
High Performance XSL-FO Rendering
for Variable Data Printing

Fabio Giannetti
HP Laboratories

Bristol - UK

fabio.giannetti@hp.com

Luiz Gustavo Fernandes
PPGCC - PUCRS

Porto Alegre - Brazil

gustavo@inf.pucrs.br

Rogerio Timmers
HP Brazil R&D

Porto Alegre - Brazil

rogerio.timmers@hp.com

ABSTRACT
High volume print jobs are getting more common due to
the growing demand for personalized documents. In this
context, Variable Data Printing (VDP) has become a use-
ful tool for marketers who need to customize messages for
each customer in promotion materials or marketing cam-
paigns. VDP allows the creation of documents based on a
template with variable and static portions. The rendering
engine must be capable of transforming the variable portion
into a resulting composed format, or PDL (Page Descrip-
tion Language) such as PDF, PS or SVG. The amount of
variable content in a document is dependant on the publi-
cation layout. In addition, the features and the amount of
the content to be rendered may vary according to the data
loaded from the database. Therefore, the rendering process
is invoked repeatedly and it can quickly become a bottle-
neck, especially in a production environment, compromising
the entire document generation. In this scenario, high per-
formance techniques appear to be an interesting alternative
to increase the rendering phase throughput. This paper in-
troduces a portable and scalable parallel solution for the
Apache’s rendering tool FOP (Formatting Objects Proces-
sor) which is used to render variable content expressed in
XSL-FO (eXtensible Stylesheet Language-Formatting Ob-
jects). XSL-FO is extracted from a print job expressed in
PPML (Personalized Print Markup Language), which is, in
turn, obtained by the merging variable data in a template.
The VDP Template is expressed using PPML/T (Personal-
ized Print Markup Language Template).

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Prepa-
ration—Markup Languages; I.7.4 [Document and Text
Processing]: Electronic Publishing

General Terms
Algorithms, Documentation, High Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

Keywords
VDP, PRL, PPML, PPML/T, XSL-FO, FOP, thread-safe.

1. INTRODUCTION
Personalized document creation is a common practice within

the digital networked world. The automated, customized
document assembly and transformation have become neces-
sary processes to fulfill the demand. Typically, personalized
documents contain areas that are common among a set of
documents, and therefore static, as well as customized ar-
eas, the variable ones. In traditional variable information
[9], document authoring tools allow designers to define a
template on which to base a set of documents. The designer
also defines empty areas (fixed sized), where the variable
data will be put on. This way, the common layout is the
same for all documents and although it can have variable
data, it cannot respond to dynamic properties such as resiz-
ing of the fixed size of variable data.

These limitations have triggered research efforts to auto-
mate the process of creating personalized documents. Doc-
uments can be authored as templates and the production
can be automated maintaining an high level of composition
quality. It is the focus of this paper to explore how the
generation of such documents is achieved in a production
environment. Print Shops require a predictable, efficient
and qualitative industrial process to print and finish docu-
ments. It has been proven that using XSL-FO as the format
for un-composed portions of the document makes it possible
the merging of the variable data later in the process, even
during the printing process itself. This approach is clearly
advantageous since it does not require having the variable
data at design time and also enables the transmission of the
documents as templates and variable data instead of the
fully expanded document set.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the motivations for this work, Section 3 in-
troduces the research context focusing on the definition of
the used markup languages, XSL-FO and PPML as well as
the XSL-FO rendering engine Apache’s FOP, Section 4 de-
scribes the high performance approach to improve the ren-
dering procedure, Section 5 introduces the testing environ-
ment, Section 6 presents an analysis of experimental results
for a case study and finally some concluding remarks and
future works are discussed in Section 7.

2. MOTIVATION
The aim of this research is to explore and indicate a scal-

able and modular solution to execute variable data compo-
sition using parallel rendering engines.

Most of the digital publishing production environments
use digital presses in parallel to maximize the balance, as
well as the overall document production (jobs). In such en-
vironment all the activities related to the document prepa-
ration need to be executed in a constrained time slot, since
jobs are completed in a sequential order on multiple presses.
In the variable data printing case, on top of the existing pre-
printing steps there is the need of merging the variable data
into the template and rendering the un-composed document
portions.

