The Power of Two Choices on Graphs: the Pair-Approximation is Accurate

Nicolas Gast

Inria

ACM MAMA Workshop, June 15, 2015, Portland, Oregon
Motivating scenario is to study incentives in bike-sharing systems

- 1200 stations
- 20k bikes

Map of Velib’ stations (Paris)
These systems can be viewed as closed queuing-networks.

\[\text{λ} \text{ take an object} \]

\[\text{Uniform routing} \]

if station full\[\text{return it} \]

\[\text{Use it for a while} \]

\[\text{Expo}(1/\mu) \]

\[N \text{ stations, capacity } C \text{ bikes per station.} \]
When the number of stations $N \to \infty$, we can show that the model boils down to a single (open) queue.

Moving bikes

- Arrival of bikes
- Departure of bikes
When the number of stations $N \to \infty$, we can show that the model boils down to a single (open) queue.

Moving bikes

$N\mathcal{Z}$

$i \mapsto i + 1$ at rate $\mu\mathcal{Z}$ \hspace{2cm} (i < K)

$i \mapsto i - 1$ at rate λ \hspace{2cm} (i > 0)
Can we improve performance?

- Even in a uniform scenario, the proportion of problematic stations (i.e. empty or full) is at least $1/(C + 1)$.

What if a user chooses to go to a less crowded station?
In this talk, I study a generalization of the two-choice models

- N identical servers
- Exponential service time

What happens when we restrict the choice to two neighbors?
Outline

1. The classical two-choice model
2. Construction of the pair approximation equations
3. Numerical validation: the pair approximation is accurate!
4. Remarks and open questions
Outline

1. The classical two-choice model
2. Construction of the pair approximation equations
3. Numerical validation: the pair approximation is accurate!
4. Remarks and open questions
Two-choice rule: each incoming job/bike is routed to the least loaded of two servers picked at random.
Two-choice rule: each incoming job/bike is routed to the least loaded of two servers picked at random.

Paradigm known as “the power of two choices”:

- Comes from balls and bills [Azar et al. 94]:
 - Throw n balls into n bins: what is the maximal number of balls in a bin?
 - $\log(n)$ if no choice
 - $\log(\log(n))$ is two choices.

- Drastic improvement of service time in server farm [Vvedenskaya 96, Mitzenmacher 96]
 - $P(\#\text{jobs} \geq i) \rho^i$ (no choice)
 - $P(\#\text{jobs} \geq i) = 2^{\lambda^{i+1}-1}$ (two choices)

- Interesting advances for non-exponential service times (Bramson 2000, Ramanan 2014)
We use mean-field to solve the two-choice equations

Arrival $N\lambda$

Pick two at random

Note: the rate of change of x_i has to be multiplied by x_i.

Nicolas Gast – 10 / 25
We use mean-field to solve the two-choice equations

Arrival $N\lambda$ → Pick two at random

Let x_j be the proportion of stations with j bikes.

$(i \mapsto i - 1)$ at rate 1

$(i \mapsto i + 1)$ at rate $\lambda(x_i + 2 \sum_{j=i+1}^{\infty} x_j)$

Note: the rate of change of x_i has to be multiplied by x_i.
With no geometry, we can solve the equation in close-form

\[x_i = \lambda^{2^i} - \lambda^{2^{i+1}} \]

For bike-sharing, choosing two stations at random, decreases the number of problematic stations from \(\frac{1}{C} \) to \(\sqrt{C \cdot 2^{-C/2}} \)
With no geometry, we can solve the equation in close-form

\[x_i = \lambda^{2i} - \lambda^{2i+1} \]

For bike-sharing, choosing two stations at random, decreases the number of problematic stations from \(1/C\) to \(\sqrt{C}2^{-C/2}\)
What if we add geometry?

Arrival $N\lambda$

Pick two neighbors at random

Mean field do not apply (geometry) :(.

- For balls and bins, the power of two-choice does not work (see [Kenthapadi et al. 06])
- Only numerical results?
Outline

1. The classical two-choice model
2. Construction of the pair approximation equations
3. Numerical validation: the pair approximation is accurate!
4. Remarks and open questions
I consider that stations are placed on a ring

Let y_{ij} be the proportion of (ordered) pairs having (i, j) jobs.
We track the proportion of (ordered) pairs \((i, j)\).

