
Multilevel Hierarchical Matrix Multiplication on Clusters

Sascha Hunold
Department of Mathematics,

Physics and Computer
Science

University of Bayreuth,
Germany

Thomas Rauber
Department of Mathematics,

Physics and Computer
Science

University of Bayreuth,
Germany

Gudula Rünger
Department of Computer

Science
Chemnitz University of
Technology, Germany

ABSTRACT
Matrix-matrix multiplication is one of the core computa-
tions in many algorithms from scientific computing or nu-
merical analysis and many efficient realizations have been
invented over the years, including many parallel ones. The
current trend to use clusters of PCs or SMPs for scientific
computing suggests to revisit matrix-matrix multiplication
and investigate efficiency and scalability of different versions
on clusters. In this paper we present parallel algorithms for
matrix-matrix multiplication which are built up from several
algorithms in a multilevel structure. Each level is associated
with a hierarchical partition of the set of available processors
into disjoint subsets so that deeper levels of the algorithm
employ smaller groups of processors in parallel. We per-
form runtime experiments on several parallel platforms and
show that multilevel algorithms can lead to significant per-
formance gains compared with state-of-the-art methods.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; G.1.0 [Numerical Analy-
sis]: General—Parallel algorithms

General Terms
Algorithms, Performance

Keywords
Strassen’s algorithm, matrix multiplication, multiprocessor
tasks, task parallelism

1. INTRODUCTION
Matrix-matrix multiplication is one of the core computa-

tions in many algorithms from scientific computing or nu-
merical analysis. On a single processor ATLAS [12] or
PHiPAC [1] create very efficient implementations by adjust-
ing the computation order to the specific memory hierarchy
and its properties. Parallel approaches include many meth-
ods based on decomposition like Cannon’s algorithm, or the

c©ACM, 2004. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version has been published in the Proceedings of the ICS’04
Conference. http://doi.acm.org/10.1145/1006209.1006230
ICS’04, June 26–July 1, 2004, Saint-Malo, France.
Copyright 2004 ACM 1-58113-839-3/04/0006 ...$5.00.

algorithm of Fox. Efficient implementation variants of the
latter are SUMMA or PUMMA, see [11] for more references.
Matrix-matrix multiplication by Strassen or Strassen-Wino-
grad benefits from a reduced number of operations but re-
quire a special schedule for a parallel implementation. Sev-
eral parallel implementations have been proposed in [3, 6,
8].

The current trend to use clusters of PCs or SMPs for
scientific computing suggests to revisit matrix-matrix mul-
tiplication and to investigate efficiency and scalability of
different versions on clusters. In this context mixed pro-
gramming models like mixed task and data parallelism are
important since efficiency and scalability can be improved
by using multiprocessor tasks (M-tasks). Task parallel im-
plementations or mixed matrix-matrix multiplications have
already been proposed in literature. One possibility of par-
allelizing Strassen’s algorithm is to distribute the seven in-
termediate results onto a group of processors of size 7i,
preferably in a ring or torus configuration [2, 4]. Other
approaches include to mix the common Fox BMR method
(broadcast multiply roll) with Strassen’s algorithm [8]. An-
other mixed parallel algorithm that exploits the complexity
reduction of Strassen’s algorithm on the top level and com-
bines it with the performance of ScaLAPACK on the bottom
layer is given in [3].

In this paper we consider matrix-matrix multiplication on
clusters of PCs or SMPs and investigate the performance
of several parallel hierarchical algorithms and their real-
izations. In particular, we investigate new multilevel algo-
rithms with different building blocks, including well-known
parallel algorithms like Strassen multiplication as well as
new algorithms that have been designed to exploit the mem-
ory hierarchy of recent microprocessors by an increased lo-
cality of memory references. We show that a suitable com-
bination of the building blocks can lead to significant per-
formance improvements compared with an execution of the
algorithms in isolation. The building blocks are expressed
as M-tasks to exploit mixed task and data parallelism. The
combination of the M-tasks is performed with the Tlib li-
brary [9].

The composed methods use the Strassen algorithm on the
upper level to create coarse-grained M-tasks that are as-
signed to disjoint processor groups. For the intermediate
level efficient variants like PDGEMM from ScaLAPACK and
a new hierarchical decomposition-based algorithm tpMM
are used. For the lowest level we use BLAS or ATLAS for
the multiplication of smaller blocks on single processors. It
is a crucial point to choose a good schedule for Strassen and

to pick the right cutoff of the hierarchical decomposition for
the coupling of the different levels. Depending on the cluster
platform or parallel machine different strategies lead to the
most efficient implementation.

The rest of the paper is organized as follows. Section 2
resumes the matrix multiplication algorithms used as build-
ing blocks. Section 3 describes different combinations of the
building blocks to multilevel hierarchical methods. Section
4 gives some runtime estimations and Section 5 shows ex-
perimental results on different clusters. Section 6 concludes
the paper.

2. BUILDING BLOCKS
In this section, we give a short overview of the algorithms

that are used as building blocks for multilevel algorithms.