The rendering process is usually quite expensive and in
case of thousands of documents can become the bottleneck.
Modern digital presses also are capable of printing at an
engine speed (of about 1 second per page). This rate is
the minimum required to maintain the digital press work-
ing at full speed. When digital presses are used in paral-
lel, the overall engine speed is multiplied by the number of
presses, thus, it can become increasingly difficult to feed all
the presses at the combined engine speed to make the most
of their printing speed.

When the rendering process is centralized at a single pro-
cessor, a break point is likely to happen, since the engine
speed of the presses in parallel is exceeding the rendering
process speed creating a bottleneck. Similarly to the concept
of using presses in parallel to achieve better performance and
quickly consume jobs, our aim is to develop a proposal for
parallelizing the XSL-FO rendering engines. Results show
that the system developed can match the presses combined
engine speed at the rendering stage. We have also considered
that it is necessary to provide the best compromise between
the number of processors and overall speed. Therefore, the
concept of “unit” has emerged. A unit is, the minimum
set of parallel processors that, it is provided accordingly to
the configuration of the presses, to maintain the combined
engine speed.

We have explored the two following situations:

1. Print Shop A has two digital presses consuming jobs
in parallel: one “unit” containing a certain number of
parallel rendering engines is used to match the com-
bined engine speed;

2. Print Shop B has four digital presses consuming jobs
in parallel: two “units” containing the same number
of parallel rendering engine is used to match the ap-
proximately doubled engine speed.

The results in this paper shows a modular and scalable
solution for variable data printing with late binding and ren-
dering (composition) at printing time.

3. BACKGROUND
The combination of PPML and XSL-FO has been chosen

to represent document templates with high degree of flex-
ibility, reusability and printing optimization. The synergy
achieved by this combination assures the expressability of
invariant portions of the template as re-usable objects and
variable parts as XSL-FO fragments. After the variable data
is merged into the template, various document instances are
formed. The final step is to compose or render the XSL-FO

parts into a Page Description Language (PDL), enabling
the digital press to rasterize the page. The rendering pro-
cess is carried out by Apache’s FOP [3]. Before describing
the processing environment, it is relevant to highlight the
most important aspects of these XML formats: PPML and
XSL-FO.

PPML [2] is a standard language for digital print built
from XML (eXtensible Markup Language) developed by PODi
(Print on Demand Initiative) [8] which is a consortium of
leading companies in digital printing. PPML has been de-
signed to improve the rasterizing process for the content in
documents using traditional printing languages. PPML, in
fact, introduces the reusable content method where, con-
tents which are used on many pages, can be sent to the
printer once, and accessed as many times as needed from
the printer’s memory. This allows high graphical content to
be rasterized once as well, and to be accessed by sending
layout instructions instead of re-sending the whole graphic
every time it is printed. Each reusable object in PPML
is called resource. In order to guarantee all the resources
are available and the digital press can retrieve them, PPML
allows external referencing. It is also common practice to
give responsibility to express all the necessary resources to
successfully complete the print job to the job ticketing lan-
guage.

Usually, the digital press can access to the required re-
sources directly from the local mass storage unit or from the
local LAN, as a way of maintaining the performance rate.
PPML is a hierarchical language that contains documents,
pages and objects. The contained objects are classified as re-
usable or as disposable. PPML also introduces the concept
of scoping, for the re-usable objects, so the PPML producer
can instruct the PPML consumer about the lifespan of a par-
ticular object. This approach is very powerful and efficient
and can optimize the press requirement of caching and pre-
rasterizing objects that are re-used all across the job and/or
only in a particular page. Unfortunately, PPML is lacking
of strategies and constructs to give different importance to
the objects since the rasterizing process can have significant
differences and impact on the overall time to produce the
document. Some work has been already presented [1, 5] in
order to address this issue, which currently remains open
and is outside the scope of this paper.

