
Université de Grenoble

Thèse

Pour obtenir le grade de

Docteur de l'Université de Grenoble
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée et soutenue publiquement par

Yiannis Georgiou

le 5 novembre 2010

Contributions à la Gestion de Ressources et de Tâches pour
le Calcul de Haute Performance

Thèse dirigée par Olivier Richard et codirigée par Jean-Francois Méhaut

Jury

Frank Cappello Directeur de Recherche à INRIA, France Rapporteur
William Kramer Directeur de Recherche à NCSA, USA Rapporteur
Morris Jette Informaticien au LLNL, USA Examinateur
Pascale Rosse-Laurent Architecte Informatique à BULL, France Examinatrice
Daniel Hagimont Professeur à INPT/ENSEEIHT, France Président
Olivier Richard Maître de Conférence à l'UJF Directeur

Jean-Francois Méhaut Professeur à l'UJF, France Co-Directeur

Thèse préparée au sein du Laboratoire d'Informatique de Grenoble, dans l'École
Doctorale de Mathématiques, Sciences et Technologies de l'Information, Informatique

CONTRIBUTIONS FOR

RESOURCE AND JOB MANAGEMENT
IN HIGH PERFORMANCE COMPUTING

CONTRIBUTIONS FOR

RESOURCE AND JOB MANAGEMENT
IN HIGH PERFORMANCE COMPUTING

A Dissertation

submitted to the department of

Computer Science

and the committee on graduate studies of

Joseph Fourier University

in partial fulfillment of the requirements

for the degree of

Doctor Of Philosophy

Yiannis Georgiou

September 2010

Abstract

High Performance Computing is characterized by the latest technological evolutions in com-

puting architectures and by the increasing needs of applications for computing power.

A particular middleware called Resource and Job Management System (RJMS), is responsible

for delivering computing power to applications. The RJMS plays an important role in HPC since

it has a strategic place in the whole software stack because it stands between the above two layers.

However the latest evolutions in hardware and applications layers have provided new levels of

complexities to this middleware. Issues like scalability, management of topological constraints,

energy efficiency and fault tolerance have to be particularly considered, among others, in order to

provide a better system exploitation from both the system and user point of view.

This dissertation provides a state of the art upon the fundamental concepts and research issues

of Resources and Jobs Management Systems. It provides a multi-level comparison (concepts,

functionalities, performance) of some of the most wideley used Resource and Jobs Management

Systems in High Performance Computing.

An important metric to evaluate the work of a RJMS on a platform is the observed system

utilization. However studies and logs of production platforms show that HPC systems in general

suffer of significant unutilization rates. Our study deals with these clusters’ unutilization periods

by proposing methods to aggregate otherwise unutilized resources for the benefit of the system or

the application. More particularlly this thesis explores RJMS level mechanisms: 1) for increasing

the jobs valuable computation rates in the high volatile environments of a lighweight grid context,

2) for improving system utilization with malleability techniqes and 3) providing energy efficient

system management through the exploitation of idle computing machines.

The experimentation and evaluation in this type of contexts provide important complexities due

to the inter-dependency of multiple parameters that have to be taken into control. In our study we

have developped a methodology based upon real-scale controlled experimentation with submission

of synthetic or real workload traces.

2

Contents

List of Tables . 7

List of Figures . 9

1 Introduction 1

1.1 Motivation . 2

1.2 Research Subjects . 3

1.2.1 Scheduling and Management of Resources and Jobs 3

1.2.2 Techniques for efficient resources exploitation 4

1.2.3 Experimental Methodology based on workload traces 7

1.3 Thesis Overview . 8

2 Evaluation Methodology for Resource and Job Management Systems 9

2.1 Related Work . 10

2.1.1 Experimentation methodologies . 11

2.1.2 Workload modelling, characterization and benchmarks 14

2.2 Real-scale experimentation upon Grid5000 platform 16

2.2.1 Grid5000 Design and Architecture . 16

2.2.2 Automatization and Reproduction techniques 21

2.3 Evaluation Methodology based upon Replay of Workloads 22

2.3.1 System factors . 23

2.3.2 Workloads . 24

2.3.3 Executed Applications . 29

2.3.4 Evaluation Metrics . 33

2.3.5 Xionee: Workload Trace Analysis, Visualization and Automatic Injection

Toolkit . 34

2.4 Conclusions . 37

3

3 Comparisons of Resource and Job Management Systems 39

3.1 Background and Related Work . 40

3.2 RJMS Principles . 42

3.2.1 Resource Management . 45

3.2.2 Job Management . 47

3.2.3 Scheduling . 49

3.3 Research challenges . 52

3.3.1 Topology aware Placement . 52

3.3.2 High Availability . 55

3.3.3 Energy Consumption . 56

3.3.4 Launcher and Scheduler . 57

3.4 Survey of Resource and Job Management Systems 61

3.4.1 Commercial RJMS . 61

3.4.2 Opensource RJMS . 66

3.4.3 SLURM . 70

3.4.4 OAR . 74

3.4.5 Synthesis . 82

3.5 Performance Evaluation of opensource RJMS . 85

3.5.1 Launching and Scheduling Evaluation . 85

3.5.2 Network Topology Aware placement Evaluation 91

3.5.3 Scalability and Efficiency Evaluation . 95

3.6 Conclusions . 103

4 Improving system utilization in a lightweight grid context 105

4.1 Background Information and Related Work . 107

4.1.1 Grid and alternative grid technologies . 107

4.1.2 Fault Treatment upon grid technologies 108

4.1.3 Scheduling for bag-of-tasks applications 109

4.1.4 Checkpoint-Restart Recovery technique 110

4.2 An alternative lightweight grid computing approach for bag-of-tasks applications . 111

4.2.1 Lightweight grid and cluster utilization policy 111

4.2.2 Global Architecture . 112

4.3 Enhancements for turnaround time optimization 116

4.3.1 Transparent Checkpoint/Restart mechanism for a lightweight grid 117

4

4.3.2 Periodic and Triggered checkpoints strategies 118

4.4 Experimentation Results . 119

4.4.1 Deploying a lightweight grid upon Grid5000 platform 120

4.4.2 Performance Evaluation . 122

4.5 Conclusions . 126

5 Improving resources exploitation with Malleability techniques 128

5.1 Background and Related Work . 129

5.1.1 Dynamic Applications and Programming 130

5.1.2 Resource Management and Dynamicity 132

5.1.3 RJMS and Applications Communication protocols 133

5.1.4 Scheduling with Dynamic Applications 135

5.2 Malleability techniques: Implementation and Experimental Testbed 137

5.2.1 Implementation upon OAR resource manager 137

5.2.2 Experimentation through controlled platform and real traces 138

5.3 Malleability on Clusters with Dynamic MPI . 140

5.3.1 Dynamic MPI mechanism Requirements 140

5.3.2 Evaluating Dynamic MPI technique . 142

5.4 Malleability on Multicore Nodes with Dynamic CPUSET Mapping 146

5.4.1 Dynamic CPUSETs Mapping Requirements 147

5.4.2 Evaluating Dynamic CPUSETs Mapping technique 149

5.5 Improving Resource Utilization using Malleability 154

5.6 Conclusions . 158

6 Energy Efficient Management Techniques 160

6.1 Related Work . 161

6.2 Measuring Energy Consumption upon Grid5000 163

6.2.1 The Hardware Energy-Meters . 163

6.2.2 A Library to Interface with Energy-Meters 164

6.3 Energy Reduction through idle resources manipulation 165

6.3.1 Adapting OAR to exploit idle resources for energy conservations 166

6.3.2 Performance Evaluation of OAR Green Management technique 169

6.3.3 Comparison of OAR and SLURM Green Management techniques 173

6.4 Supporting DVFS (Frequency Scaling) for user’s exploitation 177

5

6.4.1 Adapting OAR to provide DVFS techniques 177

6.4.2 Tradeoff DVFS Energy vs Performance 178

6.5 Conclusions . 181

7 Conclusions and Future Research Directions 183

7.1 Conclusions . 183

7.2 Future Research Directions . 185

8 Annexes 187

8.1 RJMS Functionalities Comparison . 187

8.2 Dynamic MPI Malleability experiments . 191

Bibliography 194

6

List of Tables

1.1 Logs of Real Parallel Workloads from Production Systems[3] 3

2.1 Classification of experimentation methodologies [1] 11

2.2 ESP benchmarks synthetic workload characteristics [2] 27

3.1 General Principles of a Resource and Job Management System 43

3.2 Common Scheduling policies for RJMS . 50

3.3 Conceptual comparison among various RJMS . 83

3.4 Symbols used in the comparsion table . 83

3.5 OAR, SLURM and Torque+Maui experiments upon a cluster of 64 resources (8nodes-

biCPU/quadCORE): Efficiency Percentage different scheduling policies for ESP

benchmark . 86

3.6 OAR, SLURM and Torque+Maui experiments upon a cluster of 512 resources

(64nodes-biCPU/quadCORE): Efficiency Percentage for ESP benchmark and back-

fill policies . 89

3.7 ESP benchmark characteristics for 512 cores cluster 92

3.8 Topological and ESP characteristics with the default Topology aware placement

techniques of SLURM and OAR . 94

3.9 ESP benchmark results . 97

3.10 Topo-ESP-NAS benchmark characteristics for 4096 resources cluster 101

3.11 TOPO-ESP-NAS benchmark results for 4096 resources cluster 101

4.1 State of grid jobs for 5hours experiments of 1cluster, 32nodes, 40% local workload

and 3 strategies . 123

4.2 State of grid jobs for 5h experiments of 5clusters, 200nodes, 60% local workload

and 2 strategies . 126

5.1 Classification of parallel applications . 130

5.2 Speedup of the dynamic MPI application. 146

5.3 Comparison of malleable techniques and moldable besteffort during execution of . 156

7

6.1 Time for PowerOFF-ON . 166

6.2 Total Energy consumption and Jobs Waiting Time for normal and green modes . . 170

6.3 Gain percentage Energy VS Performance (Execution Time) 179

8.1 General characteristics comparison among various RJMS 187

8.2 Symbols used in the comparsion table . 188

8.3 Resource Management Subsystem features comparison among various RJMS . . . 188

8.4 Job Management Subsystem features comparison among various RJMS 189

8.5 Scheduling Subsystem features comparison among various RJMS 190

8.6 Overall Evaluation comparison results among various RJMS 190

8

List of Figures

2.1 Overview of Grid5000 architecture . 17

2.2 Software environment . 20

2.3 Kadeploy architecture . 20

2.4 Typical sequence of an environment deployment. 21

2.5 Sequence of Xionee evaluation procedure based upon Replay of Workloads. 36

3.1 Resource and Job Management Systems Chronological Map 41

3.2 Global architecture of a Resource and Job Management System 43

3.3 Job sequence diagram . 44

3.4 State diagram of jobs in a RJMS . 48

3.5 Function examples of Scheduling policies . 51

3.6 SLURM architecture . 70

3.7 OAR architecture . 75

3.8 OAR hierarchical treatment of resources . 77

3.9 Instant system utilization for ESP Benchmark with OAR and Backfill policy (83.7%

efficiency) upon a cluster of 64 resources . 86

3.10 Instant system utilization for ESP Benchmark with Torque+Maui and Preemption

policy (88.4% Efficiency) upon a cluster of 64 resources 87

3.11 Instant system utilization for ESP Benchmark with SLURM and Gang-Scheduling

policy (94.8% efficiency) upon a cluster of 64 resources 88

3.12 Instant system utilization for ESP Benchmark with OAR(79.1% Efficiency)(left)

and SLURM(82.7% Efficiency)(right) upon a cluster of 512 resources (64nodes:biCPU-

quadCORE) . 90

3.13 CDF on wait time for ESP benchmark and Backfill policies of OAR(79.1% Effi-

ciency) and SLURM(82.7% Efficiency) . 91

3.14 Efficiency of network Topology aware placement mechanisms OAR(left) vs SLURM(right)

94

9

3.15 Efficiency of the Default Topology aware placement techniques for SLURM and

OAR . 95

3.16 Instant system utilization for ESP Benchmark with SLURM and cluster size of 512

(left) and 9216 (right) resources . 97

3.17 ESP Benchmark slowdown for SLURM 512-9216 cores 98

3.18 ESP benchmark CDF on wait time SLURM 512-9216 cores 99

3.19 Throughput for submission(left) and termination(right) of jobs with SLURM -

Backfill scheduler . 99

3.20 Throughput for submission(left) and termination(right) of jobs with SLURM -

Backfill+Preemption scheduler . 100

4.1 CIGRI cluster utilization policy: best effort jobs. 113

4.2 CIGRI platform architecture . 114

4.3 CIGRI internal modules and their operation. 115

4.4 Fault treatment default strategy . 118

4.5 Fault treatment strategies: Periodic checkpoints (top), Triggered checkpoints (bot-

tom) . 120

4.6 CIGRI grid utilization for 1 cluster of 32nodes grid (3 strategies comparison) . . . 123

4.7 CIGRI grid utilization for 5 clusters of of 200nodes grid, Triggered checkpoints

strategy . 124

4.8 CIGRI grid utilization for 5 clusters of of 200nodes grid, No checkpoints strategy . 125

5.1 Single malleable application scenario. (1) Starting time; (2) shrinking operation;

(3) growing operation. 135

5.2 Multiple malleable application scenario. (1) Equipartition; (2) FPSMA 136

5.3 Malleability architecture upon OAR . 139

5.4 Dynamic MPI architecture . 141

5.5 Dynamic MPI application performing growing and shrinking upon 4 participating

nodes. 142

5.6 Growing in dynamic MPI application: execution time VS number of cores at start-

ing time. 143

5.7 Shrinking in dynamic MPI application: execution time VS number of cores at

ending time. 144

5.8 Dynamic CPUSETs Mapping architecture . 148

5.9 Behaviour of CPUSET mapping technique upon one of the participating nodes. . . 149

10

5.10 NAS BT-(4,9,16,25,36,49,64) behavior with Static and Dynamic CPUSET map-

ping operations with direct expansion from 1 to 4 cores. 150

5.11 NAS BT-36 behavior with Static and Dynamic CPUSET mapping operation with

gradual and direct expansion from 1 to 4 cores. 151

5.12 NAS (BT-16,36,64) behavior with 1 process per core, different number of nodes

and Static CPUSET mapping operations. 152

5.13 NAS BT-64 and CG-64 behavior, with Shared Memory and Static/Dynamic CPUSET

mapping operations. 153

5.14 Malleable job executing BT application upon the free resources of the normal

workload. 156

5.15 Moldable-besteffort job executing BT application upon the free resources of the

normal workload. 157

6.1 The GREEN-NET framework. 164

6.2 Web page example of energy monitoring of 18 nodes. 166

6.3 One Node Energy consumption Reboot phase . 167

6.4 Green Management mode upon OAR . 168

6.5 Energy Consumption for normal and green management with 50.32% system uti-

lization . 171

6.6 Energy Consumption for normal and green management with 89.62% system uti-

lization . 172

6.7 Energy Consumption with trace file of 89.62% of system utilization and NAS BT

Benchmark upon a 32 nodes(biCPU) cluster with OAR 174

6.8 Cumulated Distribution function on Wait time for 89.62% of system utilization and

NAS BT benchmark with OAR . 175

6.9 Energy Consumption with trace file of 89.62% of system utilization and NAS BT

Benchmark upon a 32 nodes(biCPU) cluster with OAR and SLURM Green modes 176

6.10 Strech times upon a 32 nodes(biCPU) cluster for 89.62%utilization and NAS BT

benchmark with OAR and SLURM Green modes 177

6.11 NAS SP benchmark executions through PowerSaving jobs with sdparm and cpufreq

variations Different representation of the same results for energy-performance trade-

offs . 180

6.12 Instant energy consumption for NAS SP: Normal(top-right),HDD-spindown(top-

left),CPU-lowfreq(bottom-right),HDD-spindown+CPU-lowfreq(bottom-left) . . . 181

11

8.1 Moldable-BestEffort jobs executing upon free cluster resources: 40/% of normal

workload utilization and 32/% of Moldable-BestEffort jobs system exploitation of

the 60/% that remains free. 192

8.2 Malleable jobs executing upon free cluster resources: 40/% of normal workload

utilization and 58/% of Malleable jobs system exploitation of the 60/% that remains

free. 193

12

Chapter 1

Introduction

High performance computing is characterized by the growing evolution of computing architec-

tures, the rapid proliferation of computing resources, and the increasing complexity of problems,

users wish to solve. The latest evolution on multiprocessor technologies presented the dawn of

the multicore period. This new period of computing, enforced scientists with a huge computing

power, but also a new level of complexity. Within the last 11 years, we observe a performance

increase from Gigaflops (Intel ASCI Red in 1997) up to the Petaflops (IBM Roadrunner in 2008

) by a factor of 1000 [3]. In the same time a great deal of parallel compute-intensive applications

have been developed to carry out important scientific research. The applications may span all dif-

ferent areas of science like astrophysics, biology, medicine, climate modeling, weather prediction

up to crash simulations, image rendering and film processing. The large diversity of computing

platforms: clusters, multiclusters, grids, lightweight grids and lately clouds, provide the means for

all kind of scientific applications to perform computations.