2.1 Strassen’s Algorithm
Strassens algorithm is used as a building block for the top

level of the multilevel methods. The algorithm is discussed
intensively in the literature and we only give a short sum-
mary of the method for notational reasons [5, 10]. If the
matrices A and B are of dimension Rn×n with an even n,
the matrix product C = A×B can be expressed as:„

C11 C12

C21 C22

«
=

„
A11 A12

A21 A22

« „
B11 B12

B21 B22

«
(1)

where C11, C12, C21, and C22 are determined by:

Q1 =
`
A11 + A22

´`
B11 + B22

´
Q2 =

`
A21 + A22

´
B11

Q3 = A11

`
B12 −B22

´
Q4 = A22

`
B21 −B11

´
Q5 =

`
A11 + A12

´
B22

Q6 =
`
A21 −A11

´`
B11 + B12

´
Q7 =

`
A12 −A22

´`
B21 + B22

´
(2)

and

C11 = Q1 + Q4 −Q5 + Q7

C12 = Q3 + Q5

C21 = Q2 + Q4

C22 = Q1 + Q3 −Q2 + Q6

(3)

This scheme reduces the time complexity of a matrix-matrix
multiplication from O(n3) to O(n2.8), if the algorithm is
applied fully recursively. Another approach is the so-called
Strassen-Winograd variant of this algorithm [5]. The method
by Winograd minimizes the required matrix additions in
equation 2 which reduces the overall complexity.

2.2 Task parallel matrix multiplication (tpMM)
In the following, we give a short description of tpMM.

A more detailed description and an evaluation of tpMM in
isolation is given in [7]. tpMM is designed to work with
p = 2i processors for arbitrary i ∈ N. The processors are
hierarchically grouped into clusters of size 2l−1, 1 ≤ l ≤
log p + 1. This results in a group hierarchy with log p +
1 levels in which the leaf groups at level 1 contain single
processors. The groups are successively combined with one
of their neighboring groups to form larger and larger groups
until the root group contains all processors.

The input matrices A and B are of size m× n and n× k
where p divides m and k without remainder; the result ma-
trix C is of dimension m × k. The initial data distribution

is a row block-wise distribution for matrix A and a column
block-wise distribution for matrix B, so that each processor
q stores a block of s = m/p rows of A and s′ = k/p columns
of B. In addition, the initial column blocks of B are vir-
tually grouped into larger column blocks according to the
hierarchical clustering of the processors into groups.

The algorithm tpMM computes the result matrix C in
log p + 1 steps. In step l, 1 ≤ l ≤ log p + 1, the 2log p−l+1

processor groups Glk, 1 ≤ k ≤ p/2l−1, work in parallel.
Processor group Glk computes the diagonal block Clk of C,
which contains the (s · 2l−1)2 entries cij with 2l−1 · (k− 1) ·
s + 1 ≤ i, j ≤ 2l−1 · k · s. In summary, each processor q
is responsible for the computation of s rows of the result
matrix C.

The computation of a diagonal block Clk by the processor
group Glk is performed in parallel by all processors in Glk.
If Glk consists of a single processor q, this processor com-
putes one initial diagonal block Clk by using its local entries
of A and B. Otherwise, the computation of the two diag-
onal sub-blocks Cl−1,2k−1 and Cl−1,2k of Clk have already
been completed in the preceding step by the two subgroups
Gl−1,2k−1 and Gl−1,2k of Glk and the computation of Clk is
completed by computing the remaining sub-blocks C′

l−1,2k−1

and C′
l−1,2k.

To do this, the column blocks Bl−1,2k−1 and Bl−1,2k of
matrix B that are needed for the computation of C′

l−1,2k−1

and C′
l−1,2k, respectively, are first exchanged between the

processors of the corresponding groups. This can be done in
parallel since the processors of the group can be grouped into
pairs which exchange their data. After the transfer opera-
tions are completed, the sub-groups Gl−1,2k−1 and Gl−1,2k

of Glk compute the sub-blocks C′
l−1,2k−1 and C′

l−1,2k, re-
spectively, in parallel by recursive calls.

At each point in time, each local memory needs to store
at most s rows of A and s′ columns of B. Only columns of
B are exchanged between the local memories, see Figure 1
for an illustration.

P

P

P

P

0

1

2

3

A

P P P P1 2 30

B

1st exchange

3rd exchange

2nd exchange

Figure 1: Communication pattern of tpMM.

2.3 Ring method
The Ring method is based on the same initial partitioning

of the matrices A and B among the processors as algorithm
tpMM, but it does not use the hierarchical organization.
This has the advantage that an arbitrary number p of pro-
cessors can be used. Similar to tpMM, only column blocks of
B are exchanged between the processors, here in a ring-like
way, see Figure 2. For the computation of C, processor Pi,
i = 0, . . . , p− 1, uses its row block of A and its current col-
umn block of B to compute one sub-block of C. After this

computation, Pi receives a new block of B from P(i−1)%p

and sends its current block of B to P(i+1)%p. Pi can then
compute the next block of C. After p−1 steps, the complete
matrix C has been computed in a distributed way.

P

P

P

P

0

1

2

3

A

P P P P1 2 30

B

Figure 2: Communication pattern of the ring
method.