The variable data is merged inside the PPML Object el-
ement and it is formatted using XSL-FO. The containing
element, expressed as PPML, is named “copy-hole”, which
is a defined area in the PPML that can contain the variable
data expressed in XSL-FO, or a non variable content such
as images. XSL-FO (also abbreviated as FO) is a W3C [11]
standard introduced to format XML content for paginated
media. XSL-FO ideally works in conjunction with XSL-T
(eXtensible Stylesheet Language - Transformations) [12] to
map XML content into formatted and ready to be mapped
into a pagination model. When the XSL-FO is completed
with both the pagination model and the formatted content,
the XSL-FO rendering engine, executes the composition step
to lay out the content inside the pages and obtain the final
composed document. The composition is a complex step
and requires typesetting capabilities, as well as layout ex-
pertise and resolution. The XSL-FO rendering engine used
in our solution is FOP.

FOP is one of the most common processor in the mar-
ket not only because it is an open source application, but

Figure 1: Phases of the rendering process

also because it provides a variety of output formats and it is
flexible and easily extendable. It is a Java application that
reads formatting objects and renders to different output for-
mats such as PDF, plain text, PostScript, SVG which is the
focus of the rendering results obtained in this paper, among
others. Figure 1 illustrates the various phases of the ren-
dering process. This process is typically composed by three
distinctive steps:

1. generation of a formatting object tree and properties
(or traits) resolution;

2. generation of an area tree representing the laid out
document composed by a hierarchy of rectangular hav-
ing as leafs text elements or images;

3. converting or mapping the area tree to the output for-
mat.

The advantages of this approach are related to the com-
plete independence between the XSL-FO representation of
the document and the internal area tree construction. Using
this approach makes it possible to map the area tree to a
different set of PDLs.

4. HIGH PERFORMANCE APPROACH
This section describes the main features of the high per-

formance approach we propose for XSL-FO rendering for
Variable Data Printing. It is relevant to notice that the
approach described in this paper considers FOP as a black
box and it is not aiming at parallelizing the various render-
ing steps previously described. In the future work section we
will explore the possibilities of acting inside FOP’s code to
enhance the speed of the rendering process leveraging, where
possible, the common processing parts from the document
specific ones.

In the sequential FOP version presented early in this pa-
per, the output document generated after the rendering pro-
cess is composed by the same PPML structure but the XSL-
FOs, which are replaced by its corresponding part rendered.
In this version, the part of the document that is not ren-
dered (static part) is automatically copied to the output
PPML when the document is being parsed up to the mo-
ment a XSL-FO is detected. Therefore, when a XSL-FO is
located it is sent out to the FOP to be rendered, and the
rendered content saved back at the same part of the doc-
ument it was before in the output PPML. It happens one
after another until the entire document is parsed.

Since the rendering process is called repeatedly, the main
idea behind the high performance approach is to allow the
execution in parallel of several instances of FOP tool. How-
ever, in the parallel version there are three main problems.
The first one is that several FOs are being rendered in par-
allel and need to be written in the output file in the same
order they were parsed from the original document. The
second one, is that if the FOs are sent to a FOP module
while it is rendering a XSL-FO object, the sender module
will have to wait for the FOP to finish the current render
procedure so the communication can be completed. That
way, the overall time will be compromised. The third prob-
lem is that if the module that is parsing the input document,
extracting FOs and sending them out to the FOPs is also
writing the output file (that takes a considering amount of
time), it will be overloaded and probably will not be able to
deal with communication to receive the rendered objects.

PPML
Consumer

FOP FOP

Broker

. . .

PPML
Receiver

FOsFOs FOs
Renderized

FOs
Renderized

FOs
Renderized

Buffer
FO

Figure 2: Proposed architecture

In order to solve the first problem, an ID is assigned to
each FO rendered, allowing it to be identified and saved in
the correct position. For solving the second problem, a new
module - called Broker - was created. Its function is queue-
ing the FOs and sending them out to the first idle FOP.
Finally for the third problem, we have split up the parse
module in two parts making a module responsible for each
part of the process. The PPML Consumer is the module
that will parse out the document and extract the FOs to
send them out to the FOP modules. On the other hand,
the PPML Receiver is the module that will receive the ren-
dered FOs and write them at the output file. The PPML
Receiver also will have to get the static parts of the PPML
to re-write them in the output file. So, this module has
two threads. The first, parse the document extracting only
the static parts and the second receives the rendered FOs
and write the output file. Figure 2 represents our proposed
architecture.