In order to efficiently deliver computing power to multiple users at the same time, specialised

softwares are responsible for the matching of user jobs processing needs with the available re-

sources. These software solutions, referred as Resource and Job Management Systems (RJMS),

provide functions for building, submitting, processing and monitoring jobs quickly and efficiently,

in a dynamic computing environment. The importance of this software which stands between the

user workloads and the platform or the applications and the resources, is undoubtful. The con-

tinuous hardware evolution proposing new challenges for the management of resources and the

complex specifications of highly compute-intensive applications implying additional parameters

for jobs scheduling, made the function of a Resource and Job Management System more compli-

cated than ever and turned this intermediate software into a multi-facet research tool.

1

1.1 Motivation

The research on High Performance Computing (HPC) is defined by challenges on all different

levels of computer science. Hardware, middleware and application layers have presented very

significant advances in the last few years. Naturally, the evolution begun on hardware with new

multiprocessing architectures, graphics accelerators and high-speed networks, which became the

new components of the modern HPC infrastructures. On the other side, the applications had to

adapt themselves with programming languages evolution, for parallelized (MPI) and multithreaded

(OpenMP) codes in order to acquire the most of the computing hardware. The Resource and Job

Management system stands between those two different layers and its role is to efficiently exploit

the capabilities of the hardware by fairly distributing computing power to applications and provide

benefit to the whole community.

A lot of research issues have arised in the area of scheduling and management of resources and

jobs, so as to cope up with the latest evolutions on hardware and applications layers. Inspired by

different advances of technology and in order to answer to particular application needs, scientists

have constructed various kinds of computing platforms to perform High Performance Computing.

Clusters, multi-clusters, grids, desktop or lightweight grids and lately clouds propose different

ways for executing workloads and applications. Even if additional middleware software may be

needed, the main middleware component of the above platforms is still the local RJMS. Hence

interfacing capabilities for the support of differnt HPC environments have to be take into account.

Taking into consideration the current technological evolutions, we want to imagine a system

that will be capable to achieve an efficient exploitation of all available resources. Studies upon

various workloads of different systems [4] show that there exist many periods where the cluster is

not fully utilized. This under-utilization periods of a system can be due to jobs traffic character-

istics, like job interarrival times and cancellation rates. For example, systems that have big jobs

interarrival times present low system utilization [5]. An overview of previous works and archived

workload traces [4], [6] proved that most of the times, clusters are utilized less than 65% of their

overall capacities throughout the year. Table 1.1 provides the utilization percentages of certain

large scale parallel systems in production use. These workload logs are collected and maintained

by Feitelson in [4]. The bigger utilization percentage 87,6% is observed on the LLNL Thunder

cluster with 4008CPU Cores. It’s interesting to see that the utilization percentage of the largest

cluster on this table LLNL Atlas with 9216CPU Cores is only 64.1% throughout a period of 8

months.

The research that is made through this thesis lies on the following question: How can we take

2

Workload Traces From Until Months CPUS Jobs Users Utilization %

LANL O2K Nov 1999 Apr 2000 5 2,048 121,989 337 64.0

OSC Cluster Jan 2000 Nov 2001 22 57 80,714 254 43.1

SDSC BLUE Apr 2000 Jan 2003 32 1,152 250,440 468 76.2

HPC2N Jul 2002 Jan 2006 42 240 527,371 258 72.0

DAS2 fs0 Jan 2003 Jan 2004 12 144 225,711 102 14.9

DAS2 fs1 Jan 2003 Dec 2003 12 64 40,315 36 12.1

DAS2 fs2 Jan 2003 Dec 2003 12 64 66,429 52 19.5

DAS2 fs3 Jan 2003 Dec 2003 12 64 66,737 64 10.7

DAS2 fs4 Feb 2003 Dec 2003 11 64 33,795 40 14.5

SDSC DataStar Mar 2004 Apr 2005 13 1,664 96,089 460 62.8

LPC EGEE Aug 2004 May 2005 9 140 244,821 57 20.8

LLNL uBGL Nov 2006 Jun 2007 7 2,048 112,611 62 56.1

LLNL Atlas Nov 2006 Jun 2007 8 9,216 60,332 132 64.1

LLNL Thunder Jan 2007 Jun 2007 5 4,008 128,662 283 87.6

Table 1.1: Logs of Real Parallel Workloads from Production Systems[3]

advantage of these unutilized periods of the infrastructures by efficiently exploiting the otherwise

idle resources and turn this use into beneficial values towards the platforms and the users?

1.2 Research Subjects

The main areas of our research are focused on the field of Resource and Job Managment Systems.

This dissertation presents a deep analysis of the concepts, structure, architectural design and func-

tionalities of those systems. We have closely followed their adaptation to technological evolutions

and modern applications needs and we analyze all involved research issues like efficiency and

scalability. Our principal concern lies on the improvement of the Resource and Job Management

System. Hence, we present studies to provide efficient exploitation of the infrastructures, by uti-

lizing otherwise idle resources, without neglecting quality of services to the users. In order to be

able to make our studies upon this field of computer science, we have developed an experimental

methodology based upon deployment of real-scale platforms and evaluation techniques through

workload traces replay.

1.2.1 Scheduling and Management of Resources and Jobs

A Cluster Resource and Job Management System (RJMS) is responsible for the efficient assign-

ment of users jobs upon the cluster’s computational nodes. The work of the RJMS is a multi-facet

3

process. It involves optimal scheduling procedures among the users’ jobs, efficient matching of

those jobs upon the computing resources and consistent management of resources for sequential

and parallel jobs launching. Due to the latest technological hardware advances (multicore architec-

tures, high-speed networks, etc), system components have become more complicated with deeper

hierarchy layers. This implies the use of finer resources’ management techniques from the side

of the middleware (RJMS). On the other hand, the high complexity of users’ applications (multi-

threaded, highly parallel, hybrid, etc) struggling for computing power, need an efficient and robust

system that provides high-performance execution and quality of services.

The rapid growth of clusters’ computing resources and the entrance to petaflop scale for su-

percomputing production clusters [3], have created the needs for further research in the area of

Scheduling and Management of Resources and Jobs. The efficient assignment of large number of

resources coresponding to a large number of users produces issues like job launcher’s and sched-

uler’s scalability. Propagation and scheduling algorithms need to be sufficiently equipped to deal

with these additional complexities. Moreover, the increase of internal node processor hiearchies

(multicore and manycore) along with the growth of network diameters, demand methods for ef-

ficient placement of parallel and multithreaded jobs upon particular groups of nodes and cores

which can provide optimal communication speeds. The big energy demands of the large clusters

have raised the issue of energy consumption [7]. All these mechanisms need to be taken into ac-

count during the RJMS scheduling process. More hardware components mean larger propabilities

for failures. Hence, the high availability of the RJMS has to be to be treated as well.

Our research explores fundamental concepts of Resource and Job Management Systems. We

present a thorough comparison of some of the most known RJMS and we evaluate their perfor-

mance upon controlled platforms and under realistic workload conditions.

1.2.2 Techniques for efficient resources exploitation

The under-utilization periods that the platforms are submerged can be efficiently exploited by the

systems middleware where the local Resource and Job Management System (RJMS) has the main

role. But even if we consider that the middleware (RJMS) is sufficiently equipped to detect those

periods, not all applications will be able to adapt themselves, on-the-fly, to the new resources that

may become available. So we will need specific kind of applications that will be capable to resize

themselves on platforms’ availabilities.

Optimizing system utilization with checkpoint/restart mechanisms

The bag-of-tasks applications are sequential tasks with no dependence amongst them . Since,

4

there is no need for task-synchronization, during the computation, the application can adapt itself

upon the available resources. This kind of applications represents one of the mostly used classes

of scientific applications today [8]. The aggregation of otherwise idle resources for execution of

bag-of-tasks applications is a widely used trend [9], [10], [11], [12], especially in the context of

grid computing. Driven by the reputation and the wide utilization of this kind of platforms, we

initially place our research in a similar context. More precisely we focus upon a lightweight grid

configuration where clusters share common administrative choices. The applications are provided

in the form of bag-of-tasks and the jobs are executed upon clusters as best-effort tasks. The former,

are lower priority tasks executed upon otherwise idle resources, that get instantly killed whenever

normal jobs need the resources. In a system like this, the large number of interference failures

provide an additional motivation for fault-tolerance.

Efficient techniques dealing with failures may provide optimization for the system exploitation.

Checkpoint/Restart is a common technique for tolerating failures and optimizing jobs turnaround

times. Applications’ state is periodically saved to reliable storage, and in case of failure, restarts

from a prior state. In our study, we consider an application transparent, system level check-

point/restart technique that would be a solution to guarantee reliability for all kinds of applications.

Under this context, we provide a method to enhance the default scheduling mechanisms of

bag-of-tasks applications with checkpoint/restart mechanisms, in order to achieve faster jobs’

turnaround times and better overall system utilization (chapter 4).

Improving resources’ exploitation with Malleability

Our second area of research is centered upon the subject of malleable tasks scheduling. The

dynamicity of these applications is triggered by the platforms availabilities: a malleable applica-

tion can grow whenever resources are available and can shrink when they are requested by the

resource and job management system [13]. The scheduling community has been especially in-

terested on this kind of applications because their high adaptation capabilities can improve both

systems utilization and jobs’ response time [14], [13]. Whereas, a lot of progress has been made

in theory, in practice the support of malleable tasks upon a RJMS is a very difficult procedure

due to various complexities upon different levels [15]. Issues concerning programming models,

scheduling policies and communication protocols between applications and the RJMS need to be

seriously considered. Advancing the study of this last field around the Resource and Job Manage-

ment Systems, we design an approach for supporting malleable applications upon a ’versatile’ and

easy to extend RJMS. We have implemented a simple communication protocol to allow interaction

between the RJMS and the applications and we developed techniques for scheduling a malleable

5

application without changing the core scheduler of the RJMS.

Unfortunately due to the complexity of their programming model, malleable applications are

difficult to program and the bigger class of parallel applications today are implemented as rigid

ones [13]. Rigid applications cannot resize themselves during runtime and is impossible for them

to efficiently utilize otherwise idle resources. In an effort to allow a wider spectrum of applications

to take advantage of an efficient exploitation of the system by using otherwise idle resources, we

went one step further. We have designed and implemented a trasparent technique to provide mal-

leability for rigid applications, upon multicore architectures, through the RJMS. We take advantage

of specific mechanisms of multicore CPUs along with linux kernel advances for cpu affinity and

we provide transparent expanding and folding of rigid parallel applications.

Finally, we analyse the trade offs between gains using these two different forms of Malleabil-

ity versus a simple moldable approach for exploitation of otherwise unutilized resources and we

study the complexities of the malleability implementation upon a Resource and Job Management

System.(chapter 5).

Energy-efficient resources’ exploitation

The use of otherwise idle resources for additional computations, gives faster scientific results.

On the other hand, idle resources could contribute in reducing the systems’ overall energy con-

sumption. Indeed, during the last few years a new area of research, around energy efficiency,

emerged as an imminent neccesity. As platforms size increase rapidly, their energy needs become

enormous [16]. A way to treat this growing problem is to improve the energy efficiency at different

abstraction layers. The evolution on the hardware level helped for the construction of new low-

power High Perfromance Computing Systems [17]. Systems like Green Destiny [18] addressed

these problems by significantly reducing per-node power consumption. Even if the hardware com-

ponents are directed towards reduced energy consumption, the middleware and applications need

to adapt themseleves to face the new chalenges.

According to prior work, idle computing resources consume a very important amount of en-

ergy [19],[20]. This energy consumption can be avoided if specific actions take place. Under this

context we extend our research in order to take advantage of otherwise idle resources and achieve

energy-efficient system exploitation. More specifically, we have implemented a resource manage-

ment optimization upon an extensible RJMS so as to power-off, otherwise idle computing cluster

nodes, under specific conditions. Following this method a system can benefit of its idle periods

and perform energy reduction. As far as the application level is concerned, many efforts have

been made in order to provide energy-efficient MPI programming [21] or special Dynamic Voltage

6

and frequency scaling mechanisms, for reducing energy on MPI programs [22]. Following those

ideas, we developed specific options upon the RJMS that support CPU frequency scaling and Hard

disk spin-down upon modern platforms (that provide this kind of hardware treatment) and allow

applications to take advantage of these features.

So under the same context of using the otherwise idle resources for better system utilization,

we propose energy-aware system management techniques (chapter 6).

1.2.3 Experimental Methodology based on workload traces

The Resource and Job Management Systems (RJMS) for High Performance Computing have a

complex behaviour, defined by various functionalities and parameters. A lot of research has

been made upon methods for evaluation of specific layers of the RJMS stack, like the schedul-

ing [23],[24]. Most of the times, those methods are based upon simulation which can provide

reproducable experiments with valuable results. However, it focuses only on a specific behaviour

or mechanism, abstracting the operation of the rest of the system. To be able to evaluate the be-

haviour of the RJMS as a complete unit, we use real experimentation upon dedicated, controlled

platforms.

We have developed a methodology based on real-scale experimentation that allows to evalu-

ate the complex behaviour of the RJMS, taking into account all different parameters and internal

mechanisms like scheduling, job launching, network topology placement, even energy consump-

tion. To provide realistic conditions and interesting observations for our experiments, not only

the dedicated real-scale platform but other parameters also are important to be defined. The most

critical of those are the system factors, users workloads, applications to be executed and evalua-

tion metrics. Based upon the research upon scheduling systems evaluation through simulation, we

adopt their techniques with various workload executions and we propose the replay of synthetic or

real production workload traces.

This method allows to evaluate different mechanisms or functionalities of the RJMS under

realistic conditions. Using this methodology we experiment with the various optimizations pro-

posed during our study and perform comparisons between different Resource and Job Management

Systems.