We focus on the transitions that modify \(i\) (equations are similar for \(j\)).

\((i, j) \mapsto (i - 1, j)\) at rate 1

\[\lambda \text{ if } i < j \]
\[\lambda/2 \text{ if } i = j \]
\[0 \text{ if } i > j \]

\(departure \)
We track the proportion of (ordered) pairs \((i, j)\).

We focus on the transitions that modify \(i\) (equations are similar for \(j\)).

\[
(i, j) \mapsto (i - 1, j) \quad \text{at rate } 1 \quad \text{departure}
\]

\[
(i, j) \mapsto (i + 1, j) \quad \text{at rate } \begin{cases}
\lambda & \text{if } i < j \\
\lambda/2 & \text{if } i = j \\
0 & \text{if } i > j
\end{cases} \quad \text{arrival on } (i, j)
\]
We track the proportion of (ordered) pairs \((i, j)\)

We focus on the transitions that modify \(i\) (equations are similar for \(j\)).

\[(i, j) \mapsto (i - 1, j)\] at rate 1

\[(i, j) \mapsto (i + 1, j)\] at rate \(\begin{cases} \lambda & \text{if } i < j \\ \lambda/2 & \text{if } i = j \\ 0 & \text{if } i > j \end{cases}\)

\[(i, j) \mapsto (i + 1, j)\] at rate \(\lambda \left(\frac{1}{2}z_{i,i,j} + \sum_{\ell=i+1}^{\infty} z_{\ell,i,j}\right) / y_{ij}\) arrival on \((\ell, i)\),

where \(z_{\ell,i,j}\) is the proportion of triplets.
We track the proportion of (ordered) pairs \((i, j)\)

We focus on the transitions that modify \(i\) (equations are similar for \(j\)).

\[
(i, j) \rightarrow (i - 1, j) \quad \text{at rate 1}
\]

\[
(i, j) \rightarrow (i + 1, j) \quad \text{at rate } \begin{cases}
\lambda & \text{if } i < j \\
\lambda/2 & \text{if } i = j \\
0 & \text{if } i > j
\end{cases}
\]

\[
(i, j) \rightarrow (i + 1, j) \quad \text{at rate } \lambda \left(\frac{1}{2} z_{i,i,j} + \sum_{\ell=i+1}^{\infty} z_{\ell,i,j} \right) / y_{ij} \quad \text{arrival on } (\ell, i),
\]

\[
\equiv: p_i
\]

where \(z_{\ell,i,j}\) is the proportion of triplets.

The pair approximation is \(z_{\ell,i,j} \approx y_{\ell,i} y_{i,j} / x_i\) or:

\[
p_i \approx \frac{Y_{ii}/2 + \sum_{k>i} Y_{ki}}{\sum_k Y_{ki}}.
\]
The pair approximation ODE is composed of four terms

\(Y_{ij} \) decreases at rate:

\[
\begin{align*}
\mu Y_{ij} & \quad (departure) \\
\lambda Y_{i,j} & \quad (arrival \ on \ (i, j) \ when \ (i < j)) \\
\lambda Y_{i,j}/2 & \quad (arrival \ on \ (i, i) \ when \ i = j) \\
\lambda p_i Y_{i,j} & \quad (arrival \ on \ neighbor)
\end{align*}
\]
The pair approximation ODE is composed of four terms

Y_{ij} decreases at rate:

\[
\begin{align*}
\mu Y_{ij} & \quad \text{(departure)} \\
\lambda Y_{i,j} \frac{2}{k} & \quad \text{(arrival on } (i, j) \text{ when } i < j) \\
\lambda Y_{i,j} / k & \quad \text{(arrival on } (i, i) \text{ when } i = j) \\
\lambda p_i Y_{i,j} \frac{k - 1}{k} & \quad \text{(arrival on neighbor)}
\end{align*}
\]

The equations can be generalized to graph with fixed degree $k \geq 2$:

(a) 2D torus \hspace{1cm} (b) Fixed degree $k = 3$
There is no (known) close-form for the fixed point...
...but we can simulate the ODE!

```python
for i in range(0,N):
    xi = sum(y[i]);
    if (xi>0):
        p[i] = (sum (y[i][i+1:N]) + y[i][i]/2) / xi;
for i in range(0,N):
    for j in range(0,N):
        if (i>0):
            derivative[i][j] += lam*p[i-1]*y[i-1][j] - mu*y[i][j];
            derivative[i-1][j] += -lam*p[i-1]*y[i-1][j] + mu*y[i][j];
        if (i<=j):
            derivative[i][j] += lam*y[i-1][j];
            derivative[i-1][j] += -lam*y[i-1][j];
        elif (i-1==j):
            derivative[i][j] += lam*y[i-1][j]/2;
            derivative[i-1][j] += -lam*y[i-1][j]/2;
        if (j>0):
            derivative[i][j] += lam*p[j-1]*y[i][j-1] - mu*y[i][j];
            derivative[i][j-1] += -lam*p[j-1]*y[i][j-1] + mu*y[i][j];
        if (j<=i):
            derivative[i][j] += lam*y[i][j-1];
            derivative[i][j-1] += -lam*y[i][j-1];
        elif (i==j-1):
            derivative[i][j] += lam*y[i][j-1]/2;
            derivative[i][j-1] += -lam*y[i][j-1]/2;
```
Outline

1. The classical two-choice model
2. Construction of the pair approximation equations
3. Numerical validation: the pair approximation is accurate!
4. Remarks and open questions
I compare numerically four values

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simu</td>
<td>Simulation</td>
</tr>
<tr>
<td>Pair-approx</td>
<td>Fixed point of the pair-approximation ODE</td>
</tr>
<tr>
<td></td>
<td>ODE of size 100×100.</td>
</tr>
<tr>
<td>No choice</td>
<td>Theory for the M/M/1 queue</td>
</tr>
<tr>
<td>$x_i = (1 - \lambda)\lambda^i$</td>
<td></td>
</tr>
<tr>
<td>Two-choice</td>
<td>Theory (without geometry)</td>
</tr>
<tr>
<td>$x_i = \lambda^{2^i} - \lambda^{2^{i+1}}$</td>
<td></td>
</tr>
</tbody>
</table>
The fixed point of the pair-approximation is close to the system’s steady-state (checked for $\lambda = .5$ to $\lambda = .99$)

$\lambda = 0.7$
The fixed point of the pair-approximation is close to the system’s steady-state (checked for $\lambda = 0.5$ to $\lambda = 0.99$)

$\lambda = 0.7$
The fixed point of the pair-approximation is close to the system’s steady-state (checked for $\lambda = 0.5$ to $\lambda = 0.99$)

$\lambda = 0.95$
The fixed point of the pair-approximation is close to the system’s steady-state (checked for $\lambda = .5$ to $\lambda = .99$)

$\lambda = 0.95$
The fixed point of the pair-approximation is close to the system’s steady-state (checked for $\lambda = 0.5$ to $\lambda = 0.99$)
The (steady-state) average queue length is very well approximated by pair-approximation.
Outline

1. The classical two-choice model

2. Construction of the pair approximation equations

3. Numerical validation: the pair approximation is accurate!

4. Remarks and open questions
Recap

I study a spatial version of the two-choice model.

- Motivation comes from bike-sharing systems.

- Without geometry, the problem can be solved by using a mean-field approximation (one-choice: $\sum_{j \geq i} x_j = \lambda^i$, two-choice, $\sum_{j \geq i} x_j = \lambda^{2i-1}$).

- Pair-approximation:
 - How to construct the equations
 - Numerically, they are very accurate
Open questions / Future work

Why does it work so well? ?
(in some other cases, e.g., SIR, it does not)

Is the pair approximation exact? No

For a torus, is the decrease doubly-exponential? No?
(recall: two-choice without geometry: \(\sum_{j \geq i} x_j = \lambda^{2^i-1} \))

Can we solve analytically the PA equations (or bound?) ?

Can we add heterogeneity? seems OK

Non-exponential service time? (maybe later)