2.4 PDGEMM
PDGEMM is a function declaration from the PBLAS set

that was developed as a part of the ScaLAPACK project.
There exist numerous implementations of this function,
vendor-specific or free realizations as in ScaLAPACK. The
algorithm that lies behind this function interface differs in
most libraries. PDGEMM is available on almost all parallel
systems and has become the de-facto standard for fast par-
allel matrix-matrix multiplication. We use this algorithm as
a building block for multilevel algorithms to be considered
in the next section.

3. MULTILEVEL COMBINATIONS
In this section, we describe the multilevel combinations of

the building blocks with up to three levels. The top level
may consist of one or more recursions of the Strassen algo-
rithm accompanied by a recursive splitting of processors into
disjoint groups. The intermediate level is realized by one of
the algorithms tpMM, PDGEMM or Ring. And the lower
level picks an appropriate one-processor implementation of
matrix-matrix multiplication to exploit the processor most
efficiently. For parallel subtasks (i.e. the processor group
contains more than one processor) PDGEMM, tpMM or the
Ring method are used. Local matrix updates are performed
by an optimized BLAS implementation, either ATLAS on
Linux Clusters or ESSL on the IBM Regatta p690. The
resulting hierarchy of algorithms is shown in Fig. 3.

ringpdgemm

Strassen

tpMM

low level

ESSL ATLAS

BLAS

dgemm

Figure 3: Computational hierarchy.

3.1 Multiprocessor-tasks for Strassen’s algo-
rithm

For the definition of multiprocessor tasks we use a result-
oriented view on Strassen’s algorithm. According to for-
mula (3), four concurrent tasks are formed where each task
is responsible to complete one quarter Cij , i, j = 1, 2, of the
result matrix C. The computations of the sub-problems Qi,
i = 1, . . . , 7, are assigned to these tasks according to two
allocations schemes:

scheme (1) Each task TCij performs two sub-computa-
tions Qi and all tasks are assigned with an equal number of
processors.

scheme (2) Three tasks compute two sub-problems and
one task is responsible for only one intermediate result.
Therefore, the available processors are distributed propor-
tionally according to each task’s amount of work, i.e. a
task that has to compute two sub-results receives 2/7 of the
available processors.

Both cases entail positive and negative impacts on the
workload and the communication overhead.

Advantages of scheme (1). To balance the workload a re-
dundant computation is introduced. It leads to an increas-
ing overall complexity of the algorithm. But there are also
improvements. Since all tasks in one recursion level are pro-
cessed by the same number of processors the communication
pattern is kept simple. Moreover replicated tasks also lead
to less communication because sub-results already reside on
the right task (if carefully chosen).

Advantages of scheme (2). The second case avoids repli-
cated tasks and so it can take full advantage of Strassen’s
algorithm reducing the number of multiplications required.
On the other hand an unequal number of processors per
task leads to more communication needed to exchange data
between tasks.

For the parallel processing of one recursion step of
Strassen’s algorithm we divide the set of processors into four
disjoint groups and assign the tasks TCij to those groups.
We assume that the processors assigned to task TCij also
store the sub-matrices Aij and Bij ,. A dependence analysis
has shown that a minimum communication overhead can be
achieved by the specific allocation schemes in Table 1 for
scheme (1) and Table 2 for scheme (2), respectively.

Table 1: Composition of tasks TCij for Scheme (1).

TC11 TC12 TC21 TC22

Q1 Q3 Q4 Q1

Q7 Q5 Q2 Q6

Table 2: Composition of tasks TCij for Scheme (2).

TC11 TC12 TC21 TC22

Q1 Q3 Q4 Q6

Q7 Q5 Q2

A more detailed description of the task structure is pre-
sented in Table 3 for scheme (1) and Table 4 for scheme (2).
The replicated assignment of sub-task Q1 to task TC22 in Ta-
ble 3 for scheme (1) minimizes the required data exchange
during the execution of the algorithm.

Table 3: Internal task structure of the multilevel version of Strassen’s algorithm for Scheme (1).
Task TC11 Task TC12 Task TC21 Task TC22

Send B11 Recv B22 Recv B11 Send B22

Recv B22 Send B22 Send B11 Recv B11

Send A11 Recv A11 Recv A22 Send A22

Recv A22 Send A11 Send A22 Recv A11

Recv A12 Send A12 Send A21 Recv A21

Recv B21 Send B12 Send B21 Recv B12

T1 = B11 + B22 T1 = B12 −B22 T1 = B21 −B11 T1 = B11 + B22

T2 = A11 + A22 Strassen(Q3, A11, T1) Strassen(Q4, A22, T1) T2 = A11 + A22

Strassen(Q1, T2, T1) T1 = A11 + A12 T1 = A21 + A22 Strassen(Q1, T2, T1)
T1 = A12 −A22 Strassen(Q5, T1, B22) Strassen(Q2, T1, B11) T1 = A21 −A11

T2 = B21 + B22 T2 = B11 + B12

Strassen(Q7, T1, T2) Strassen(Q6, T1, T2)
Recv Q4 Send Q3 Send Q4 Recv Q3

Recv Q5 Send Q5 Send Q2 Recv Q2

T1 = Q1 + Q7 C12 = Q3 + Q5 C21 = Q3 + Q5 T1 = Q1 + Q6

T1 = T1 + Q4 T1 = T1 + Q3

C11 = T1 −Q5 C22 = T1 −Q2

Table 4: Internal task structure of the multilevel version of Strassen’s algorithm for Scheme (2).
Task TC11 Task TC12 Task TC21 Task TC22