7

1.3 Thesis Overview

The organization of this thesis is as follows: In chapter 2 we provide the experimentation method-

ology that we use to perform the experimental validation of our implementations and the perfor-

mance evaluations. Chapter 3 presents Background Information and the state of the art upon Re-

source Management and Job Scheduling for High Performance Computing, presenting conceptual

and experimental comparisons between known Resource and Job Management Systems. The fol-

lowing three chapters present the main part of our contributions centered on proposed techniques

for efficient resources exploitation. Chapter 4 describes a method for efficient system exploitation

through a checkpoint/restart mechanism. This chapter is based on material published in [25, 26].

Chapter 5 presents the support of malleability upon a Resource and Job Management System. This

work has lead to the following publications [27, 28]. Chapter 6 describes the techniques used

to provide energy consumption reduction upon clusters through proposed functionalities upon a

Resource Manager. The work in this chapter is based on material published in [29, 30, 31]. Con-

clusions and future work perspectives, are finally presented in chapter 7.

8

Chapter 2

Evaluation Methodology for Resource and

Job Management Systems

Research in Clusters, Grids and High Performance Computing is based on a variety of methodolo-

gies and tools. Technological evolution and scientific needs have made systems and applications

more complex throughout the years and the study of the complete computing systems now de-

pends on thousand of parameters and conditions. A large part of the research conducted in this

field is mostly performed using simulators or emulators. These tools present advantages related

to the control of experiments and the ease of reproduction but also limitations because they fail to

capture all the dynamic, variety and complexity of real life conditions.

The area of Resource and Job Management for HPC implicates various procedures and internal

mechanisms making their behaviour complicated and difficult to model and study. Indeed, mecha-

nisms that may take place after a simple job launching upon the RJMS can include admission rules

validation, scheduling, command propagation, tasks placement according to topology constraints,

faut-tolerance even energy efficient management. In addition, every different mechanism depends

on a big number of parameters that may present dependencies amongst them. Studying trade-

offs like energy efficiency versus system utilization, or application performance versus scheduling

complexities, are only some examples that show how important it is to be able to study the system

as a whole under real life conditions. Hence, even if simulation and emulation can provide impor-

tant initial insights, the need for real-scale experimentation seemed undouptful for the study and

evaluation of all internal functions as one complete system.

The real-scale experimental methodology presented in this chapter is based upon Grid5000

9

platform which is a testbed composed of a collection of various clusters and software tools dedi-

cated to research on computer science. One of the main drawbacks of real-scale experimentation

versus simulation and emulation is the difficulty of reconfiguration and reproduction of experi-

ments. Grid5000 platform has been designed exactly to answer this problem, hence providing

an ideal tool for large-scale experimentation of Resource and Job Management Systems. One of

the most important factors for the study of Resource and Job Management Systems, is the users

workload which serves as their input. To be able to compare and evaluate those systems and ex-

periment with new optimizations upon particular RJMS, we need to define specific workloads and

application profiles that are going to be used. Nevertheless, in order to choose the right workoads

and applications, we are facing many choices and issues to deal with, depending on the type of

experiment. In addition, the requirement to work on a real scale raises the need for development

of particular tools for treatment and replay of those workloads under real-life conditions.

In the remainder of this chapter, we initially provide the background and related work upon

real-life experimentation, workload characterization, workload modeling and benchmarking for

parallel computing systems. The following section makes an analysis of Grid5000 platform and its

design concepts, presents the experimentation procedure and discusses advantages and difficulties.

The third section presents the actual evaluation procedure and describes the assumptions and the

definition of parametrized system factors, the different approaches used for replay of workload

traces along with the collection of tools that has been developed to analyse and replay the workload

traces. Moreover, it provides the list of applications used for execution during our experimentation

and the evaluation metrics used. Finally, section 4 concludes and gives ideas for future work.

2.1 Related Work

Parallel and distributed computing is a widely active research area. In order to conduct research

upon this domain the community has adopted various techniques based upon theoretical or ex-

perimental analysis. The mathematical approaches upon this area can turn easily into deadend

paths, leaving experimentations to be a safest way for proof of concepts. Indeed, the complexity

of the underlying platforms along with the big number of parameters that define the applications

may result into unrealistic theoretical assumptions. Hence, most research results are obtained via

experimental evaluation. Entering into details of Scheduling upon High Performance Comput-

ing systems research area, we also discuss upon the background and ongoing works of workload

analysis, modelling and benchmarks for Resource and Job Management Systems.

10

Application Environment

Real Model

Real In-situ Emulation

Model Benchmarking Simulation

Table 2.1: Classification of experimentation methodologies [1]

2.1.1 Experimentation methodologies

In this section we present tools and testbeds that exist, for effectuating parallel and distributed com-

puting experiments and we discuss upon their advantages and drawbacks. Gustedt et al. present

a complete survey [1] of experimentation methodologies for large-scale systems. They classify

experimental methodologies in 4 different classes depending on the kind of environment the ex-

periment is made upon and depending on the kind of application it is being used 2.1.

The survey classifies the different existing methodologies according to criteria like: control

of experiments, reproduction ability, abstraction level, scalability for large-scale experimentation,

execution speed and speed-up between an experiment and a real execution, processor folding and

heterogeneity management of the platform.

Considering their analysis and the related work on experimental methodologies for parallel and

distributed computing, we conclude on the following remarks upon the different methods:

• Simulation

Simulation focuses on a specific behavior or mechanism of the distributed system and ab-

stracts the rest of the system. The main advantage of simulation is that it allows highly

controllable and reproducible experiments with a large set of platforms characteristics and

experimental conditions. The design of a simulator requires a lot of modeling work and

provides a very difficult scientific challenge. Simulation is the most widely used methodol-

ogy for experimentation in Computer Science. However, not all factors and conditions that

influence the distributed system can be fully experimented and only a model of the applica-

tion is executed and not the application itself. A lot of simulators exist that model CPU at

the hardware level [32]. In networking, the most famous tool is the Network Simulator (ns2)

[33], which implements a very large collection of protocols and queuing models and grounds

most of the research literature on the field. The emerging tools used in Peer-to-Peer com-

munity encompass PlanetSim [34] and PeerSim [35]. Their main goal is scalability (from

11

hundreds of thousands of nodes, up to millions of nodes), at the price of a very high level of

abstraction. Both GridSim [36] and SimGrid [37] aim at simulating a parallel application on

a distributed grid environment. GridSim is mainly focused on grid economy studies, while

SimGrids authors claim a larger application field to any application distributed at large scale.

Scalability comparisons show the clear advantage of SimGrid over GridSim to that extent.

• Emulation

Emulation is the methodology which provides a tool capable for executing the actual soft-

ware of the distributed system, in its whole complexity, using only a model of the envi-

ronment. The challenge here is to build a model of a system, realistic enough to minimize

abstraction, but simple enough to be easily managed. ModelNet [38] is a tool that is princi-

pally designed to emulate the network components. It works at real-scale under a real hard-

ware. Network packets are routed through core ModelNet nodes which cooperate to limit the

traffic in terms of the bandwidth, of congestion constraints, of latency, and of packet loss.

This tool only models the network, ignoring the CPU and disk resources and is not very

scalable. Emulab [39] shares similar goals with ModelNet and provides network emula-

tion. Microgrid [40] allows to emulate the parallel execution of distributed application using

just a few (possibly one) processor(s). It emulates both the CPU and the network perfor-

mance. Each, emulated resource executes, in a confined way, part of the applications. The

approach of Microgrid is based upon virtualization technology as it allows several guests

to be executed on the same physical resource. Even if Microgrid is able to emulate tens

of thousands resources, it is unfortunately not supported anymore and does not work with

the recent compiler versions such as gcc 4. In order to tackle the problem of emulating an

heterogeneous environment Canon et. al. have designed Wrekavoc [41] system. The main

objective is to have a configurable environment that allows for reproducible experiments on

large set of configurations using real applications. Wrekavoc degrades the performance of

nodes and network links independently in order to build a new heterogeneous cluster. Then,

any application can be run on this new cluster without modifications. However, contrary to

Microgrid, Wrekavoc needs one real CPU per emulated CPU. The CPU degradation is based

on user-level process scheduling (processes are suspended when they have used more than

the required fraction of the CPU).

• Experimental Platforms

12

The Production platforms could provide a good solution for real-life experimentation. How-

ever, the fact that specific experiments need specialized software which is often hard to

install on production platforms, along with the big difficulty of experiment reproduction, are

some important limitations. That’s why scientists have designed and developed experimen-

tal platforms to provide better control and reproduction abilities for real experimentations.

Many institutes and international programs have developed various tools to foster large-

scale distributed systems research. Platforms like PlanetLab [42], GENI [43], DAS [44] and

Grid5000 [45] provide some significant examples.

The purpose of Grid5000 is to serve as an experimental testbed for research in grid com-

puting and large-scale systems. It aims at building a highly reconfigurable, controllable and

monitorable experimental Grid platform, gathering nine sites geographically distributed in

France plus one in Luxembourg and one in Porto Alegre, Brazil. PlanetLab is an international-

wide testbed. It is based upon virtualization technologies in order to allow different ex-

periments, using different but possibly overlapping set of nodes concurrently. The Dutch

project DAS, which is a national-wide project has been designed to allow the reconfigu-

ration of the optical network that interconnects the different clusters. The main difference

of Grid5000 with all these platforms is the degree of reconfigurability. This functionality,

allows researchers to deploy and install the exact software environment they need for their

experiments, making the platform an ideal tool for real-life experimentation upon all layers

of software stack.

The work presented in [46] provides analytical studies for validation of real-life experimenta-

tion methodologies. In our context, we follow the ideas presented on this article to provide the

performance evaluation methodology for resource and job management systems.

During this thesis we have performed experimentations using only an experimental platform

with synthetic or real applications. Nevertheless, we understand that the best methodology is to be

able to perform both simulation and real experimentation. We argue that the ideal experimentation

methodology should use simulation at a first place, based upon the easy control and reproduction,

to obtain fast results for the validation of a prototype and in the same time observe specific metrics

or trade-offs; The real experimentation should come at a second place, where taking into consider-

ation the simulation results, we should perform experimentation with real conditions in order to be

able to captuere all the complex behaviour and interaction between the different stacks of hardware

and software and try to validate the initial observations in practice.

13

2.1.2 Workload modelling, characterization and benchmarks

Performance evaluation is effectuated by having the system’s scheduler schedule a sequence of

jobs. This sequence is the actual workload that will be injected to the system. A lot of research

[47], [23], [24], [48], [49] has been effectuated upon workload characterization and modelling of

parallel computing systems.

In order to model and log a workload of a parallel system, Chapin et al. [24] have defined the

standard workload format (swf) which provides a standarized format for describing an execution

of a sequence of jobs. The data fields of workloads following this format contain one line per job,

that contains a list of space separated integers. Some of the most important included fields are: job

number, submit time, wait time, run time, number of allocated processors, status, etc. An extension

of swf format called gwf, has been proposed in [50], to characterize grid workloads. Some of the

additional fields that have been introduced to reflect grid needs are: Requested type of architecture,

Project id, network usage, disk space usage, etc. As we will also note during this thesis more fields

were found neccessary to include and they are proposed to the above standards. For example a

field to reflect the energy consumption of a particular job provides an important characteristic to

modern architectures for compute and energy intensive applications.

There are two common ways to use a workload in order to evaluate a system.

1. Either use a workload log, also known as workload trace which is a record of resource usage

data about a stream of parallel and sequential jobs that were submitted and run on a real

parallel system,

2. or use a workload model, also known as synthetic workload, which is based on some prob-

ability distributions to generate workload data, with the goal of clarifying their underlying

principles.

Both approaches have advantages and drawbacks. In any case, the main problem of both ap-

proaches is their degree of representation. That is, to what point do they reflect the actual conditions

that the system will encounter in practice? The advantage of using a real-systems workload trace

is that it reflects reality by keeping all the complexities met on the real workload, thus producing

more reliable results [51]. Most production HPC systems maintain accounting logs for adminis-

trative purposes. These logs contain valuable information about all different activities upon the

machine and in particular, about the attributes of each job that was executed (such as submission

time, start time, end time, number of allocated processors, etc). A large archive of production HPC

systems workload logs is maintained by Feitelson in the Parallel Workloads Archive [4].

14

Models always simplify reality, and using the wrong statistical model can yield misleading re-

sults. On the other hand, workload models [48], [52] give the advatntage of offering an absolute

control on all features of the model simplifying the experimentation procedure, whereas the real

workload trace reflects a specific system use and may depend upon specific system configuration,

like the choice of clusters architecture. Many workload models exist in literature and most of them

are described in [4]. The construction of a model is not an easy task and it is usually derived from

some statistical analysis of real workload logs. An important parameter of a workload model is

the distribution of the various workload attributes. Initial studies were using exponential (Pois-

son process) or uniform distribution for interarrival times, which later proved not representative

enough. Other important factors that can characterize models are the correlation between different

attributes such as job size, interrarival time and duration.

The model initially proposed in [53] and [52] was one of the first benchmarks to actually

measure the performance of a real scheduler. However, the first version of this model (ESP-1)

was constructed mainly to fill the needs of a specific system (NERSC) and was difficult to be

adapted on other systems. Due to the unique characteristics of this benchmark, this research was

submerged into significant critisism in order to be enhanced with improvements [54]. Based on

these critics and in order to have an easily adapted benchmark, used for different scales and by

different communities [55], a new model (ESP-2) has been proposed [56, 2] which provides the

2nd and current version of the ESP benchmark.

Kramer in his PhD thesis [2] proposed a framework for a user based methodology to eval-

uate high performance computing (HPC) systems. In more detail, this methodology (PERCU)

explored five components that define an HPC system: Performance, Effectiveness, Reliability,

Consistency, Usability and introduces a set of new measurement methods along with improvement

approaches for each different component. The proposed measurement method for Effectiveness

was ESP benchmark and an in depth analysis of ESP-1 and ESP-2 tests were made in [2]. More-

over, various use cases were presented where the ESP utilization prooved to be beneficial not only

for computing systems but for resource managers as well. ESP-2 benchmark has been adopted and

included into our methodology for Resource and Job Management systems evaluation and for the

sake of simplicity, when we mention ESP benchmark we will always refer to this second version

ESP-2 of the test.

We assume that the observed performance results will reflect important differences between

systems or interesting conclusions for the optimization tecnhinques. However, as stated by Feit-

elson on [57], performance differences can be also an artifact of the evaluation methodology. So

15

we need to study not only the factors that affect system behavior, but also those that affect the

evaluation procedure and hence the measures. The actual definition of the evaluation methodology

will play an important role to the significance and validity of the final results. Some important

comments that need to be taken into account in order to deal with the parallel job scheduling

compromises and tradeoffs, are discussed in [49].

An information that is normally not included in the workload, is the type of application to

be executed. Given the real-scale experimentation, the applications to be used can greatly affect

performances and evaluations results. Depending on the specific feature under evaluation and its

dependence on application performance, the methodology proposed in this study makes use of ei-

ther: (i) real applications, (ii) parallel synthetic applications or (iii) simple sleep jobs. Furthermore,

the experimentation methodology would be limited if we do not define in advance the evaluation

metrics. Indeed, the definition of the proper evaluation metrics will indicate the experimentation

needs and will help to direct the study of more important observations with reliable results

2.2 Real-scale experimentation upon Grid5000 platform

The complexity of Cluster and Grid systems have raised the need for real-scale experimental plat-

forms where computer scientists run experiments, observe the distributed systems behavior at large

scale under real-life conditions and make precise measurements.

As a matter of fact, the experiments upon complex distributed systems span over all the layers

of the software stack between the user and the hardware. The applications, programming envi-

ronment, runtime systems, middleware, operating systems and networking layers are subject to

extensive studies seeking to improve their performance, security, fairness, robustness and quality

of service. Thus, a mechanism that would facilitate the experimentation upon all different layers

of the software stack, became indispensable.