The Broker function, as said before, is to receive and
queue FOs to be rendered. These FOs are sent to the FOP
components requesting for work. The FOP module renders
the XSL-FOs and when finished sent it to the Broker, in such
a way that the Broker knows when the FOP can receive an-
other FO to be rendered. In order to gain performance, this
module has been divided in two threads:

• receiver : responsible for receiving and queueing FOs;

• sender : check whether there is some FO waiting in
the queue to be sent out to the first idle FOP module.
Also transmits rendered FOs to PPML Receiver.

Finally, in order to maximize the parallel version perfor-
mance, the communication issue must be treated. We have
realized that if the FOPs receive a single FO per time, ren-
ders it and send it back to the Broker, the communication

cost is not compensated by the time of rendering just one
FO. This problem can be minimized through the use of com-
munication buffers. Thus, the PPML Consumer send buffers
filled with work (FOs to be rendered) to the Broker. It then
splits these buffers in smaller ones that will be queued and
sent to each FOP. The size of these buffers is critical: they
should not be too large, because the communication cost
does not compensate the time of rendering FOs in parallel,
neither too small, because there will be too much communi-
cation.

A final comment on high performance implementation of
the XSL-FO rendering process is related to the usage of
threads. Programming concurrent systems using threads in-
troduces issues related to the simultaneous access of shared
resources (e.g., output stream). A system is called thread-
safe if it is safe to invoke its methods from multiple threads,
even in parallel. Non-thread-safe objects may behave unpre-
dictably and generate unexpected results, corrupt internal
data structures, etc. Thread-safety is typically achieved in
Java with (both employed in our implementation):

1. use of synchronized statements (or synchronized meth-
ods);

2. immutability of encapsulated data (i.e. it is not pos-
sible to modify any field after you have created the
object).

5. TESTING ENVIRONMENT
This section introduces the requirements for a platform to

support a portable and scalable high performance implemen-
tation. The tests performed for all the solutions presented
in this paper have been done in the same environment using
the same input data according to this section.

5.1 Platform
The first issue a high performance application designer

must deal with is to choose between multiprocessor or mul-
ticomputer architectures. Multiprocessor machines use a
global memory access scheme, and usually need an expensive
interconnection bus between processors and memory (e.g.,
crossbar). Nowadays, these machines are loosing space for
the multicomputer platforms such as clusters or computa-
tional grids. These machines present distributed memory
scheme and, in the case of clusters, are connected through
a dedicated, fast network. Developing programs for the two
platforms is quite different. The first one is based on a
shared memory programming paradigm and the second one
is typically based on message passing paradigm.

Programming for distributed memory platforms is more
complex because each processor of the architecture has a
local memory and cannot directly access others processors
memories. In this scenario, the application must be divided
in modules, also called processes, which do not share the
same address space with each other. Thus, processes can-
not exchange data through shared variables. The alternative
is to provide a set of communication primitives which are
based on two main functionalities: sending and receiving
data through/from an interconnection network. Although
the greater complexity of the message passing programming
paradigm, it presents the significant advantage of a high
degree of portability since such kind of programs can be ex-
ecuted over shared-memory platforms without any changes

considering that an unavoidable loss of efficiency can be ac-
cepted. Shared memory programs, on the other hand, have
a lower degree of portability since they cannot be carried
out over distributed memory platforms. This only happens
through a complete conversion of the program to the mes-
sage passing paradigm.

Considering that portability and scalability are two desir-
able features for high performance implementations, we de-
cided to adopt the Java programming language in our high
performance implementation. Java is not frequently used for
high performance applications [4, 6] for two reasons: it is an
interpreted language and it is based on a virtual environ-
ment (Java Virtual Machine - JVM), which allows portabil-
ity. These two features are responsible for a computational
overhead, which most of the time is considered too signifi-
cant by high performance applications designers. However,
in our implementation, portability and compatibility with
different operational systems are crucial. That, plus unique
features like multi-thread primitives, justify the adoption of
Java.