Send A11 Recv A11 Recv A22 Send A22

Recv A22 Send A11 Send A22 Recv A11

Send B11 Recv B22 Recv B11 Send B22

Recv A12 Send A12 Send B11 Recv B11

Recv B21 Send B12 Send B21 Recv B12

Recv B22 Send B22 Send A21 Recv A21

T1 = A11 + A22 T1 = B12 −B22 T1 = B21 −B11 T1 = A21 −A11

T2 = B11 + B22 Strassen(Q3, A11, T1) Strassen(Q4, A22, T1) T2 = B11 + B12

Strassen(Q1, T2, T1) T1 = A11 + A12 T1 = A21 + A22 Strassen(Q6, T1, T2)
T1 = A12 −A22 Strassen(Q5, T1, B22) Strassen(Q2, T1, B11)
T2 = B21 + B22

Strassen(Q7, T1, T2)
Send Q1 Recv Q1

Recv Q4 Send Q3 Send Q4 Recv Q3

Recv Q5 Send Q5 Send Q2 Recv Q2

T1 = Q1 + Q7 C12 = Q3 + Q5 C21 = Q3 + Q5 T1 = Q1 + Q6

T1 = T1 + Q4 T1 = T1 + Q3

C11 = T1 −Q5 C22 = T1 −Q2

The subdivision of Strassens algorithm represents the hi-
erarchical top-level. As one can see in Table 3 and Table 4 a
task parallel execution scheme of Strassen’s algorithm inten-
sifies the number of communications. To analyze the impact
of different cutoff levels of Strassen, that is, the level when
the recursion of Strassen is stopped and another algorithm
takes over to solve the sub-problem, we propose well-suited
algorithms at lower levels.

The next subsection describes the algorithms Strassen-
tpMM, Strassen-PDGEMM, and Strassen-Ring. Due to the
algorithmic structure, Strassen-tpMM and Strassen-PDGEMM
use the scheme from Table 1. Strassen-Ring uses the scheme
from Table 2.

3.2 Combining Strassen and tpMM
For the combination of Strassen with tpMM, we assume

that the number p of processors can be represented as p =
4i2j for i ≥ 1 and j ≥ 0 where l = 4i reflects the fact that
four new processor groups are built at each recursion level

of the Strassen algorithm and 2j processors are used for the
execution of tpMM after the Strassen recursion has stopped.
The input matrices A and B have size n × n with n ≥ p.
For simplicity, we assume n = l · 2k.

P0
P1
P2
P3

P4
P5
P6
P7
P12
P13
P14
P15

P
P
P
P

8
9

10
11

P

P PP P P P P P

P8 9 P10 P11 P12 P13 P14 P15

0 1 2 3 4 5 6 7

Figure 4: Mapping of processors to matrices A and
B for Strassen tpmm using 16 processors

The processors are arranged in two virtual rectangular
grids, one for matrix A and one for matrix B. The grids are
chosen such that after the Strassen recursion has stopped,

matrix A is distributed row-blockwise and B is distributed
column-blockwise, as it is required by tpMM. The processor
grid for B with r rows and c columns with r · c = p is chosen
such that r ≤ c and (r, c) = min

(r,c)
{c − r|r · c = p}, i.e., a

quadratic layout is preferred. The processor grid for A is
defined similarly with r′ and c′ and the roles of r′ and c′ ex-
changed. The processor grid for A is also used for the result
matrix C. Altogether, each processor stores n

r′ × n
c′ elements

of A and n
r
× n

c
elements of B, see Figure 4. The task par-

allel implementation uses a result-orientated decomposition
into four sub-tasks TCij according to Table 1.

The implementation Strassen tpmm calls Strassen until
each sub-group contains four or less processors. A group
size of four processors is chosen because experimental results
have shown that tpMM always performs well on 4 proces-
sors. tpMM is built on top of BLAS, hence local matrix
updates are performed by DGEMM included in the BLAS
routines. We use the ATLAS implementation of DGEMM
on Linux clusters (Dual Xeon 3 GHz Cluster (BT), Dual
Xeon 2 GHz Cluster (C)) and on IBM Regatta p690 the
library ESSL provided by IBM.

3.3 Combining Strassen and PDGEMM
For the number p of processors, we assume p = 2d ·4i with

i ≥ 1 and d ∈ {0, 1}. The matrices A, B and C have size
n × n. The processors are mapped row-blockwise onto the
blocks of A, B and C so that the blocks have size n

r
× n

c
.

Figure 5 shows an example of a virtual grid corresponding to
a first-level morton ordering due to the algorithmic structure
of Strassen pdgemm.

logical processor mapping
intitial processor mapping after split by colors

P

P

4

P

PP

P4 5

1 2P

P6 P7

P3

P

P0

P

8

P12

P9

P13

10P 11

P14 15

P

P3

1 P

P6 7

5

8P

P

P0

2

9

P10 P

P

11

P12 P13

P14 P15

Figure 5: Mapping of 16 processors to sub-blocks of
matrices A, B and C in order to perform one level
of Strassen in Strassen pdgemm.