Grid5000 was designed to answer to the above needs. It is a large-scale distributed platform that

can be easily controlled, reconfigured and monitored. Especially designed for computer science, it

provides a real-life experimental tool, ideal for research upon complex distributed systems.

2.2.1 Grid5000 Design and Architecture

During the preparation of the project in 2003, designers of Grid5000 conducted an analysis on

the need of a computer science Grid and the diversity of potential experiments. As described

thoroughly on [45], the analysis concluded the need for a large scale (several thousands of CPUs),

16

POP Renater

1Gb Link

2Gb Link
10Gb Link

Routeur

Cluster

Server Grid5000 Local Site

Cluster 1

NFS, LDAP, DHCP...

Cluster3

Services

Cluster 2

Internet

Frontend

OAR, Kadeploy

Backbone
N e t w o r k

Grid’5000

External Access

Figure 2.1: Overview of Grid5000 architecture

distributed (10 sites) computer science Grid. Moreover, the experimentation should cover all layers

of the software stack, from the application layer to the networking protocols. Researchers may

need a specific experiment setting, different from others. Those involved in networking protocols,

operating systems and grid middleware often require a specific OS or kernel for their experiments.

Their needs may be quite diverse when they are doing research upon grids: some require Globus,

while others need Unicore or Boinc desktop grid middleware.

As a consequence, Grid5000 was designed to provide a deep reconfiguration mechanism al-

lowing researchers to deploy, install, boot and run their specific software environments, possibly

including all the layers of the software stack. This reconfiguration capability led to the experiment

workflow followed by Grid5000 users: 1)reserve specific resources of Grid5000, 2)deploy a soft-

ware environment on the reserved nodes, 3)run the experiment and make precise measurements,

and finally 4)collect results and relieve the machines.

Since researchers are able to boot and run their specific software on Grid5000 sites and ma-

chines, the need of security mechanisms arose. Hence it was decided to isolate Grid5000 from

the rest of the Internet but to let packets fly inside Grid5000 without limitation. The first choice

guarantees that internet will be protected from the power of Grid5000 and the second one makes

sure that communication performance will not suffer from the overhead of an imposed security

system. Thus, Grid5000 is built as a large scale confined cluster of clusters. Strong authentication

and authorization checks are done when users log in Grid5000 to prevent hacker attacks. In order

to provide large hardware choices, Grid5000 aimed to use 1/3 heterogeneous and 2/3 homogeneous

resources, so as to facilitate all kind of experiments.

17

As stated on [58] by Feitelson, the capability to reproduce experimental conditions is funda-

mental in computer science, especially when performance comparisons are conducted. To fulfill

this strong requirement, we decided to use dedicated network links between sites, allow users to al-

locate dedicated nodes for their experiments and let them install and run their proper experimental

condition injectors and measurements software. Thus every user has full control of the allocated

Grid5000 partition.

Grid5000 initial goal was to provide 5000 CPUs distributed over different sites in France. This

goal was reached and even over-passed having Grid5000 providing today more than 6500 CPUs

distributed over 9 sites in France, 1 in Brazil and 1 in Luxembourg. Figure 2.1 presents an overview

of the platform’s architecture. Every site hosts a cluster and all sites are connected by high speed

network links (RENATER 4: 10 Gbps links).

Every user has a single account on Grid5000. Every Grid5000 site manages its own user

accounts and runs an LDAP server. On a given site, the local administrator can manage its user

accounts. Once the account is created, the user can access any of the Grid5000 sites or services

(monitoring tools, wiki, deployment, etc.). User data are kept local to every site and distribution

to remote sites is done by the user through classical file transfer tools (rsync, scp, sftp, etc.). Data

transfers from and to the outside of Grid5000 are restricted with secure tools and done through

gateway servers.

At cluster level, users submit their resource reservations and experiment jobs using the OAR

resource and job management system. To reconfigure the software stack on every reserved node,

the users run the Kadeploy toolkit deploying the user defined software environment on a disk

partition of selected nodes. Finally to monitor and control the experiments various software tools

have been developed by Grid5000 scientists to facilitate different tasks of the experimentation

process. In the following sections we present a detailed analysis of these key components used on

Grid5000.

Cluster resource management and job scheduling: OAR

OAR [59, 60] is an open source Resource Management System for large clusters. Initially devel-

oped as a tool for research upon the area of Resource Management and Batch Scheduling, this

software has evolved towards a particular flexibility. It provides a robust solution, used as a pro-

duction system in various platforms like the regional grid infrastructure Ciment which is exploited

by scientific computations in disciplines like environment, chemistry, astrophysics, etc. OAR is

18

the Resource and Job Management System selected to function on all Grid5000 sites. It is respon-

sible for resources allocation and reservation along with the jobs execution. In OAR, resources

required by jobs are matched with available ones. This matching is based on a hierarchical affinity

of resources which enables them to allocate from a whole cluster until a specific CPU, Core or

thread. Detailed description of OAR Resource and Job Management System will be given on the

following chapter of this thesis.

In order to be able to execute experiments on different clusters of Grid5000, simultaneously,

OARGRID [61] software has been developed. This toolkit is a wrapper that enables the use of

several OAR clusters, of different sites, for easier grid experimentation. It provides the possibility

of resources allocation and reservation on a grid level. The individual job execution is effectuated

by the local OAR system.

Reconfiguration mechanism: Kadeploy

In the context of high performance computing research, scientists seem to need various software

environments in order to perform their experiments. A software environment contains all the soft-

ware layers like the operating system, the libraries, the middlewares and the applications (figure

2.2). According to their experiments’ nature and the software layer they are investigating (pro-

tocols, OS, etc), they often require specific OS. Hence, a special tool with a deep reconfiguration

mechanism allowing researchers to deploy, install, boot and run their specific software images, is

needed.

Kadeploy [62, 63] is a software environment deployment tool designed to deal with the above

issues, providing automated software installation and reconfiguration mechanisms on all the layers

of the software stack. By using kadeploy, in a typical experiment sequence, a researcher reserves

a partition of the cluster or grid, deploys its software image (figure 2.4), reboots all the machines

of the partition, runs the experiment, collects results and finally relieves the machines. This recon-

figuration capability allows researchers to run their experiments in the software environment that

perfectly matches their needs and provides to users, a software homogeneous grid.

This tool uses the traditional protocols for network booting: PXE, TFTP, DHCP. As we see on

figure 2.3, kadeploy architecture is designed around a database and a set of specialized operating

components. The database is used to store all necessary information for the deployment process,

the computing nodes and the environments. At the same time, the code is written in Perl, which is

perfectly suited for system tasks. In addition uses a fast mechanism of environment diffusion which

hardly depends on the number of nodes. This mechanism is based on a pipeline approach (chain of

19

Applications

OS(Linux, FreeBSD,...)

Environment
Middleware

Hardware Network

SpecifiableToolsDistro

Configurable

Figure 2.2: Software environment

TCP connections between nodes). This enables operations of deployment on large clusters (1000

nodes).

Client

Scheduler

Users

Server

Diffusion
Mechanism

Database

Batch
Environment
Repository

Computing Nodes

Network booting protocols

Hardware reboot mechanism

Kadeploy2

Submision

Figure 2.3: Kadeploy architecture

The deployment process 2.4 will write a complete environment, on a partition of the disk of

each computing node, which will be followed by a reboot on this partition. The process ensures

that the partition of the disk where the reference environment of the node is installed, remains intact

during diffusion. To guarantee a greater function reliability, Kadeploy tool directs clusters to be

coupled with remote mechanisms of hardware reboot. Thus, if a particular problem occurs on one

or more nodes during a deployment, a restarting on the reference partition is ordered automatically,

on defected nodes.

An environment is created very simply by making an archive of the root partition in compressed

tar format. To ensure a high level of portability and to permit that an environment is usable on

various clusters of similar processor architectures , the environment should not contain informa-

tion corresponding to the initial cluster. That is possible because the majority of the services have

20

autoconfiguration mechanism (ex: protocol DHCP for the network) and the majority of the oper-

ating systems have hardware autodetection mechanisms making it possible to adapt to the minor

differences (network cards, disks...). For the services that lack autoconfiguration procedure during

the deployment, a procedure known as post-installation process supplements the parameter setting.

Grid5000 uses kadeploy environment deployment tool for effective reconfiguration capabili-

ties.

at the batch scheduler

New experiment

Environment creation

1 2 3 4

4)Work finishes, nodes return to
the initial reference environment

3)Work on the environment

2)Environment deployment

1)Submission of requested nodes

Figure 2.4: Typical sequence of an environment deployment.

2.2.2 Automatization and Reproduction techniques

Grid5000 testbed gave us a complete tool to perform large-scale experimentations under realistic

conditions. We took advantage of all the provided features and toolkits of Grid5000 so as to facil-

itate our experiments. However, the issue that arised, was the ability to reproduce the experiments

so as to validate our results. In order to answer to this issue we had to automate the whole procedure

so as to be able to perform experiments without human intervention [64]. Hence our methodology

is based upon a suite of Bash scripts that automates the whole procedure of experimentation. This

procedure allowed us to deploy, install and configure a personalized HPC infrastructure (cluster

or grid, according to our needs) in order to test our proposed optimizations or perform evaluation

comparisons between different RJMS.

The process of the experimental methodology upon Grid5000 is composed by the following

steps:

1. Construction of the experimentation environment, where the installation of needed oper-

ating system, kernel and software is performed. This step is normally effectuated only once,

either in the begginning or whenever an environment update is needed.

2. Selection and allocation of specific number of nodes to be used for experimentation. This

step implicates the use of OAR and OARgrid for allocation or advanced reservation of nodes.

21

3. Environment deployment upon the attributed computing nodes and system configuration.

In this step we make use of kadeploy and specialized configuration scripts for configuration

of the personalized cluster.

4. Actual experiment execution and performance evaluation. In this phase we need to ex-

tract and store all important information of the execution in order to be able to make a-

posteriori observations. The experiment execution phase along with the definitions of the

metrics that we will be using, is analysed with detail in section 3.

5. Results collection, and nodes relieve. Finally we collect all results and release the allocated

nodes.

The reconfiguration mechanism, based on Kadeploy, allows the deployment of the constructed

environment on the number of nodes that are requested for the experiments. Taking advantage of

this capability a user can very easily deploy his own cluster or grid upon the Grid5000 platform. In

more detail, for our experiments we constructed an environment containing all the needed software

installed and ready for configuration. Once the environment is deployed on all the allocated nodes,

we proceed to the software configuration and the attribution of the roles (Grid server, Cluster server,

computing node, ...) just by choosing the specific services to be launched to each deployed node.

Hence, we obtain a personal cluster or grid infrastructure ready for experimentation.

During this thesis all experimentations were effectuated upon Grid5000 following this same

procedure.

2.3 Evaluation Methodology based upon Replay of Workloads

In the context of our study, the performance evaluation is used for Resource and Job Management

Systems comparisons and for experimetation and validation of the optimization techniques for

better system exploitation. The evaluation methodology upon real-scale configurations of High

Performance Computing systems is a complex issue that implies close dependencies upon plenty

of factors. The whole system is literally functioning under realistic conditions. Therefore, we can

make changes upon all different kind of factors that influence the system, the execution and the

final results.

System factors like scheduling policy, energy efficient resources management, task affinity or

general system tuning can definitely change the performance results. In addition, the workload

injected to the system has proved to be of great influence to the final results. How should we

22

know which workload trace to inject for a specific measurement? In our study we tried to answer

to this question and proposed evaluations with both synthetic and real workload traces. Another

important parameter is the type of executed applications. Whilst the users’ workloads injected

to the cluster we wonder what kind of applications should we execute during the allocation of

resources. Depending on the specific measure that we want to obtain we propose a number of

different applications (sleep, benchmarks or real) for execution with various profiles so as to stay

very close to real computations. Finally the last (but not least) important factor of the evaluation

methodology is defined by the actual metrics that we want to observe. What kind of parameter do

we want to measure and what kind of results do we want to obtain? This is an important question

that we had to pose to ourselves, in order to obtain valuable results.

In this section we analyzed the actual engine of the evaluation methodology into all the factors

involved in the evaluation procedures during the various scenarios. Moreover, we present a collec-

tion of tools that we have developed, in order to analyze, visualize and replay workload traces so

as to facilitate our experimentation.

2.3.1 System factors

The spectrum of parametrized system factors during real-scale experimentation can be particularly

large, since it implies the tuning of both hardware and software parameters setting. The hardware

choices are made during the selection of the right cluster for the experiments, according to specific

hardware characteristics. For example the choice of the type of network: Infiniband, Myrinet or

Ethernet will change the application performance and hence the final turnaround times of jobs.

Usually we diminish the variations on hardware characteristics by selecting the same clusters for

the same type of experiments, in order to obtain more fluidity in our results. Similarly, the OS,

kernel and middlewares of the system can influnce evaluation performance and thus we inherit

common software characteristics at least for the same type of experiments.

So, due to the complexity of real-scale experimentation we are obliged to assume that a lot of

system factors will not be parametrized in order to be able to evaluate the factors and characteristics

that really interest us. In the case of Resource and Job Management Systems comparisons, an

important factor that influences overall performance, as we will observe on the next chapter, is

the scheduling policy. This RJMS parameter defines the order that the jobs will be treated upon

the clusters computing resources. Furthermore, every RJMS supports various policies, allowing to

compare the efficiency of each one of them.

In the case of experimentation upon energy efficient exploitation, as it is discussed on chapter

23

6, the performance and energy consumption is measured for different scenarios that use normal

or green resources management techniques. The green resource management techniques implicate

the shut-down of unitilized machines for predetermined duration. The choice of normal or green

resource management provides one parametrized factor. Furthermore, the variation of the predeter-

mined duration related to machine unitilization, may result into different performances, and may

be another interesting parametrized factor.

2.3.2 Workloads

Based on the related work in the area (section 2.1.2) it seems that to give precise, complete and

valueable results the studies should include the replay of both modelled and real workload traces.

In our studies we have developed the support of both ways of evaluation, however due to time

constraints not all of our experimentations were capable to include the validation of both methods.

Nevertheless, we believe that in those cases the reproduction of experiments and the variations of

various factors results into reliable observations.

Evaluation based upon Real Platforms Workload

The first question to ask in the case of real workloads, is which workload log to select and what

are the characteristics that we need to study in order to select the right log for the right experiment.

For this, an obvious parameter is the size of the system from which the workload was extracted.

Indeed the choice of the size of the cluster in the trace file and the size of the one that we will use

for experimentation has to be the same and if possible, of the same architecture. The case of using

a trace file of 32 dual-CPU nodes upon a 64 single-CPU nodes or a trace of 32 dual-CPU upon a

cluster of 8 quad-CPU-dual-core node is possible but may present unreliable results, depending on

the specific measures that we are willing to perform.

Another important concern was how we can select specific parts of the workload logs in order

to use them on our experiments. In our experimentation methodology we are limited by the time,

because a normal single experiment execution should not last more than 12 hours. This rule is

one of the various usage rules enforced by Grid5000. However, the logs maintained in Parallel

Workloads Archive depict usually the utilization of the system for at least 4 months. Hence we

need to define criteria so as to guide our selection of particular parts of the workload logs. Which

parts contain more valuable information for replaying? Which parts will provide more interesting

behaviour for observation?

24

As discussed on [57], underloaded systems present typically similar performances, whereas

higher load conditions stress the system and expose differences in how systems react to load.

Hence one of the first adopted characteristics that guide our selection, is the systems load. As it

is explained on the following section a specific toolkit has been developed to calculate the system

utilization of a workload log for specified duration windows. Therefore, various workload parts

with different system loads may be used to test the system under different levels of stressing.