We used the Java Standard Development Kit (J2SDK,
version 1.4.2) plus the standard Message Passing Inter-
face (MPI) [10] to provide communication among processes.
More specifically, we choose the mpich implementation (ver-
sion 1.2.6) along with mpiJava [7] (version 1.2.5) which is
an object-oriented Java interface to the standard MPI. The
experiments were carried out over processors running Linux
(Slackware distribution, kernel 2.4.29), as this is the stan-
dard hardware configuration available to us. However, it is
important to mention that mpiJava is also compatible with
Windows operating system platforms, assuring the imple-
mentation portability. The target hardware platform is a
cluster composed by 12 Pentium III 1Ghz processors with
256 MB RAM connected through 100 Mb FastEthernet.

5.2 Input Data
Documents to be rendered can have a multitude of dif-

ferent layouts, as well as FOs that compose a document.
In this paper, we have chosen to show the behavior of our
implementation using four rendering stress tests which con-
tains a large amount of data to be rendered. The first input
PPML file, which is called Mini, contains a job with one
thousand documents to be rendered. Each document is
composed by two pages as follows:

• Page 1: 1 copy-hole with XSL-FO composed by 4 text
blocks and approximately 107 words;

• Page 2: 3 copy-holes with XSL-FO, respectively com-
posed by 6 text blocks and approximately 130 words,
2 text blocks and approximately 43 words and 1 text
block with 36 words;

• Average number of words per block: 24.3.

The resulting XSL-FO fragments contained in the PPML
copy-holes to be rendered amounts to four thousands. The
PPML documents are instances of the template shown in
fig. 3

The second test, which is called Inicio, has two thou-
sand documents. The documents have two pages, each one
as follows:

• Page 1: 3 copy-holes with XSL-FO, all of them with
1 text block, respectively with 4 words, 6 words and
finally 7 words;

Figure 3: First case study: document generated by
the Mini input XSL-FO

• Page 2: 3 copy-holes with XSL-FO, respectively with
4 text blocks and 56 words, 1 text block and 6 words
and 1 text block with 2 words;

• Average number of words per block: 9.

The number of XSL-FO fragments to be rendered get to
12000. The template shown in fig. 4 was the one used to
create this input file.

Figure 4: Second case study: document generated
by the Inicio input XSL-FO

The third test is called Sap. It has a job with a thousand
documents. Each document contains three pages as follows:

• Page 1: 2 copy-holes with XSL-FO, both composed by
only 1 text block each, respectively with 11 words and
with 13 words;

• Page 2: 1 copy-hole with XSL-FO, that contains 1 text
block and 32 words;

• Average number of words per block: 18.67.

In this case, the number o XSL-FO fragments to be ren-
dered gets to 3000. This input has been generated using the
template shown in fig 5. The last test is the same as the
third one, but it has a job with two thousand documents.
That will end up with 6000 XSL-FO fragments to be ren-
dered. This last test was also generated by the template
shown in fig. 5.

Figure 5: Third case study: document generated by
the Sap input XSL-FO

6. RESULTS
In order to verify the advantages and drawbacks of the ap-

proach described in the previous section, some experiments
were carried out. This section presents the results of the
high performance rendering approach for the XSL-FO doc-
ument introduced in section 4. Seeking to provide the reader
a comparison parameter, the sequential version of the ren-
der tool was executed over a single processor of the cluster
described in section 5.1, resulting in the execution times
showed in figures 6, 7 and 8 for one CPU. Each execution
time presented in this section is obtained after a mean of
five executions, discarding the highest and lowest times.

The first experiment we have carried out was using the
Mini input job, which contains 1000 documents. This in-
put job is the smallest one, but it presents a high density
in terms of the numbers of words inside each text-block.
In this case, the best execution time was 82.6377 seconds
(using 12 CPUs), but this configuration presents a low ef-
ficiency (38.33%). In fact, from 7 CPUs up to 12 the gain
in terms of execution time is not significant, indicating that
the whole system could not take advantage of more than 4
FOP modules running in parallel. Figure 6 shows the results
for this test case.

In our second experiment, we used the Inicio input job.
This is the most dense input job in terms of elements to
be rendered. The sequential time in this case was 640.3371
seconds to render 2000 documents. The best execution time
(124.8848 seconds) was achieved with 10 CPUs, but again
the gain from 7 CPUs up to 12 is not significant in terms of
execution time. In figure 7 the results for this experiment
are shown.