The top-level Strassen method is called as often as spec-
ified by the user. The maximum number of recursions is
log4 p. When the Strassen recursion stops, PDGEMM con-
tinues working on the sub-problem if there is more than one
processor in each group. If the group size is one, DGEMM
is called directly.

3.4 Combining Strassen and Ring
The combination of Strassen and Ring is derived from the

Strassen tpmm approach. On the bottom level both algo-
rithms use a similar computational structure, but a different
communication scheme. The unbalanced work distribution
resulting from the scheme in Table 2 requires an uneven dis-
tribution of matrix B, see Figure 6. Although the algorithm
can be executed for an arbitrary number of processors, at
least 7 processors should be used for the algorithm to be
efficient.

P0 P P P P P P P

P P P P

1 2 3 4 5 6 7

8 9 P10 P11 12 13

Figure 6: Mapping of 14 processors to sub-blocks of
B for Strassen ring.

4. THEORETICAL EVALUATION
In this section, we evaluate the costs of Strassen in terms

of time complexity. We consider the complexity functions
for scheme (1) and scheme (2) separately. The value of lc,
the number of recursions of the top level Strassen, is

lc ≤

(
blog4 pc, for scheme (1)

blog7 pc, for scheme (2)

4.1 Communication costs
The communication costs are evaluated using the formula

α + m · β for single transfer operations where α is the net-
work latency, β corresponds to the inverse of the network
bandwidth and m is the message length.

4.1.1 Scheme (1)
The time spent on communication operations in this case

can be determined from the structure of task TC11 (Table 3).
Eight communications are required to distribute the subma-
trices at the start of the task and to receive the necessary
subresults at the end. A communication can be performed
perfectly in parallel due to the group structure’s one-to-one
mapping of processors of different groups. Hence,

TComm(n, p) = lc · 8 ·
`
α +

n2

p
β

´
(4)

4.1.2 Scheme (2)
The bottleneck of the task parallel version of Strassen-ring

is the use of intergroup communications, e.g. for distributing
the submatrices Aij , Bij and the exchange of Qij and Cij .
Since in each step the main group is split into 4 subgroups
according to scheme (2), see Section 3.1, 3· 2

7
of the available

processors are assigned to three tasks and the rest of 1
7

of
the processors is assigned to task TC22 . In this case, the
number of matrix elements assigned to processors that need
to exchange submatrices might differ, e.g. processors from
task TC11 hold less elements than processors executing task
TC22 . Thus, communication between subgroups gets more
irregular and may lead to serialization. We examine the
worst case behavior.

After the first split of p processors, three of the subgroups
(si, i = 0 . . . 3) contain—

2

7
· p

�
≤ psi ≤

—
2

7
· p

�
+ 1

processors and the fourth subgroup contains d p
7
e processors.

To gain information about the maximum degree of serializa-
tion it is sufficient to consider the smallest and largest num-
ber of processors of any group, which are d p

7
e and b 2

7
·pc+1,

respectively. Since each processor of the smaller group re-
ceives a message from corresponding processors of the larger
group, the estimation

b 2
7
· pc+ 1

d p
7
e ≤ 2 · p + 7

p
= 2 +

7

p
≤ 3 , for p ≥ 7 (5)

shows that the maximum degree of serialization is 3, i.e. for
one intergroup communication a processor from the largest
group sends at most 3 messages to members from the small-
est group. In practice, this factor is usually smaller than 2
when arranged with non-blocking calls to MPI Isend and
MPI Irecv.

For scheme (2) there is also one additional communication
in every recursion level since the redundant computation of
Q1 is avoided and so, the task TC22 has to receive 3 sub-
results Q1, Q2 and Q3. Therefore, the task TC22 dominates
the communication time. According to that, the time com-
plexity for communication in this case is

TComm(n, p) ≤ 9 · lc · 3 ·
`
α +

n2

p
β

´
(6)

4.2 Cost models
With the overview about the time that is consumed by

data transfer operations we can now examine the general
complexity of the various versions of Strassen. Since the
addition and the multiplication of two doubles are in general
not performed in the same number of CPU cycles we will
distinguish them as τa and τm respectively.

Cost functions for algorithms that follow scheme (1).
A full recursion in the task parallel sense might occur in the
case of Strassen pdgemm, when there are p = 4i, i ≥ 1 pro-
cessors available. After splitting a group that contains ex-
actly 4 processors the program of Strassen pdgemm applies
directly the DGEMM routine for the local matrix-matrix
multiplication. In this configuration a processor holds ma-

trix blocks of size n2

p
. The overall complexity of Strassen

that executes a full recursion (fr) for scheme (1) is:

Strassen 1 fr(n, p) = TComm(n, p) + 7lc ·
`n2

p
τa

´
+ 2lc n3

p
√

p
·

`
τm + τa

´
Strassen takes advantage of other parallel algorithms after
performing a few recursion steps. At the cutoff level lc other
algorithms such as tpMM and PDGEMM complete the com-
putation. Hence, the time for these algorithm is composed
of the time spent in the upper level of Strassen and the lower
level algorithms. The overall complexity for scheme (1) is

Strassen 1(n, p) = TComm(n, p) + 7 · lc ·
`n2

p
τa

´
+ 2lc

˘
tpMM(n′, p′), PDGEMM(n′, p′)

¯
where n′ =

n

2lc
and p′ =

p

4lc
.