Further, a more detailed selection observing the jobs interarrival and waiting times can take place

with manual intervention. Big system load with long interarrival and small waiting times imply

a simple behaviour with not a lot of stress: For example a case of only 2 jobs that use all the

resources for a big amount of time might have the above characteristics and indeed there is not

meaning of comaring the scheduling policies of an RJMS under a similar workload.

A specific group of workload logs that was widely used during this thesis was the one of DAS2

multicluster supercomputer. The main reason was the relative small number of nodes that defined

the system from which the workloads were extracted along with the interesting variation of jobs

characteristics. On [5] the authors present a comprehensive characterization of the DAS2 work-

load. The traces obtained, are written on the standard workload format [65] (swf) and represent

twelve months of load.

Evaluation based upon Synthetic Workload

Concerning the synthetic workloads, our main interest was to use a validated model that provides

easy adaptation upon any size of cluster in order to facilitate our already complex real-scale exper-

imentation procedure.

To evaluate the scheduling performance of Resource and Job Management Systems, we have

adopted the Effective System Performance (ESP) model [2, 56]. This is a widely used model,

which not only provides a synthetic workload but proposes a specific type of benchmark applica-

tion that can be executed to occupy resources as simply as possible, without stressing the hardware.

The ESP [2] test was designed to provide a quantitative evaluation of launching and scheduling

parameters of a resource and job management system. ESP benchmark is a composite measure

that can evaluate the system via a single metric, which is the smallest elapsed execution time of a

representative workload. Multiple ESP tests may be performed in order to adjust the various RJMS

parameters that can influence the exectuion of the workload (like scheduling policy, or propagation

algorithms) and to tune the system for optimal results.

As presented in [2], the overall design goals and choices for the Effective System Performance

25

benchmark can be deduced to the following:

1. Complete independence from the hardware performance (like CPU speed) or compiler im-

provements on the executed application codes. This is addressed by proposing a simple MPI

application with target run-time that can be fixed to a given value.

2. Ability for efficiency evaluation of different scheduling policies (like backfilling,preemption,etc)

supported by the resource and job management systems. This is possible through the use of

the same particular workload.

3. Ability for scalability evaluation of job scheduling and launching procedures. This is ad-

dressed by proposing a dynamically adjusted proportional job mix in order to use the bench-

mark and provide evaluations upon the same systems of different scales.

4. Capability of repetitions in order to evaluate the RJMS through its improvements over time.

The ESP test has been deliberately constructed to be processor-speed independent with low

contention for shared resources (e.g. the file system) and a specific measure of scalability, stability

and effectiveness of a system’s RJMS. It runs a fixed number of parallel jobs through a manager

of resources and jobs. Individually, the jobs have their elapsed run times set to a fixed target run

time. The elapsed time of the total test is independent of the different hardware performance and

is determined, to a large degree, by the efficiency of the scheduler and the overhead of launching

parallel jobs. In ESP, there are 230 jobs derived from a list of 14 job types, which can be adjusted in

a different proportional job mix, if needed. The test is stabilized to the number of cores by scaling

the size of each job with the entire system size. Table 2.2 shows the job types with their relative size

compared to the entire system, instance count and target run time. The ESP test includes two full

configuration jobs, called Z-jobs in the test scripts, which are constructed to use the total number of

available computational cores. The default ESP execution rules specify that the full configuration

jobs cannot run at the beginning or the end of the test period and that no other job is permitted to

start running in the interim between the submission of the Z job and its launch. In our case we

have slightly simplified this last rule. This was made because only systems that allow preemption

or checkpoint/restart would be able to respect this rule and our goal is to be able to use this method

for a large spectrum of RJMS. There are two versions of the test the ’throughput’ variant without

the Z-jobs (228 jobs in total) and the ’multimode’ variant where the Z-jobs are submitted at 2400

and 7200 seconds after the start of the test and after all other jobs A, ..., M have been submitted. In

our experimentation we use only the ’multimode’ variant and we give a higher priority to Z-jobs

26

Job Type Fraction of Job Size Count of the number Target Run Time

relative to total system of job instance (Seconds)

size

A 0.03125 75 267

B 0.06250 9 322

C 0.50000 3 534

D 0.25000 3 616

E 0.50000 3 315

F 0.06250 9 1846

G 0.12500 6 1334

H 0.15820 6 1067

I 0.03125 24 1432

J 0.06250 24 725

K 0.09570 15 487

L 0.12500 36 366

M 0.25000 15 187

Z 1.00000 2 100

Total 230

Table 2.2: ESP benchmarks synthetic workload characteristics [2] .

than the rest of them and let the system decide how these are going to be treated depending on

its capabilities and supported parameters. The rules dictate that the first full configuration job is

only submitted after a part of the workload has already been scheduled and is running. The jobs

in the ESP suite is submitted to the RJMS in a pseudo-random order following a gaussian model

of submission. They are separated into two blocks. The first block contains all jobs except the two

job type Z jobs. After 40 minutes that the last normal job has been sent, the first Z-job is submitted,

and after 2 hours the second Z job is submitted. No manual intervention is permitted once the test

has been initiated.

The fractional-size is the size of the job as a fraction of total system size. For example, if the

system under test has 10240 cores for computation, then the size of job-type F is 640 (= 0.06250 x

10240) cores. The ESP test can be applied to any system size and has been verified on 64, 512, 1024

2048, 6726 and 19,320 computational core systems. The specific value choices of job sizes fraction

along with the jobs target run times were inspired according to the real workloads of a specific

computing center [52]. The scientists wanted to construct a synthetic workload that will reflect

the characteristics of their everyday workloads in order to make a better selection of the resource

management software or the specific scheduling policy they needed to use for improvement of

27

their system utilization. The initial version of the benchmark contained even specific applications

from different branches of science to execute [52], whereas the second and current version ESP2

[2] proposed a slightly different model and the execution of a simple toy MPI application (section

3.4.3).

Given a total amount of work, a hypothetical absolute minimum time (T-BEST) can be com-

puted by dividing the work by the system size. Regardless the system size this hypothetical abso-

lute minimum time is T-BEST = 10,773 seconds (3 hours). T-BEST is independent of the total

system size and the processing speed of the system. The Effectiveness ratio, as show in [2], is the

time the test actually runs compared to the time the best packing solution indicates, which means

T-BEST divided by the observed elapsed time of the ESP test as shown on 2.1, where x is the

concurrency for test code i and T is the run time the code i runs.

E =
T − BEST
∑I

i=1 xi ∗ Ti

(2.1)

E is the metric of the ESP test which allows us to make performance evaluations of a singe

RJMS by varying some of their parameters and perform comparisons between different RJMS.

For increasingly efficient systems, the ratio approaches unity. The T-BEST is simply a convenient

definition of a lower bound. It is not possible to obtain T-BEST in a real test even in the optimal

case. Therefore, most attainable ESP ratios fall in the range of 0.6 - 0.9.

In order to use it on our methodology we have extended ESP so as to support more resource

and job management systems. Hence, the latest version of OAR, SLURM and Torque+Maui RJMS

have been supported upon ESP.

Modifiying ESP for evaluation of topology aware placement techniques

The ESP benchmark can be used to compare systems of different scales, regardless the hardware

characteristics. But in some cases we want to compare RJMS features (like topology aware place-

ment techniques) using the same system and conditions. In this case the actual application perfor-

mance and turnaround times of single jobs will provide variations on the final elapsed time of the

whole workload. Limited by the fixed target run times of ESP model; the normal ESP benchmark

does not allow us to evaluate features like these. Nevertheless, if we execute real applications with

real (not-fixed) runtimes then different task topology placement techniques will lead to different

application execution speeds, single jobs turnaround times and different whole workload elapsed

28

time. This will finally reveal insights upon the efficiency of the topology aware placement tech-

niques. This is because applications that are sensitive on communications will perform better and

have faster turnaround times if placed upon resources that allow faster communication and this will

show on the single jobs execution times which will lead to smaller ESP elapsed times. In particu-

lar, in our case, we substitute the use of the simple default MPI application of ESP (section 2.3.3)

with a NAS MPI application (section 2.3.3) which is sensitive to communications. More details

about the particularly adapted ESP benchmark called TOPO-ESP-NAS are given in the description

of the actual experimentation in section 3.5.3.

2.3.3 Executed Applications

The users workloads presented on previous section define the attributes of the jobs that are going

to be injected to the system. Since we are dealing with real-scale experimentation, the actual

definition of the applications to be executed needs to be made as well. Depending on the specific

factors that we are willing to measure for every different type of experiment we need to choose the

right application profiles. For example, in case we are only interested for the actual scheduling of

all the jobs and no specific application performance for single jobs then simple sleep jobs, can be

used, that only provide a time allocation for the RJMS and do not stress the system. On the other

hand, if we need to take into account the overheads conducted by stressed network, machines CPU

usage, or memory then synthetic or real applications can be used.

During our experimentation presented on the following chapters we have been using various

types of applications.

Sleep applications

The definition of sleep applications consists of using the simple unix command sleep followed by

a number which represents the amount of time in seconds that a Core, CPU or Machine will stays

idle. The main advantage of using sleep jobs is that they represent the simplest type of application

with a predefined steady duration that can be performed in any number of nodes. However, due

to their simplicity we can use them only for experiments that the final evaluation measures are

not influenced by CPU, bandwidth, or memory stress, or generally when we don’t care about

computations overheads.

29

Synthetic applications

Synthetic applications represent a specific type of applications defined by characteristics which

are based upon real applications profiles. They can be used for computations with a goal to stress

specific parts of the system like CPU, memory, network or even I/O. Furthermore, the fact that they

can be parametrized according to the users experimental needs makes them ideal for real-scale ex-

perimentation. Their drawback is that even if they implicate real computations they cannot capture

the complexity of a real application. The synthetic applications used for the experimentations in

this thesis are parallel versions programmed with MPI message passing implementation and were

selected to be the following:

• NAS NPB3.3 benchmarks The NAS parallel benchmarks [66], are widely used to evalu-

ate the performance of parallel supercomputers. They exhibit mostly fine-grain exploitable

parallelism and are almost all iterative, requiring multiple data exchanges between pro-

cesses within each iteration. They consist of eight problems (five kernel and three simulated

CFD applications) derived from important classes of aerophysics applications. The Bench-

marks BT (Block Tri-diagonal), SP (Scalar Penta-diagonal) and LU (Lower-Upper Symmet-

ric Gauss-Seidel) solve a discretized versions of the unsteady, compressible Navier-Stokes

equations in three spatial dimensions.

The NPB-3.3 MPI implementations of the benchmarks have good performance on multiple

platforms and are considered as a reference implementation 1.

Jaspal Subhlok et al. in [67] have made a valuable characterization of all different NAS

benchmarks and we use this as a reference for selecting the right NAS benchmark for each

experimentation according our needs for CPU, network or memory stress.

• Linpack-HPL

LINPACK is a software for performing numerical linear algebra on digital computers. Ini-

tially develloped by Jack Dongarra [68] was intended for use on supercomputers. The LIN-

PACK Benchmarks are a measure of a system’s floating point computing power. They mea-

sure how fast a computer solves a dense N by N system of linear equations Ax = b, which

is a common task in engineering. The solution is obtained by Gaussian elimination with

partial pivoting. The result is reported in millions of floating point operations per second

1http : //www.nas.nasa.gov/Resources/Software/npb changes.html

30

(MFLOP/s). For large-scale distributed-memory systems, HPL [69], a portable implementa-

tion of the High-Performance LINPACK Benchmark, is used as a performance measure for

ranking supercomputers in the TOP500 list of the world’s fastest computers.

It can be thought of as a test of many functions :

– cpu speed and instruction sets

– memory capacity

– system bus speeds

– interconnect topologies, performance and design

– linear algebra library optimizations

– compiler optimizations

– communication stack and protocol optimizations

The Linpack HPL benchmark contains several tuneable parameters, but its most important

drawback is that it does not stress the I/O disk accesses. 2

• pchksum benchmark

This toy application has been implemented to be used and fit the needs for ESP benchmark

[56, 2]. It is a simple parallel application that performs MPI communications. Each task

generates a random message string and computes a digest. Each tasks sends the random

message and receives a similar message from the next one. The rank of tasks are randomly

generated. With each received message, the task does a XOR operation onto a message

buffer which initially contained its random message. This operation is continued until a

predefined requested time. The next part, repeats the above operation but in reverse order

of the tasks ranks. After the last XOR operation, the updated message should be exactly the

same as the initial message. Or, equivalently their digests should match. If this is met then

the job has been correctly executed.

• Mandelbrot set

This is a widely known exercise for parallel computation because its sequential algorithm can

be simply programmed in a parallel version using MPI. In our context this application is used

for a dynamic process management technique where the application is able to grow or shrink,

2http : //www.netlib.org/benchmark/hpl/tuning.html

31

during the execution time, according to the resources availability. For the sake of some

experiments, a static version of Mandelbrot was implemented to a dynamic version through

lib-DynamicMPI with MPI comm spawn primitives. The dynamic Mandelbrot starts with a

master that will spawn workers, manage tasks and store the results. Workers receive tasks,

execute them, return results and wait for more tasks. The application is able to identify

resources changes and launch the dynamic operations. In growing, new workers are spawned

upon resources that become available and in shrinking workers inform the master which are

the executing tasks and then finalize their execution.

Real applications

The advantage of real applications is that in any way it is the most representative method of testing

the system especially if the application is widely used upon the platform you are willing to ex-

periment it on. However, the recuperation of a real application and the opportunity of performing

evaluations, that can allow you controlled reproducibility, with it, is really difficult to find and rare.

During the research for this thesis we had the opportunity to use one real astro-physical application

for the experimentations of one of our studies.

• MCFOST astro-physical application is a real application of a 3D radiative transfer code

based on Monte-Carlo method, [70]. MCFOST code is used extensively to produce synthetic

images of the scattered light from disks around young stars. With the unprecedented wealth

of data, from optical to radio, fine studies of the dust content and evolution of disks become

possible and powerful radiative transfer (RT) codes were needed to fully exploit these data.

MCFOST was designed for this reason It was originally developed to model the scattered

light in dense dusty media (including linear and circular polarisations), but it was later ex-

tended to include dust heating and continuum thermal re-emission. It is currently applied

on objects with opacities of high orders of magnitude. This is a rather complex and delicate

computation where the codes have to be compared on real conditions.

The application was specifically constructed to be run upon a lightweight-grid platform con-

figuration. This platform is designed to aid the experimentation of a mesocenter called CI-

MENT which consists of a number of clusters owned by different laboratories covering var-

ious areas of sciences, like biology, medicine, astrophysics, climate prediction, chemistry,

etc. As it will be described in more detail on chapter 4, the application was configured to

run upon this lightweight grid as multiple sequential independent tasks. The code utilized a

random generated number, used as a grain to obtain different internal values to cover a broad

32

spectrum of results. A specific parameter, that internally defined the number of photon pack-

ages, can be modified to change the actual execution time of each task. Furthermore, the

number of the submitted tasks can be also defined and the bigger number of tasks we can

execute the more reliable are the results.

The configuration of these applications until they can be actually used and provide interesting

results for a specific experimentation was not an easy task. In particular, the procedure of

reproduction in order to obtain steady and reliable results was rather complicated because

demanded tuning on both system and applications side. However, the extra configuration

efforts that we had to make were worth the time and work because the actual real-scale

computations were able to give us valuable results upon both the astro-physical executions

and our systems evaluation.

