 32.69 31.33 31.44 35.50

(c)
T 11.44 9.08 6.74 5.76 4.74 4.37 2.99
E 44.41 41.96 45.22 44.10 45.93 43.59 56.63

(d)
T 11.13 9.25 6.79 5.40 4.61 4.08 2.82
E 45.64 41.19 44.89 47.04 47.23 46.69 60.05

number of processors
3 4 5 6 7 8 9

(a)
T 14.10 12.91 10.85 8.32 6.93 6.09 4.87
E 33.85 27.73 26.40 28.69 29.52 29.39 32.67

(b)
T 13.84 12.95 10.62 7.82 6.91 5.77 4.57
E 34.49 27.64 26.97 30.52 29.61 31.02 34.82

(c)
T 10.54 8.84 7.68 5.51 5.10 4.15 2.97
E 45.29 40.50 37.29 43.32 40.11 43.13 53.57

(d)
T 10.55 9.23 7.05 5.47 4.52 4.02 3.09
E 45.24 38.79 40.62 43.63 45.26 44.53 51.49

Fig. 5. Results: speedup, execution time (T, in seconds) and efficiency (E, in %).

Examples of the parallel Propagation Algorithm output for each case study
((a) Flower, (b) House, (c) Rock and (d) Trunk) can be visualized at Fig.6. The
squared regions in both images of each pair show the extension of the matched
regions obtained from the seed matches. Readers can notice that the Propagation
Algorithm advances better over the textured surfaces. Regions like the sky in the
Trunk pair or the grass in the House pair were not matched due to absence of
texture. Furthermore, some regions on the images boundaries cannot be matched
because they do not appear in both views.
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Fig. 6. Output of the parallel Propagation Algorithm for each case study.



5 Conclusions

The implementation of a parallel version for the Propagation Algorithm was pre-
sented in this paper. The particularity of this algorithm consists on the adoption
of a “best first” strategy to select the next match from a set of seed matches
firing several propagations that can advance over the same images zones gener-
ating a large redundancy in the computation of the seed matches. Our parallel
version is based on a master/slave scheme and we proposed a new technique
called flexible slices to solve the redundancy problem. Several experiments were
carried out in order to verify the usability of our approach and the results present
a significant gain of performance. Finally, it is the authors opinion that the work
developed so far was worthwhile. The results obtained are interesting and the
implementation allowed a quite good understanding of the problem, leading to
promising directions for further investigations.
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