(7)

Complexity functions for tpMM and PDGEMM will com-

plete equation 7. In tpMM all processors own a block of n2

p
elements of the n × n matrices A, B and C. At the start
tpMM performs a local multiplication and exchanges data
with the corresponding group, performs another multipli-
cation and exchanges data. Together, tpMM needs p local

updates and 2(p − 1) communications (send block + recv
block).

tpMM(n, p) = 2(p− 1)
`
α +

n2

p
β

´
+

n3

p

`
τm + τa

´
PDGEMM uses communication schemes of higher complex-
ity such as broadcasts. That is why we need a few more
variables for modeling the algorithm. We assume that the
processor grid has size r× q, where r denotes the number of
rows and q the number of columns. In addition the network
parameters α and β introduced above are further to differ-
entiate. The values αr

q and βr
q (αq

r and βq
r) depend on the

grid topology and communication pattern in a row (column).
For the local multiplications (implemented with DGEMM)
we use time(DGEMM) as done in [3]. The parameter nb
denotes the blocking factor.

PDGEMM(n, p) = time
`
DGEMM, dn

p
e, dn

p
e, n

´
+

`
αr

q + αq
r

´
n2 +

`
βr

q + βq
r

´
· d n

nb
e

Cost functions for Strassen and Ring. If the algorithm is
not performed with exactly four processors a full recursion
as we have discussed in the last paragraph is not going to
happen. Due to the fractioning of the number of processors
either by 2

7
or 1

7
the group size depends on the assignment

strategy of left over processors. Therefore, we present an
upper bound:

Strassen ring(n, p) ≤ TComm(n, p)

+ max
˘
lc ·

` n2

4lc
τa

´
+ lc ·

n3

8lc

`
τm + τa

´
,

lc ·
` n2

4lc 2
7lc

p
· τa

´
+ 2 · lc · ring

„
n

2lc
,

2

7lc
p

«¯
and ring(n, p) = O (tpmm(n, p)) .

5. EXPERIMENTAL EVALUATION
Performance tests for the algorithm from Section 3 have

been were carried out on three platforms:

1. an IBM Regatta p690 cluster at the NIC Jülich,

2. a 48 Dual 3 GHz Xeon Linux cluster at the University
of Bayreuth (BT), Gigbabit-Ethernet, 1 GB RAM per
node,

3. and an SCI interconnected Linux cluster at the Techni-
cal University of Chemnitz (C), 16 nodes, Xeon 2 GHz.

The right choice of the low level BLAS implementation
plays an important role for obtaining high performance.
Since there is no hand-optimized DGEMM for Linux systems
we use the automatically adjusted ATLAS routine (ATLAS
version 3.6.0). On the IBM Regatta p690 we use the ESSL
function implementing DGEMM which is provided by IBM.

As MPI library we use MPICH (1.2.5) on the Dual Xeon
3 GHz Cluster (BT) and the SCI specific Scali MPI on the
Dual Xeon 2 GHz Cluster (C). The IBM Regatta comes with
its own IBM implementation of MPI.

We present the following abbreviations of the different
program versions that are used in the diagrams :

strassen pdgemm refers to the top level Strassen that
calls PDGEMM at the cutoff level. The number behind the

suffix r specifies how many levels of recursions of Strassen’s
algorithm have been performed in parallel.

strassen tpmm denotes Strassen’s algorithm that calls
tpMM when there are less than 4 processors in one processor
group.

strassen ring denotes the algorithm that implements
Scheme (2). It starts with Strassen and calls Ring after
log7 p levels.

strassen refers to the same algorithm as strassen pdgemm.
However PDGEMM is never called, because the full recur-
sion leads to a direct call of DGEMM. Again, the number
behind r denotes the number of recursions.

PDGEMM stands for the ScaLAPACK routine.
Figure 7 and Figure 8 show the test results for the Dual

Xeon 3 GHz Cluster (BT) and the Dual Xeon 2 GHz Clus-
ter (C), respectively. The results for both Linux clusters
are very similar despite their different interconnection net-
works and different MPI implementations. The combina-
tions of Strassen and tpmm as well as Strassen and Ring
show the best results for 16 and 32 processors. In case of
16 processors, a full task parallel recursion of Strassen from
Scheme (1) is as fast as the combinations of Strassen with
tpMM and Ring. PDGEMM does not achieve such a high
performance on the Linux clusters. As a result, the com-
bination of Strassen and PDGEMM can also not compete
with the other algorithms.