2.3.4 Evaluation Metrics

The evaluation metrics to validate an experimentation run may vary depending on the exact purpose

of the study. A specific optimization technique or a change of a system parameter can affect certain

evaluation metrics. Our aim is to be able to capture those evaluation metrics and be able to observe

their variations throughout the experimental run. It is expected that a certain optimization upon one

evaluation metric may happen to the detriment of another metric. Hence, a post-treatment analysis

will be needed in order to evaluate the tradeoffs, gain and losses due to a specifc modification. The

final decisions upon the value of a modification will be determined by the analysis of those metrics

and tradeoffs.

In this section, we depict the evaluation metrics that were mostly used in our experimentation

methodology and we separate them into three different groups according to their characteristics.

The first group contains the metrics related to the workload jobs, the second contains metrics

related to the system and the last one is composed by the interesting Trade-OFFs that we are

willing to explore.

Jobs and applications related Evaluation Metrics

The following metrics are related to the job or the application itself and considering all the jobs of

the workload, we can extract either average or total values.

• Turnaround Time (or response time), implies the whole duration of a job execution from

the submission time until the job is terminated

33

• Execution Time, implies the actual execution of the job from the start until the end of the

actual computation. This value also depicts the application performance.

• Waiting Time, is the systems response time and implies the amount of time the job will be

waiting in the queue until the demanded resources are allocated to it.

• Slowdown (or stretch time), consists of the turnaround time normalized by the job’s actual

running time.

• Number of Jobs in a certain state, this value is used for the experimentations that we need

to impose a certain duration but we need to acquire the total number of Terminated, Error

and still Pending Jobs in order to perform comparisons

System and machines related Evaluation Metrics

The following are system related or machines specific metrics and they can be used either as instant

or overall values during the whole duration of the workload.

• CPU-time Utilization, is the occupation of specific number of resources for a certain amount

of time for all the under execution jobs on the system. This value is measured calculating the

number of utilized CPUs with the duration of the whole computation for the specific amount

of time.

• Energy Consumption, is calculated per machine or per system for a certain amount of time.

2.3.5 Xionee: Workload Trace Analysis, Visualization and Automatic Injec-

tion Toolkit

One of the most important parts of the evaluation procedure was related with the analysis and

treatment of workload traces. Initially, the need was raised to be able to inject a specific workload

trace synthetic or real one, on the cluster for execution. Furthermore, a kind of trace file manipula-

tion was needed in order to obtain a specific part of it with certain characteristics and the smallest

possible duration for replay and treatment. The analysis of the workload trace was initially made

manually but the complexity of this process suggested us to provide a visualization approach to

facilitate this work. Finally, in the end of the workload execution we need to create a new workload

log that reflects the actual execution of the injected workload upon the system. Hence, a specific

34

mechanism is needed for jobs data characteristics extraction and construction of a new workload

trace.

Therefore, to answer all those needs we developped a collection of tools, called Xionee [71], to

facilitate the evaluation procedure with workload traces. Xionee toolkit is used for the following

actions:

• Workload analysis, according to a specific evaluation metric for example system utilization

or jobs waiting times. This step is effectuated in order to ease the observation of interesting

behaviours inside the workload. This can aid either in the initial phase for selection of part

of the workload for injection to the system or in the final phase of post-treatment where we

observe the actual behaviour of the system.

• Workload visualization of specific characteristics for better comprehension of the workload.

The visualization extensions have been implemented in order to automate the result figures

of the evaluations.

• Workload treatment, is the phase of the trace file manipulation in order to extract the par-

ticular part of the initial workload log file that is going to be used for injection to the system.

This phase is only used for workloads obtained of real production systems.

• Trace conversion into a different format. Xionee toolkit currently supports only 3 known

formats the swf, the cirne and the one used for esp. This phase is used to convert from one

format to another.

• Workload automatic injection upon the system, which implies the parsing of the trace file

and the construction of a suite of jobs to be submitted on the relevant system. Xionee toolkit

supports only 3 different RJMS (OAR, Torque and SLURM) for the moment.

• Extraction of jobs characteristics from the database and construction of a new workload

trace which will reflect the actual execution of the initial workload under the specific condi-

tions provided to the system.

Figure 2.5 shows the procedure steps that we follow for the evaluation

The actual implementation of Xionee was done in Ruby programming language to make ad-

vantage of its procedural, entirely object-oriented and functional programming methods. For the

analysis and visualization tools we are based on R and gnuplot for the statistical computing part

35

Workload Trace Decomposition

Workload Trace Analysis and Part Selection for Execution

Workload Conversion and Normalization for Submission

Trace Part Submission for Execution

Synthetic Workload Generation Real Workload Trace Treatment

Workload Trace Analysis and Post-treatment for validation

Results Collection and Jobs data conversion to Workload Trace

 Adapted Workload Generation from input parameters

Workload Trace Analysis

Workload Trace File

Workload Execution upon Cluster

Workload Trace file

Initial Workload Trace fileInput Parameters

Applicat ions Used for Execution
simple sleep jobs
Linpack

NAS NPB 3.3

MCFOST Astrophysical

Mandelbrot

Workload Trace Analysis
System Uti l izat ion

Jobs Arrival Rate

Jobs StrechTime

Energy Consumption

Jobs Waiting Time

pchksum

Figure 2.5: Sequence of Xionee evaluation procedure based upon Replay of

Workloads.

and graphical representation. Finally, the database extraction tools function with only MySQL

DataBases for the moment but PostgreSQL support is also planned for the near future.

The development of Xionee toolkit is deeply related to the system and the evaluation metrics.

Indeed, possible changes on the database structure of a supported RJMS, demand a reimplementa-

tion of the data extraction toolkit. In the same time the support of a certain evaluation metric needs

to be developped upon the analysis and visualization tools. In more detail, the specific analysis

and workload trace exploration tool is based upon an histogram implementation taking into con-

sideration specific durations of time and calculating the relevant CPU-time utilization. Following

this method, it is easier to select specific parts of the complete workload trace according to their

overall utilization percentage and also taking into consideration other metrics like average waiting

and execution times.

When a specific instant of start and end of a workload part is demanded then the CPU-time

36

utilization for this specific duration is caclulated taking in consideration the jobs that have been

started before the start of the demanded time interval. Furthermore, this process is taken into

account in the injection procedure of the workload trace part upon the system where the automatic

submission of jobs is started one hour in advance in order to take care of those jobs that need to be

already started for the machines occupation when the actual workload is injected.

2.4 Conclusions

Research upon High Performance Computing uses various methodologies for performance evalua-

tion and experimentation. Middleware like Resource and Job Management Systems are character-

ized by multifacet, inter-dependent procedures. Therefore an experimental methodology that can

measure the performance of the whole system without subtracting particular components, would

better reflect reality. This chapter presented the principles of the methodology that we have been

using for real-scale experimentation. The main concepts of our approach are the use of a con-

trolled platform for real-scale reproducible experiments along with the utilization of synthetic or

real workloads so as to provide the necessary realistic conditions to observe the function of the

whole system. In the case of synthetic workloads a particular benchmark called ESP [2] has been

adopted in our methodology and specific modifications were proposed to adapt it for evaluation of

particular resource management features like topology aware placement. Other important param-

eters that have to be set are the types of executed applications and the evaluation metrics that are

being used. The carefull definition of all these parameters may provide more valuable evaluation

results closer to reality. In order to facilitate the analysis, submission, post-treatment and visual-

ization of workload traces for a platform we have developed a particular suite of tools, Xionee, that

is used during various phases in our methodology.

The real-scale experimentation can reveile important insights concerning the middleware. Nev-

ertheless we argue that the value of simulated experiments is indisputable and in order to have a

complete method for HPC middleware, simulation experiments should be also included. This will

enable to validate initial thoughts and intuitive hypothesis and then proceed to the actual imple-

mentation and the real-scale experimentation. One of the drawbacks of the presented real-scale

methodology is that it is largely influenced by the consistency and reliability of the platform. It

does not consider that a failure can occur in the system and if this happens the experiment needs

to be reproduced from the beginning. This can result in using a big number of resources, just to

provide repetitions of an experiment, that could even lead to incorrect results because of a single

37

node failure. This can also result to wasted amounts of energy consumption as we will see on

chapter 4.

A way to deal with the above reliability and energy consumption issues of the real scale exper-

imentation is to provide the same real methodology upon a virtualized environment [72]. Instead

of performing a real-scale experimentation the option of using virtualization techniques can limit

significantly the number of real used machines and in the same time even larger scale experimenta-

tions can be attained. Finally, the applications used could be enhanced by synthetic ones that have

been constructed based on specific profiles, to reflect particular needs of a system. The experiments

provided on the following chapters are based upon the above methodology.

38

Chapter 3

Comparisons of Resource and Job

Management Systems

The work of a Resource and Job Management System is to distribute computing power to user jobs

within a parallel computing infrastructure. It’s goal is to satisfy users demands for computation

and achieve a good performance in overall system’s utilization by efficiently assigning jobs to

resources. This assignment involves three principal abstraction layers: the declaration of a job

where the demand of resources and job characteristics take place, the scheduling of the jobs upon

the resources and the launching and placement of job instances upon the computation resources

along with the job’s control of execution. In this sense, the work of a RJMS can be decomposed

into three main subsystems: Job Management, Scheduling and Resource Management.

In earlier years when parallel computing infrastructures consisted by simple homogeneous ar-

chitectures (like 1-level flat networks and mono-processor nodes) the function of a Resource and

Job Management System was rather straightforward. Its main intelligence and complexity was

centered around the efficient scheduling of jobs. However, the advent of multicore architectures

along with the evolution of multi-level/multi-topology fast networks has introduced new complex-

ities in the architecture and extra levels of hierarchies that needed to be taken into account by the

resource managers. Furthermore, the continuous demand for computing power by applications

along with their parallel intensive nature (MPI, OpenMP, hybrid,...) made users needs more de-

manding for robustness and certain quality of services. These issues had to be treated on the job

management layer. Hence, both Resource and Job Management layers needed to be reinforced and

as a consequence the Scheduling layer, which had to consider more parameters to support those

reinforcements, became even more complex.

39

In the same time the continuous growth of cluster’s sizes and computing power still follows

Moores law and we have recently observed the entrance on the petaflop scale for supercomputing

clusters [3]. The efficient assignment of large number of resources to an evenly large number of

users produces issues like job launcher’s and scheduler’s scalability. Propagation and scheduling

algorithms need to be sufficiently equipped to deal with these additional complexities. Moreover,

the increase of network diameters and the network contention issues that can be observed in such

network sharing scenarios demand a certain treatment so as to favorize the placement of parallel

jobs upon groups of nodes which could provide optimal communication speeds. Inevitably the

increase of computing resources results in increase of system failures and this is another important

issue that has to be treated, in order to guarantee systems responsiveness and robustness. Finally,

the great impact upon energy consumption motivated research upon both hardware and software

side. Since the RJMS has a constant knowledge of both workloads and resources it can provide

techniques for dealing with energy economies taking into account current and future resources

availabilities or certain units idleness’s.

Hence, the problematics upon RJMS systems have become more complex and in overall the

area of resource/job management and scheduling has become an interesting research subject with

various extensions.

This chapter provides the state of the art of a resource and job management system (RJMS).

It presents its global architecture design and discusses challenges and issues that have emerged

through the latest technological evolutions, the applications needs in computing power and the

continuous growth of cluster sizes. It provides a survey of some of the most known commercial

and opensource RJMS and presents a non-exhaustive analysis of their principal concepts and their

approaches to deal with the latest evolutions and needs.

3.1 Background and Related Work

Since the beginning of the first RJMS back in the 80s, a lot of software packages have been pro-

posed in the area to serve these needs. Most older systems like NQS, DQS, Utopia has been

initiated as university research projects that later became industrial software. Figure 3.1 provides a

chronological map of most of the known RJMS since the beginning of the research in the domain.

For example PBSPro which is a commercial solution has started as a university effort in the USA

with the name OpenPBS. The same software then turned into commercial with PBSPro and an

open-source solution based on OpenPBS was maintained under the name Torque. Another widely

40

1982 1984 201020031994

MDQS

Condor

NQS

PBS

OpenPBS Torque

UniJES LoadLeveler

SLURM

OAR

OpenCCSCCS

UTOPIA LSF

LAVA

2000

Sun Grid EngineGridWare Oracle SGE

Moab

Maui

PBSPro

CODINE

DQS

Figure 3.1: Resource and Job Management Systems Chronological Map

known open-source RJMS system is Condor which is also one of the oldest in the area and remains

an innovative research tool and a powerfull production system. It is interesting to see that there was

a wave of new generation systems like SLURM, SGE and OAR which started after 2000. Section

4 provides extensive information and descriptions about some of the above RJMS.

In addition a lot of studies have been made to evaluate and compare those different approaches

[73], [74], [75]. One of the first studies which regrouped and evaluated various RJMS was pub-

lished on June 1994. In this article [73] Kaplan et al. set some evaluation criteria and analyzed

the concepts and main features of some of the most common RJMS of the time. In [75] Jones and

Brickell made a measured conceptual comparison of specific evaluation criteria, according to their

41

needs for a RJMS system for a production cluster on NASA laboratories. Yonghong Yan et al.

in [76] have made a comparative study between the most known commercial and one opensource

RJMS. This study analyzed architecture design and principal functionalities of SGE, LSF, PBS Pro

and LoadLeveler.

One of the first studies of performance evaluations for RJMS appeared as a technical report [77]

and later as an international publication [78]. In this study Tarek et al. have constructed a suite of

tests consisted by a set of 36 benchmarks belonging to known classes of benchmarks (NSA HPC,

NAS Parallel, UPC and Cryptographic). They have divided the above into four sets comprising

short/medium/long and I/O job lists and have measured average throughput, average turn-around

time, average response time and utilization for 4 known Resource and Job Management Systems:

LSF, Codine, PBS and Condor. The utilization was measured by calculating the average percentage

of the CPU time used by all the jobs upon each computing node of the system. These measures

were then averaged over all computing nodes. This was a method for understanding the function

of the scheduler and evaluating its efficiency.

Another empirical study [79] measured throughput with submission of large number of jobs and

efficiency of the launcher and scheduler by using a specific ESP benchmark [56] also described on

chapter 2. The study compared the performance of 4 known RJMS: OAR, Torque, Torque+Maui

and SGE. ESP benchmark has a lot of similarities with the previously described suite of tests [78].

However one of its advantages is that it can result in a specific metric that reflects the performance

of the RJMS under the specific workload and the selected scheduling parameters. Finally, the

work in [2] provides functionalities comparison between some opensource RJMS along with per-

formance evaluation of scheduling and launching efficiency of these systems, through the use of

ESP benchmark.

3.2 RJMS Principles

In our study we divided the principles of a Resource and Job Management System into 3 cate-

gories. The first category is constituted by principles related to resources and their treatment, like

resources selection, matching of resources with jobs, job propagation and finally binding of tasks

upon resources. The Job Management subsystem is defined by principles related to jobs descrip-

tion, control, monitoring and quality of services. The last category is composed by principles like

queues management and scheduling algorithms.

Table 3.2 presents the different abstraction layers of a Resource and Job Management System.

42

RJMS subsystems Principal Concepts Advanced Features

Resource Management

-Resource Treatment (hierarchy, partitions,..) - High Availability

-Job Launching, Propagation, Execution control - Energy Efficiency

-Task Placement (topology,binding,..) - Topology aware placement

Job Management

-Job declaration (types, characteristics,...) - Authentication (limitations, security,..)

-Job Control (signaling, reprioritizing,...) - QOS (checkpoint, suspend, accounting,...)

-Monitoring (reporting, visualization,..) - Interfacing (MPI libraries, debuggers, APIs,..)