For the last experiment, we used the same template only
changing the number of documents contained within the in-
put job (Sap with 1000 and 2000 documents). This proce-

 80

 120

 160

 200

 240

 280

 320

 360

 400

 1 2 3 4 5 6 7 8 9 10 11 12

tim
e

(s
)

number of CPUs

Mini 1000 Execution Time

number of CPUs - Mini 1000
1 4 5 6 7 8 9 10 11 12

T 380.0776 163.0715 99.8171 89.4505 84.3465 86.2389 83.5292 84.6751 82.7083 82.6377
E 100.00 58.27 76.15 70.82 64.37 55.09 50.56 44.89 41.78 38.33

Figure 6: Results for the Mini 1000 input job

 120
 160
 200
 240
 280
 320
 360
 400
 440
 480
 520
 560
 600
 640
 680

 1 2 3 4 5 6 7 8 9 10 11 12

tim
e

(s
)

number of CPUs

Inicio 2000 Execution Time

number of CPUs - Inicio 2000
1 4 5 6 7 8 9 10 11 12

T 640.3371 277.8193 169.6794 141.0473 133.0431 132.0088 134.3758 124.8848 130.1075 130.5597
E 100.00 57.62 75.48 75.67 68.76 60.63 52.95 51.27 44.74 40.87

Figure 7: Results for the Inicio 2000 input job

dure allowed us to analyze the scalability of the proposed
parallel solution when the workload is increased. The ex-
perimet with 1000 documents presented the best execution
time with 7 CPUs (102.4167 seconds). On the other hand,
for 2000 documents, the faster execution time was obtained
with 10 CPUs (196.9459 seconds). The results show that
our parallel solution have scaled well, when the amount of
documents to be rendered was raised to the double. The
results are shown if figure 8.

Comparing the three test cases previously discussed, a
common behaviour was detected: running the application
with more than 7 CPUs does not seem to present major
improvements on the execution time that would justify the
use of more processing units. We believe that the reason
for that is that the Broker module reaches its limits when
dealing with four FOP modules. If the number of FOPs
is bigger than four, the Broker module cannot handle effi-
ciently the distribution of FOs among the FOPs, becoming
the system’s bottleneck.

7. CONCLUSION AND FUTURE WORK
The results presented in this paper indicate that it is pos-

sible to achieve better results in rendering XSL-FO docu-
ments using high performance computations techniques. In
this first implementation, we have used threads and the mes-
sage passing programming paradigm to decrease the execu-
tion time to render three different jobs containing several
thousands documents.

Although the gain of performance could be considered sat-
isfactory, the main contribution of this work was to indicate

 80
 120
 160
 200
 240
 280
 320
 360
 400
 440
 480
 520
 560
 600
 640
 680
 720
 760
 800
 840
 880
 920
 960

 1000

 1 2 3 4 5 6 7 8 9 10 11 12

tim
e

(s
)

number of CPUs

Sap 1000 Execution Time
Sap 2000 Execution Time

number of CPUs - SAP 1000
1 4 5 6 7 8 9 10 11 12

T 465.6895 212.2404 162.2920 109.9721 102.4167 106.7142 105.2449 107.3861 107.0634 107.8098
E 100.00 54.85 57.39 70.58 64.96 54.55 49.16 43.37 39.54 36.00

number of CPUs - SAP 2000
1 4 5 6 7 8 9 10 11 12

T 927.0293 412.5711 248.1964 209.7896 199.2431 199.8891 199.8978 196.9459 199.9694 201.9489
E 100.00 56.17 74.70 73.65 66.47 58.86 51.53 47.07 42.14 38.25

Figure 8: Results for the Sap input job (1000 and
2000)

PPML
Consumer

Broker Renderized
FO

FOP

FOP

FOP

Broker Renderized
FO

FOP

FOP

FOP

..

.