Figure 9 shows the MFLOPS/node measured on IBM Re-
gatta p690. PDGEMM is the fastest algorithm for a smaller
number of matrix elements (n ≤ 6144). When the matrix
dimension increases the combination of Strassen with Ring
or tpMM achieves the best results. An exception can be
observed for dimension 8192. For this size, the underly-
ing implementation of DGEMM limits the performance of
the combined algorithms: For dimension 8192, the data de-
composition of Strassen combined with tpMM leads to sub-
matrices A, B and C of size 2048 × 1024 (p = 32) and
2048 × 512 (p = 64). For these sizes, DGEMM exhibits a
significant difference in performance:

m n k MFLOPS

1024 2048 1024 ∼ 1959
512 2048 512 ∼ 1827

1024 1024 1024 ∼ 4068

In each recursion of Scheme (2) the processor groups are
partitioned into 7 subgroups. If the number of processors is
not a multiple of 7, some processors remain unassigned. As-
signing them to any sub-group helps to make this group per-
form better but leads to unequal workload. In Figure 11 we
examine the runtime of Strassen ring with a varying num-
ber of processor pairs (7,8), (14,16), and (28,32). Except
for a matrix dimension of 9216 a multiple of 7 processors
results always in a larger MFLOPS rate. Thus, the experi-
mental results show that using a number of processors that
is a multiple of 7 leads to better parallel efficiency. A not-
icable performance loss can be observed for 7 processors at
dimension 9216. In case of 7 processors, one processor has
to store the entire submatrix of size 4608× 4608. Addition-
ally, this processor has to perform one recusion level where
it has to hold 4 more submatrices of the same size. Thus,
this processor makes use of about 1.1 GB of main memory
which leads to swapping and as a result to less perfomance.

To gain information about the internal execution pattern
of the algorithms the MPE library is used to trace MPI func-

tion calls and jumpshot-4 is used to display the recorded
data. Figure 10 shows the profile of PDGEMM on the Dual
Xeon 3 GHz Cluster (BT). The profile of the complete run-
time is given on the lefthand side. The lines between the
first 4 rows are specific for jumpshot and represent a col-
lection of arrows. The computation structure of PDGEMM
is so fine-grained that we show a small portion of the dia-
gram on the right which covers the pattern in the first 10
seconds. Darker portions in the right profile denote MPI
communication calls, like MPI Send or MPI Recv.

The total time spent in each function can be retrieved
using the histogram of the algorithm which is given in Fig-
ure 12. The darker bars on the left denote the communica-
tion time. Most of the time is consumed by DGEMM which
is represented by the collection of tiny bars on the right.

The profile of Strassen tpmm shows a different pattern,
see Figure 13. The computation and communication struc-
ture is coarse-grained. The small arrows on the left show the
initial communication phase of Strassen, see Table 3. The
brighter bars in the center represent the local matrix multi-
plications and the darker rectangles denote communication.
It can be observed that groups 1, 3, and 4 wait until group
2 (5th-8th processor from the top) is done. Especially pro-
cessor 5 determines the overall performance. Since we have
used a non-dedicated system for recording the profiles, the
program might have to share one node with another user,
which has been processor 5 for the tests presented.

The trace and the histogram of Strassen ring are pre-
sented in Figure 14 and show very similar patterns as the
profile of Strassen tpmm. Hence, we only highlight the dif-
ferences. Firstly, this trace uses only 14 processors in order
to achieve a good workload balance. The trace shows the
grouping of processors according to Scheme (2) into groups
of processors of different sizes and also shows that the small-
est group (2 processors on the bottom) is assigned to one
subtask only.

Figure 15 pictures the communication and computation
pattern of Strassen pdgemm. The distribution of submatri-
ces at the start of Strassen can be recognized in the first
10 sec. The thicker lines again represent preview arrows as
explained above and thinner lines or bundles of arrows, as
between processor 1 and 2, denote the transfer of messages.
In the middle one can recognize the fine-grained structure
of PDGEMM which dominates the overall execution time.

The traces show that the performance loss of PDGEMM
on Xeon-Linux clusters is caused by slow local updates. Our
experiments show that PDGEMM chooses an internal block
size that is not large enough to reach the peak performance
of the Xeon processor.

6. CONCLUSIONS
In this paper, we have shown that a suitable combina-

tion of different algorithms that are used as building blocks
can be used to obtain multilevel algorithms which lead to
significant performance improvements compared to an ex-
ecution of the algorithms in isolation. In particular, it is
possible to obtain algorithms that are nearly twice as fast
on some cluster platforms as the original PDGEMM method
from ScaLAPACK. An important point for the construction
of the multilevel algorithms lies in the issue, which build-
ing blocks should be combined in which order and at which
group size the building blocks are assembled. The evalua-
tion shows that a combination of Strassen’s method at the

2048 4096 5120 6144 7168 8192 9216 10240
0

500

1000

1500

2000

matrix size

m
flo

ps
 (p

er
 p

ro
ce

ss
or

)

pdgemm 16 procs
strassen_pdgemm_r1 16 procs
strassen_r2 16 procs
strassen_ring 16 procs
strassen_tpmm 16 procs

2048 4096 5120 6144 7168 8192 9216 10240
0

200

400

600

800

1000

matrix size

m
flo

ps
 (p

er
 p

ro
ce

ss
or

)

pdgemm 32 procs
strassen_pdgemm_r1 32 procs
strassen_pdgemm_r2 32 procs
strassen_ring 32 procs
strassen_tpmm 32 procs

Figure 7: Experimental results on Dual Xeon 3 GHz Cluster (BT).