Scheduling

-Scheduling Algorithms (builtin, external,..) - Advanced Reservation

-Queues Management (priorities,multiple,..) - Application Licenses

Table 3.1: General Principles of a Resource and Job Management System

Client Server

Computing Nodes

Submission

Scheduling

Job Management

Resource Management

Users

Job Declaration, Control,
 Monitoring

Job propagation, binding,
execution control

Job priorities,
Resource matching

Log, Accounting

RJMS

Figure 3.2: Global architecture of a Resource and Job Management System

Figure 3.2 presents the global architecture of a Resource and Job Management System. It

shows the distribution of the different tasks presented on table 3.2 along the different components

of the infrastructure. The scheduling tasks are specifically executed on the central part of the RJMS

43

system which is the server. The Resource Management tasks demand a cooperation between the

Server side and the Computing Nodes. This is usually managed by specific RJMS daemons that

exist on the computing nodes and provide a constant communication and information exchange

between the Server and the Computing Node. Finally the Job Management tasks are launched and

controlled by the client user side but the main part of the work remains on the server side. Figure

3.3 shows the sequence diagram of a job from the submission until the end of its execution.

Client Server Comput ing Nodes

Job declaration
and submission

User Authentication
and authorization

Permission granted

Job launching

Job instances propagation

Resources Availabilities

Scheduling and
Resources Matching

Job placement

Job Monitoring

Job Control of
Execution

Job Monitoring
Visualization

Accounting

Job terminatedRelieve of
Resources

Job results
collection

Job modifications

Demand for
job modif ications

Figure 3.3: Job sequence diagram

The following subsections provide some details concerning the above principal tasks of a Re-

source and Job Management System.

44

3.2.1 Resource Management

The resource management (RM) abstraction layer of the RJMS is responsible to collect and provide

all information concerning the computational elements (resources) of the cluster. This information

has to be delivered to the scheduler to initiate the job scheduling and to the user or administra-

tor to inform about the availability and the state of the cluster. A fast and error-less delivery of

information will guarantee the efficiency and robustness of the system.

In more detail the Resource Management subsystem is responsible for the following basic

tasks:

Resource Treatment

This task is defined by the characterization of the cluster resources, according to their com-

ponents. In earlier years clusters were mostly homogeneous infrastructures composed by similar

resources. However, in latest platforms the degree of heterogeneity has been increased and clus-

ters are more often composed by groups of resources with different hardware components. Widely

used techniques to deal with cluster heterogeneity are the definition of different partitions in the

same cluster or the support of multi-cluster for one single RJMS. Furthermore, the current evolu-

tions in processors (multicore, GPU) and communication networks, have introduced new levels of

hierarchies inside the node (node/cpu/core/thread) and inside the network (different topologies and

levels of hierarchy of switches and nodes interconnections) that need to be taken into account by

the RJMS for a better cluster exploitation.

Some Resource Manager systems propose hierarchical view of resources. This provides finer

resources treatment and clearer view of the cluster topology to the user. On the other hand, the

hierearchical treatment of resources definitely increase the complexity of the algorithms related

to command propagation and scheduling. Advanced RJMS provide techniques that can disable

the hierarchical view of resources using only the node as smaller computational unit, giving the

opportunity to large systems for performance optimizations.

Task launching and execution control

The Resource Manager subsystem waits the specific information concerning the job character-

istics, from the scheduler and the job management layers. The procedure can then be decomposed

in two steps. At first, it initiates the launching on the distant resources by utilizing a specific prop-

agation technique. This technique, which varies according to the Resource Manager’s design, is

either based on distant execution commands (rsh,ssh) or on intermidiate software (daemons on each

computing node) or even on a kind of combination of both. This procedure for task and command

propagation upon specific resources is also used for execution control, resources sanity check and

45

generally all the tasks that implie a command deployment upon a specific number of resources. The

use of specific optimized techniques like tree broadcast can ameliorate the propagation time and

most of the advanced Resource Manager systems make use of this kind of optimized techniques,

which are analyzed in more detail on section 2.3. The second step concerns the actual creation

of the task upon the distant resources. This includes the environment variables propagation along

with the different parameters of execution depending on the options selected by the user.

RJMS systems support both simple and parallel tasks on which the procedure for launching

differs. The launching of parallel tasks follow a more complicated procedure than the simple

tasks. The procedure contains one more step which is the synchronization of tasks, in particular the

synchronization of the communication software (MPI libraries). During this process the execution

of the initialization function MPI Init() demands the simultaneous start of all tasks on all the nodes.

This process can become even more complicated if we add aspects like secure authentication or

input data transfer before the start of the jobs. Normally, in modern platforms where two or more

communication networks (Ethernet, Infiniband) exist, the process of task launching makes use

of Ethernet for the communication establishment (master-computing nodes) and the high-speed

network for the inter-nodes (MPI) communication.

Task placement

In the earlier years where computing nodes were single cpu machines and only one job could

allocate a single node there was no need for process confinement upon the node. The emergence of

multicore architectures that introduced new levels of hierarchies inside the node arose the need for

methods of job confinement upon specific allocated resources in a single node. Indeed, multiple

users can find themselves working on the same computing node, which raised the need of task

placement upon specific cores in order to avoid collisions between different tasks. The problem

of collisions are that cores or socket resources easily can be oversubscribed, resulting in degraded

performance, while other sockets or cores of the same node stay idle. Hence, the secure placement

upon cores and in general specific parts of the resources (memory, disk I/O, bandwidth) became

an important challenge for the new RM systems. OS techniques like CPUSETs, sched affinity are

supported by the Resource Managers to provide a fine management of the CPUs (cores) of the

nodes. Concerning the memory a used confinement technique implies the declaration of usage

limits depending the number of used cores.

Resource Management Advanced Features

The important features of the resource management layer are directly related to latest techno-

logical evolutions and the new needs that have arisen because of them. Fault-tolerance mechanisms

46

are needed to guarantee the high-availability of the cluster in case of hardware failures. Topology

aware scheduling favors the choice of resources which may provide performance optimizations

either because of network topology characteristics or due to internal node hierarchies (multicore,

NUMA). Finally, energy efficient resource management techniques needed to be developed for

energy economies on large systems.

3.2.2 Job Management

The job management subsystem provides the means for definition, submission and monitoring

of jobs upon the RJMS. It is responsible for the tasks related to the declaration and control of

users jobs. It possesses features to ease the use of the cluster and should provide transparency

of the complex internal functions of the RJMS. It may support different types of jobs (batch,

interactive, array, ...) with various characteristics and ways to declare the needed resources in

varied complexity according to the users needs. Tasks like suspend/resume, checkpoint/restart and

file stage in and out are initiated and controlled by the Job Management subsystem. Figure 3.4

shows the different states that a job gets from its submission until the end of execution.

Job declaration

All RJMS provide ways (commands or web interfaces) for the users to describe their jobs

characteristics and select the resources of their preference. There are different types of jobs with

different functionalities. For example, interactive jobs are used when the user needs to be con-

nected directly upon a node (shell) and launch its experiment manually. On the other hand, batch

jobs are used for direct script execution upon the allocated computing nodes. A specific kind of

multiparametric jobs called array or bulk jobs provide a way for using a big number of small jobs

(in terms of demanded resources), if a large job can be decomposed into smaller ones. This may

result in faster scheduling and better overall turnaround times. Apart the typical type of jobs it

seams that special type of jobs can be also met into various RJMS. The besteffort type provides a

lowest priority job that is killed whenever a normal job demands the resource and it is used into

global computing contexts.

Job Control

Once the job is submitted to the cluster then the scheduling and the resources binding procedure

take place. Some RJMS provide functionalities that allow the user to modify some initial options

(like walltime, standard output files, reprioritizing) while the jobs are submitted but still waiting for

execution. The possibility to interfere with jobs during their execution is also provided by certain

RJMS. Specific commands that can send signals on jobs to perform specific programmed actions

47

Job Submission

Waiting

Running

Hold

Launch

Suspend, stop, checkpoint

Terminated

Error

Cancel Canceled

Figure 3.4: State diagram of jobs in a RJMS

(like resources folding or expanding in case of disponibilities).

A submitted job may need specific treatment just before the start of its execution or immediately

after the end of it just before the resources are relieved from the job. The user may make use

of specific prolog and epilog scripts that can be used to perform programmed actions like shell

customization or environmental variables charging. Furthermore, in the same context jobs may

need to load data to start their execution. The functionality called stage in and stage out can be

used

Job Monitoring and Visualization

Specific job management tasks exist to follow the execution of jobs upon the cluster. Further-

more, explicit visualization interfaces may be used to monitor the execution of the jobs along with

48

the state of different cluster resources.

All information concerning the jobs execution upon the cluster (like duration, allocated re-

sources, energy consumed, data transfered, etc) should be logged and stored (usually on special

databases). This saved data may be used for specific statistical analysis and reporting to the ad-

ministrators and users.

Job Management Advanced Features

Some of the most advanced Job Management features. are related with quality of services

(QOS) tasks. Once a job is submitted and started its execution, the user or administrator may

have the possibility of suspending it on RAM and resuming it later. This functionality, called pre-

emption, can be either asked specifically on the submission command or provided as a scheduling

algorithm as described on section 2.4.

The functionality of checkpoint/restart is a widely used method for fault-tolerance upon HPC

clusters. In case of failure the application will be able to restart itself from a stored checkpoint

and gain valuable time of computation. Both application and system level checkpoint/restart im-

plementations may be supported.

Authentication and authorization services are used for increased security mechanisms. Soft-

ware like Munge or Kerberos may be used to guarantee secure communication between nodes.

The RJMS can be interconnected with various exterior systems or libraries. All kind of inter-

facing, with parallel programming environment libraries (like OpenMPI), parallel debuggers (like

STCI) application programming interface (like DRMAA), or even monitoring services (like NWS)

may take place.

3.2.3 Scheduling

The part of the RJMS which hides all the intelligence of the system is the scheduler. Its main

role is to assign jobs according to the users needs and predefined rules and policies, upon available

computational resources that match with the demands. A typical scheduler functions in cooperation

with queues which are elements defined to organize jobs according to similar characteristics (for

example priorities).

Scheduling Algorithms

Motivated by needs for optimized cluster utilization or fairness of the cluster resources among

its users; different kind of scheduling policies have been defined and implemented upon RJMS

systems. Table 3.2.3 provides the definitions of existing scheduling policies and figures 3.5 present

examples of function of each algorithm. The most typical policy used in this context is the FIFO (or

49

FCFS). A rather classical optimization as described on 3.2.3 is the backfilling, which has several

versions like conservative or aggressive. The first one which is most commonly used a smaller

job is moved forward in the queue as long as it does not delay any previously queued job. The

second also known as (EASY) backfilling a small job is allowed to leap forward as long as it does

not delay the first job in the queue. Gang Scheduling policy is a stricter variant of Coscheduling

and TimeSharing allows the actual concurrent execution of jobs upon the same resources. The

fairshare policy tries to provide a fair utilization of resources and finally preemption provides the

ability to prioritize the workload on a cluster.

Scheduling Policy Description

FIFO

jobs are treated with the order they arrive.

Backfill

fill up empty wholes in the scheduling tables

without modifying the order or the execution of previous submitted jobs.

Gang Scheduling

multiple jobs may be allocated to the same resources and are alternately

suspended/resumed letting only one of them at a time have dedicated use

of those resources, for a predefined duration.

TimeSharing

multiple jobs may be allocated to the same resources allowing the sharing

of computational resources. The sharing is managed by the scheduler

of the operating system

Fairshare

take into account past executed jobs of each

user and give priorities to users that have been less using the cluster.

Preemption

suspending one or more ”low-priority” jobs

to let a ”high-priority” job run uninterrupted until it completes

Table 3.2: Common Scheduling policies for RJMS

Queues Management

The RJMS may provide multiple queues (or partitions) which can receive jobs for executions

with similar characteristics. Usually the RJMS has one single scheduler. Advanced scheduling

50

Running

Waiting
(1st job
in queue)

Waiting
(3d job
in queue)

Waiting
(2nd job
in queue)

Running

Waiting
(1st job
in queue)

Backfil led

Backfil led

Waiting
(2nd job
in queue)

Waiting
(1st job
in queue)

FIFO policy

Backfil l policy

TimeSharing pol icy

Running

Waiting
(2nd job
in queue)

Waiting
(1st job
in queue)

Gang Scheduling pol icy

Running

Waiting
(2nd job
in queue)

Waiting
(2nd job
in queue)

FairSharing policy

Preempting
(Higher Priority)

Waiting
(2nd job
in queue)

Waiting
(1st job
in queue)

Preempt ion pol icy

Waiting
(2nd job
in queue)

Waiting
(2nd job
in queue)

User A

User A

User B

User C
Waiting
(1st job
in queue)

Waiting
(2nd job
in queue)
 Waiting

(3d job
in queue)

Running
(Timesharing
allowed)

Running
(Timesharing
allowed)

No Timesharing

No Timesharing

To Resume

Suspended
(Lower Priority)

Gang Scheduled
1st job

Gang Scheduled
2nd job

nodes
nodes

nodes nodes

nodes nodes

t ime

t ime

t ime t ime

t ime

t ime

Figure 3.5: Function examples of Scheduling policies

subsystems may allow the use of a different scheduling policy providing a better quality of services

to the users.

51

Scheduling Subsystem Advanced Features

Specific types of applications (i.e. ISV) need a kind of license so as to start their execution.

If there are few licenses for the use of a specific application upon a cluster then tokens will be

distributed and each user will have the opportunity to execute the application on each turn. The

explicit management of licenses tokens is supervised and performed by the scheduler.

A very usefull functionality implemented on various RJMS is the advanced reservation of

resources. It is an indispensable feature for ease of use upon the cluster but should be used with

moderation because it may become a bottleneck under specific conditions. Users can plan in

advance their computations without having to worry when their job is going to start. Nevertheless

reservations is an known enemy of scheduling. Indeed, big number of reservations may result in

underutilization of the cluster, because the optimized algorithms of the scheduler cannot function.

3.3 Research challenges

The recent appearance of the first petascale supercomputers and the new roadmaps for exascale

platforms before the end of the decade have raised the need for research upon specific issues

related to the scalability of Resource and Job Management Systems. Issues like topology aware

placement, launcher and scheduler efficiency, system high availability and energy efficiency are

some of the subjects that receive most of the attention, by the scientists, in the area.

3.3.1 Topology aware Placement

The size scaling of those infrastructures take place by increasing the number of nodes along with

the number of cores per nodes (multicore processors). The first increase results into bigger network

diameters and the second into bigger depths inside each single node. Both facts dictate the need

for finer knowledge of the topology of the platform in order to have better treatment of resources

and efficient system exploitation.

Internal Node Topology

The continuous scaling of multicore processors with shared caches and non uniform memory ac-

cess causes the internal node topology to become increasingly complex. The increasing complexity

and level of parallelism inside the computing nodes raises the question of how to schedule work

52

so as to minimize the impact of this complexity. Applications using OpenMP, MPI or hybrid mod-

els (OpenMP+MPI) have to be carefully placed upon the machines so that hardware affinities are

efficiently handled for optimal performance. Shared-memory or synchronization between tasks

benefits from shared caches, while intensive memory access benefits from local memory alloca-

tions. Exploiting modern architectures thus requires an in-depth knowledge of the internal node

topology, but also of the relevant application behavior. The RJMS can play a significant role in this

situation since it maintains information from both applications and resources.

An important problem that may arise in case of non sufficient treatment of the hardware topol-

ogy is internal fragmentation which is the phenomenon that results into idle processors when more

CPUs are allocated to a job, that it requests. Another issue is the efficient task placement. Some

parallel applications benefit when their processes are distributed to different sockets on the same

node, while others, when they are placed upon a single socket and different cores. Thus, ideally

the RJMS should provide automatic optimal task placement techniques based on the hardware

affinities along with ways to allow the choice of specific placement that would provide the best

performance for his application [80].