FO

FO FO

FO

FO

FO

FO

FO

Figure 9: Multi-broker architecture

the best configuration among the tested ones: from 4 to 12
parallel processors. This has paved the way to indicate that
a multiple Broker solution using four FOP modules per Bro-
ker is the optimum solution (see figure 9). This configuration
tackles the saturation of the Broker module problem, avoid-
ing it to be too busy receiving rendered FOs and not be able
to send new FOs to idle FOP modules. Analyze the PPML
template in order to identify the possible number of FOs
and their distribution in order to set the number of Broker
modules to be loaded in the available machines, represents a
possible optimization step that we plan to investigate. The
incipient idea behind that is that the Brokers set-up, among
the available set of processors, could be initialized as re-
sult of: either an user decision or an automatic decision of
the application based on a previous analysis of the PPML
Template. The second alternative is more robust, but its im-
plementation is much more complex due to the difficulties
to handle dynamic reconfigurations in distributed memory
platforms.

Results so far have also generated another potential line
of improvement. Depending on the features of the docu-
ments to be rendered, the number of transmissions between
modules changes drastically. For example, it is better to
send a group of FOs to the rendering modules than one FO
per time, if the FOs are small. In this case, the commu-
nication overhead may be higher than the time needed for
rendering a single FO. This situation can decrease the speed
of the high performance version. An alternative would be

to send a group of several small FOs for each FOP module.
Another case is when the documents to be rendered have
only large FOs, in this case it is better to send one FO at
the time, because groups will increase the amount of time
taken for the transmission through the network. Consider-
ing this scenario, an alternative is to set a parameter to the
application informing the mean size of the FOs of a PPML
document, fixing the size of communication buffers based on
this information until the limit supported by the network.

Considering all cases in this line of potential research, our
future work, is to implement a smarter parallel version in a
way that it can automatically identify different situations,
as exposed above, aiming at the best possible performance.
This implies the development of a decision making environ-
ment with the capabilities of choosing the number of Brokers
and the size for the communication buffers.

8. ADDITIONAL AUTHORS
Additional authors: Thiago Nunes (CAP - PUCRS, email:

tnunes@inf.pucrs.br), Mateus Raeder (CAP - PUCRS,
email: mraeder@inf.pucrs.br) and Márcio Castro (CAP
- PUCRS, email: mcastro@inf.pucrs.br)

9. REFERENCES
[1] D. D. Bosschere. Book ticket files & imposition

templates for variable data printing fundamentals for
PPML. In Proceedings of the XML Europe 2000,
Paris, France, 2000. International Digital Enterprise
Alliance.

[2] P. Davis and D. deBronkart. PPML (Personalized
Print Markup Language). In Proceedings of the XML
Europe 2000, Paris, France, 2000. International Digital
Enterprise Alliance.

[3] FOP. Formatting Objects Processor. Extracted from
http://xml.apache.org/fop/ at May 13th, 2005.

[4] V. Getov, S. F. Hummel, and S. Mintchev.
High-performance parallel programming in Java:
exploiting native libraries. Concurrency: Practice and
Experience, 10(11–13):863–872, 1998.

[5] F. R. Meneguzzi, L. L. Meirelles, F. T. M. Mano, J. B.
de S. Oliveira, and A. C. B. da Silva. Strategies for
document optimization in digital publishing. In ACM
Symposium on Document Engineering, pages 163–170,
Milwaukee, USA, 2004. ACM Press.

[6] J. Moreira, S. Midkiff, M. Gupta, P. Artigas, M. Snir,
and R. Lawrence. Java programming for high
performance numerical computing. IBM Systems
Journal, 39(1):21–56, 2000.

[7] mpiJava. The mpiJava Home Page. Extracted from
http://www.hpjava.org/mpiJava.html at May 13th,
2005.

[8] PODi. Print on Demand Initiative. Extracted from
http://www.podi.org/ at May 13th, 2005.

[9] L. Purvis, S. Harrington, B. O’Sullivan, and E. C.
Freuder. Creating personalized documents: an
optimization approach. In ACM Symposium on
Document Engineering, pages 68–77, Grenoble,
France, 2003. ACM Press.

[10] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI: the complete reference. MIT Press,
1996.

[11] W3C. The World Wide Web Consortium. Extracted
from http://www.w3.org/ at May 13th, 2005.

[12] XSL-T. XSL-Transformations. Extracted from
http://www.w3.org/TR/1999/REC-xslt-19991116,
section References, at May 13th, 2005.