1024 2048 3072 4096 5120 6144 7168 8192 9216
0

500

1000

1500

2000

matrix size

m
flo

ps
 (p

er
 p

ro
ce

ss
or

)

pdgemm 16 procs
strassen_pdgemm_r1 16 procs
strassen_r2 16 procs
strassen_ring 16 procs
strassen_tpmm 16 procs

1024 2048 3072 4096 5120 6144 7168 8192 9216
0

200

400

600

800

1000

1200

1400

1600

1800

matrix size

m
flo

ps
 (p

er
 p

ro
ce

ss
or

)

pdgemm 32 procs
strassen_pdgemm_r1 32 procs
strassen_pdgemm_r2 32 procs
strassen_ring 32 procs
strassen_tpmm 32 procs

Figure 8: Experimental results on Dual Xeon 2 GHz Cluster (C).

top level with special communication-optimized algorithms
on the intermediate level and ATLAS or DGEMM at the
bottom level leads to the best results.

7. REFERENCES
[1] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel.

Optimizing matrix multiply using PHiPAC: A portable,
high-performance, ANSI c coding methodology. In Proc. of
the International Conference on Supercomputing – ICS’97,
pages 340–347, 1997.

[2] C.-C. Chou, Y.-F. Deng, G. Li, and Y. Wang. Parallelizing
Strassen’s Method for Matrix Multiplication on
Distributed-Memory MIMD Architectures. Computers and
Mathematics with Applications, 30(2):49–69, 1995.

[3] F. Desprez and F. Suter. Impact of Mixed-Parallelism on
Parallel Implementations of Strassen and Winograd Matrix
Multiplication Algorithms. Technical Report RR2002-24,
Laboratoire de l’Informatique du Parallélisme (LIP), June
2002. Also INRIA Research Report RR-4482.

[4] B. Dumitrescu, J.-L. Roch, and D. Trystram. Fast matrix
multiplications algorithms on MIMD architectures. Parallel
Algorithms and Applications, 4(2):53–70, 1994.

[5] G. Golub and C. Van Loan. Matrix Computations. The
John Hopkins University Press, 1989.

[6] B. Grayson, A. Shah, and R. van de Geijn. A High
Performance Parallel Strassen Implementation. Technical

Report CS-TR-95-24, Department of Computer Sciences,
The Unversity of Texas, 1, 1995.

[7] S. Hunold, T. Rauber, and G. Rünger. Hierarchical
Matrix-Matrix Multiplication based on Multiprocessor
Tasks. In Proc. of the International Conference on
Computational Science – ICCS 2004, LNCS. Springer,
June 2004.

[8] Q. Luo and J. B. Drake. A Scalable Parallel Strassen’s
Matrix Multiplication Algorithm for Distributed-Memory
Computers. In Proceedings of the 1995 ACM Symposium
on Applied Computing, pages 221–226. ACM Press, 1995.

[9] T. Rauber and G. Rünger. Library Support for Hierarchical
Multi-Processor Tasks. In Proc. of the Supercomputing
2002, Baltimore, USA, 2002.

[10] V. Strassen. Gaussian elimination is not optimal.
Numerische Mathematik, 13:354–356, 1969.

[11] R. A. van de Geijn and J. Watts. SUMMA: scalable
universal matrix multiplication algorithm. Concurrency:
Practice and Experience, 9(4):255–274, 1997.

[12] R. C. Whaley and J. J. Dongarra. Automatically Tuned
Linear Algebra Software. Technical Report UT-CS-97-366,
University of Tennessee, 1997.

2048 4096 6144 8192 10240 12288
0

500

1000

1500

2000

2500

3000

matrix size

m
flo

ps
 (p

er
 p

ro
ce

ss
or

)

pdgemm_64 32 procs
strassen_pdgemm_r1 32 procs
strassen_pdgemm_r2 32 procs
strassen_ring 32 procs
strassen_tpmm 32 procs

2048 4096 6144 8192 10240 12288
0

500

1000

1500

2000

2500

matrix size

m
flo

ps
 (p

er
 p

ro
ce

ss
or

)

pdgemm 64 procs
strassen_pdgemm_r1 64 procs
strassen_pdgemm_r2 64 procs
strassen_r3 64 procs
strassen_ring 64 procs
strassen_tpmm 64 procs

Figure 9: Experimental results on IBM Regatta p690.

Figure 10: Trace of PDGEMM (left) and a specially-detailed trace for the time between 3 to 10 sec, p=16,
n=10240, Dual Xeon 3 GHz Cluster (BT).

1024 2048 3072 4096 5120 6144 7168 8192 9216
0

500

1000

1500

2000

2500

matrix size

m
flo

ps
 (p

er
 p

ro
ce

ss
or

)

strassen_ring 14 procs
strassen_ring 16 procs
strassen_ring 28 procs
strassen_ring 32 procs
strassen_ring 7 procs
strassen_ring 8 procs

Figure 11: Efficiency comparison of Strassen ring on
Dual Xeon 2 GHz Cluster (C).

Figure 12: Histogram of PDGEMM, p=16,
n=10240, Dual Xeon 3 GHz Cluster (BT).

Figure 13: Trace and histogram of Strassen tpmm, p = 16, n = 10240, Dual Xeon 3 GHz Cluster (BT).

Figure 14: Trace and histogram of Strassen ring, p = 14, n = 10240, Dual Xeon 3 GHz Cluster (BT).

Figure 15: Trace and histogram of Strassen pdgemm, one level of recursion (call to PDGEMM at group size
of 4), p = 16, n = 10240, Dual Xeon 3 GHz Cluster (BT).