In latest version of Linux kernels it is possible to specifically tell to the scheduler which process

can run upon which core. This core affinity (or core binding) as it is called, can be influenced, in

Linux, via 2 different ways: Either a system call which takes a bitmask as parameter (sched affinity

[81]), where each bit reflects one core and if a core is on with bit value 1 (or off with value 0) then

the scheduler does (or not) migrate the process to that core; Or using processor sets (cpusets [82])

which are defined by a hierarchical pseudo-filesystem upon which only processes bound to this set

can be executed. The mask or set is inherited by all child threads/processes that means that all of

them will be using the same set of cores.

The use of any of this techniques allows the RJMS to have full control of the processes of its

jobs and permits the dedicated binding of jobs upon specific cores along with the efficient cleaning

of remaining processes after the end of the job. An extension of cpuset which has recently been

added to the Linux kernel (after 2.6.32) are the control groups [83]. Each control group is a set of

tasks on a system that have been grouped together to better manage their interaction with system

hardware. They provide a mechanism for aggregating/partitioning sets of tasks and all their future

children, into hierarchical groups with specialized behaviour. This behaviour is defined by the

different subsystems that exist like: cpuset which assigns the tasks upon cpus, memory which sets

limits on memory use, freezer which suspends or resumes tasks, devices which allows or denies

access for tasks to specific devices and blkio (supported after kernel version 2.6.35) which assigns

53

specific amount of IO or even network bandwidth to tasks. The intention is that different kind

of subsystems hook into the generic cgroup support to provide new attributes for cgroups and

therefore to the user’s tasks.

Closer to the application level, and in order to simplify the access to this hierarchical hardware

topology, which is different with kernel versions and Linux distributions, external APIs are used

as intermidiate layer for core affinity settings. Portable Hardware Locality (hwloc) project [84]

is an API which provides an abstraction of the hierarchical topology of modern architectures,

including NUMA memory nodes, sockets,shared caches,cores and simultaneous multithreading

and can allow applications to control topology affinities according to their internal communication

patterns. This project is a merge of two older different APIs libtopology [85] and PLPA [86]

(protable linux processor affinity).

Any technique of the above can be adopted by the RJMS. The best approach could be to have a

first confinement induced by the RJMS with cpuset or cgroups and at a second time allow the use

of an API, like hwloc, for specific applications that could benefit from further topology affinities

and finer granularites. In Linux, chlid-processes are allowed to re-define their core affinity.

All these kernel mechanisms used for task confinement do not induce (normally) any overhead

on the RJMS system and they can be applied instantly upon a single node. The bottleneck for task

binding upon a big number of nodes remains only upon the task propagation algorithm. Chapter 4

gives a thorough analysis of the strength of the cpuset mechanism.

Network Topology

The increase of the cluster in terms of computing nodes has as result the use of large network diam-

eters to connect all of those nodes. Computation has become cheap but communication on the net-

work is becoming the bottleneck for scaling of parallel applications. Network contention, specif-

ically, is becoming an increasingly important factor affecting overall performance [87]. Highly

parallel applications are sensitive to communication performance . The distance between nodes

may play an important role in case of parallel computation. Depending on the communication

pattern of the application, and the way processes are mapped onto the network, severe delays may

appear due to network contention; delays that result in longer execution times. Nodes that are

connected upon the same switch will result in better parallel computing performance than nodes

that are connected on different switches. Mapping of tasks in a parallel application to the physical

processors on a machine, based on the communication topology can lead to performance improve-

ments [88]. Different solutions exist to deal with those issues on the resource managemement

54

level.

We are especially interested for fat-tree network topologies which are structures with process-

ing nodes at the leaves and switches at the intermidiate nodes [89]. As we go up the tree from

the leaves, the available bandwidth on the links increases, making the links ”fatter”. For the sake

of simplicity a group of nodes connected upon the same switch is called an island of nodes for

the rest of the thesis. Network topology characteristics can be taken into account by the scheduler

[90], [91], [92] so as to favor the choice of group of nodes that are placed on the same network

level, connected under the same network switch or even placed close to each other so as to avoid

long distance communications. This feature becomes indispensable in the case of platforms which

are constructed upon pruned butterfly networks [93], [94] where no direct communication exist be-

tween all the nodes. This reduces the number of fast communication group of nodes to only those

connected under the same switches. Hence, the efficient network placement could be treated as an

extra scheduling parameter. This will definitely provide an overhead upon scheduling, resulting in

longer waiting times for pending jobs on the queue, but will eventually consist in improving per-

formances of single parallel applications which means that once the scheduling decision has been

made the turnaround time will be faster. On the other hand jobs that are not communication bound

will have to endure the overhead even if they will not profit of faster turnaround times. So the

waiting times for jobs can be expected to increase, due to external fragmentation [95] . External

fragmentation [96], [95] is the phenomenon that exists when a sufficient number of processors are

available to satisfy a request, but they cannot be allocated contiguously.

Alternatively, another solution to deal with this waiting time problem for non-communication

bound applications is to particularly declare the interest for topology aware placement on the job

level. Therefore it becomes the choice of the user and hence only sensitive applications will profit

of the optimization and endure the overhead on waiting times. However this increases the risk for

external fragmentation, since the job will be waiting for the right processors to be liberated.

3.3.2 High Availability

The increase of number of resources along with the application needs for computing power have

turned the system reliability into an important factor for Resource and Job Management Systems.

This becomes an urgent issue in the case of large clusters where the MTTF (Mean Time To Failure)

is getting lower and the MTTR (Mean Time To Repair) is increasing. The RJMS can deal with

those hardware failures by providing solutions on two different levels. One is to deal with the

central server failures in order to guarantee the system’s high availability. The second is to treat

55

the computing nodes failures especially on worst case where a job is executing upon it.

System High Availability

In case of cluster resources failures the RJMS system should be able to respond and treat the

desfunctioning to guarantee a robust service. Some significant research has been made in this

area [97], [98], [99], [100]. The most important component that needs to be well protected is the

central manager which is usually lying upon a central server node. System’s high availability can

be ensured by having a configuration of backup server that can take the control when the primary

doesn’t respond any more. Some systems have even went one step further and have techniques to

replace the backup server as well. Computing nodes could take the place of this secondary server

in case of further failure. place of this secondary server in case of further failure. Specific event

handling techniques are used for monitoring, reporting and even automatic correction of problems.

The monitoring of resources with expulsion of suspected for error nodes can assure the health of

the whole system.

Job Fault Tolerance

Hours of valuable calculations upon a very big number of nodes can get lost due to a node failure.

Apart the numerous efforts by HPC vendors to improve reliability on hardware side continuous

research projects are trying to enhance recovering techniques. Resource and Job Management

Systems can support different kinds of recovering techniques. The most common are either Sys-

tem or Application level checkpoint/restart approaches. For the system level checkpoint/restart

approaches the integration with libraries like BLCR, DMTCP or other is quite common. For the

application level recovering techniques their support implie the issue of specific signals periodi-

cally towards the application in order to proceed with a checkpoint procedure. In case of failure the

job will be automatically restarted and if a checkpoint exists it will start from the latest checkpoint.

More details upon recovering techniques and specifically system level checkpoint/restart ap-

proaches can be found on chapter 3.

3.3.3 Energy Consumption

The energy consumption of HPC clusters has become an important parameter that needs special

consideration. This need becomes indispensable in large scale infrastructures. The main motiva-

tion is the electrical and financial economies for the overall platform consumption. The Resource

56

and Job Management System can combine information from both hardware components and users

workloads to provide techniques that can reduce the overall energy consumption.

The RJMS can collect and transfer to the scheduler the consumed energy information of dif-

ferent hardware components. The analysis of this information with corellation with the users

workload may be the input for specific developed algorithms that result into new energy-aware

scheduling policies. Those algorithms may take into account the clusters unutilized computing

nodes and take relevant action (reducing CPU frequency, hibernating or even shutting down spe-

cific nodes). Ofcourse the energy management is directly related to each sites workload, thus the

RJMS should provide possibilities for energy management policies customization. Furthermore

the collected energy consumed may be used for jobs and users accounting. Chapter 6 provides

thorough analysis of the research directions upon the subject of energy efficiency through Resource

and Job Management Systems along with experimental results.

3.3.4 Launcher and Scheduler

Finally two parts of the system that are greatly influenced by the increase of nodes and resources

are the launcher and scheduler of the RJMS.

Propagation techniques

The increase of number of nodes has a significant impact upon the communication and command

propagation between the master and the computing nodes. Most RJMS systems provide job launch-

ing through socket communication between the nodes. For the propagation technique, some of

them, are based upon a locally parallelized deployment that connects to the client daemons in-

stalled on all the remote nodes like mpirun [101]. This schema provides good scalability but its

performance varies between MPI implementations. Systems like SLURM [102] resource manager

or gexec [103] deployment tool provide optimizations to the above schema by using dynamically

adapted deployment based upon tree structures. Following this schema, the master node estab-

lishes socket communication with a specific number of nodes which by their turn communicate

further to other nodes until all nodes have established connection, forming a tree structure. Similar

approach are used upon pdsh [104] remote shell toolkit which uses a ”sliding window” parallel

algorithm to conserve socket resources on the initiating node and to allow progress to continue

while timeouts occur on some connections. These algorithms have been proven to be scalable to

thousands of nodes, however they are not well suited to heterogeneous platforms or multicluster

infrastructures.

57

Cyrill Martin has made a thorough study upon propagation techniques and remote execution

deployment [105]. This study has resulted in the conception of an adaptive propagation technique

based upon standard Linux protocols like ssh and rsh. The resulted tool named Taktuk, initially

implemented on C and later on Perl [106], [107]. This tool for large scale remote executions

deployment, provides optimized propagation techniques using a dynamic adaptation mechanism

based on work-stealing that balances deployment tasks between local parallelization and remote

distribution. This load balancing strategy adapts to load variation in the network as well as in the

nodes. Thanks to the dynamic adaptation mechanism and to the resulting efficiency and scalability

it is suited to interactive parallel tasks on both homogeneous and heterogeneous machines.

Other tools base their propagation optimizations upon hardware capabilities to solve the issues

related to deployment. This is the case of Storm resource management system [108] which relies

on Quadrics Network Cards to provide high-speed communications and broadcast capabilities to

deploy in constant time. Besides the portability limitations, Storm is highly scalable and efficient

and has been prooven to be some orders of magnitude faster than most other deployment tools

[109].

Scheduling

Scheduling upon parallel and distributed systems is a complex task that has attained a lot of focus

by researchers [110], [111] since the first appearance of those systems. The architectural evolu-

tions with the deep hierarchies and the increase of computing resources along with the user and

application needs triggers new challenges and complexity the process of scheduling for a resource

and job management system [112].

The scheduler is the central point of intelligence of the RJMS system. The more advanced fea-

tures are supported upon the RJMS the more complex will be the process of scheduling. Support

of features like hierarchical resources, topology aware placement, energy consumption efficiency,

quality of services and fairness between users or projects are managed as extra parameters in

scheduling and all induce an additional complexity upon the whole process. Moreover, this com-

plexity will be increasing with the size scaling of the cluster. The heterogeneity of clusters can

complicate further the job of a scheduler since tasks that require a certain set of resources may

only be schedulable on a small subset of the nodes in the system. The impact of advanced reserva-

tions can be significant in waiting times and overall system utilization but this is greatly influenced

by the workloads as well [113].

58

A lot of research with valuable results has been conducted, that compares scheduling algo-

rithms in various contexts [111], [111].

As already described FCFS (or FIFO) manages jobs with the order they arrive. SJF (Shortest

Job First) and LJF (Longest Job First) are the simpler variations which can provide better efficiency

under specific job mixes.

A more sophisticated algorithm that has prooven good performance in most of the cases is

Backfilling. A lot of variations exist for this algorithm like conservative, aggressive (EASY) [114]

or specific parameter dependent like slack based [115]. In general aggressive backfilling results

into better system utilization than conservative [116] but the second one is more widely used thanks

to it’s fairness and guarantee of services. Nissimov and Feitelson developed another kind of back-

filling called probabilistic backfilling [117] which is based upon self on-line-learning prediction

mechanisms of user job runtimes. The method improves its predictions as more jobs of the work-

load are submitted and terminated. This policy has shown even better results than aggressive

backfilling.

A widely alternative to backfilling policies is proposed by Gang Scheduling. The notion was

firstly introduced by Oustrhout and the concept of jobs coscheduling [118]. As a subsequent class

of coscheduling, gang scheduling temporarily preempts and then reschedules jobs upon specific

time intervals. It provides an environment similar to a dedicated machine, in which all job’s pro-

cesses are executed together and at the same time resources are time-shared among different jobs.

In particular, preemption (suspend/resume) is used to improve performance in face of unknown

runtimes. Gang-scheduling has been reported to have very good performance efficiency when

compared to backfilling [119]. The good performance efficiency of gang-scheduling is also due to

the fact that we can overlap the communication phase of some jobs with the computation phase of

others [120] and hence enable the execution of pairs of jobs that will result into faster turnaround

times and better system efficiency. Nevertheless not all application can perfectly fit into these cat-

egories that’s why in cases of high memory requirements hybrid techniques have been proposed

[120].

The parameter of Preemption [121] can also be used for job scheduling to optimize FIFO or

Backfilling techniques [122]. The preemption is defined by the stop and later restart of lower

priority jobs in order to allow higher priority jobs perform urgent computations. Preemption can

be implemented with stop/reschedule, suspend/resume or checkpoint/restart models.

The choice of the scheduling policy is an important parameter but it’s not the only attribute that

has to take all the attention. Various other parameters can play their role on scheduling, depending

59

the RJMS design, the platform architecture and the workload.

The hierarchical management of resources provides great flexibility for an RJMS upon SMP

or NUMA architectures. Unfortunately, this comes in expense of a more complexified scheduling

since the number of resources to be considered is much bigger and hence the scheduling process

has more alternatives to take into account. A possible solution could be to provide scheduling

depending on the resources granularity (switches/nodes/cpus/cores) which means that depending

the needs the scheduler could particularly set it on nodes level to speed the scheduling process or

to cores level to have finer treatment. Separating resources on smaller partitions and performing

scheduling upon those specific partitions may also provide better scalability and efficiency.

The support of network topology parameters and energy consumption efficiency induce addi-

tional complexity but are features that have become indispensable in modern architectures. The

scientists can select upon best fit or first fit methods for the support of those features. Best fit

approaches provide better methods for efficient system exploitation and can reduce internal frag-

mentation but in expense of bigger waiting times or possible external fragmentation. On the other

hand first fit approaches may induce internal fragmentation avoiding external fragmentation and

providing small waiting times with worst efficiency in system exploitation than the best fit. So

depending the workloads and the platforms goals administrators need to scale well the trade-offs

observed among the solutions.

The use of specific kind of jobs can particularly optimize the performance of the scheduler The

array job (or bulk) is a specific kind of structures that allow a sequence of jobs that share the same

executable and resource requirements, but have different input files, to be submitted, controlled,

and monitored as a single unit. This allows the grouping of jobs which contributes in removing a

big scheduling and launching overhead. Therefore only one schedule is performed for the array

job in place of scheduling a big number of individual jobs. Furthermore the use of flexible jobs like

moldable or malleable can optimize the schedule because they can adapt to system’s availabilities

[111].

The use of advanced reservations upon job scheduling can have a large negative impact on

slowdown (stretch time) and average queue wait time but not necessarily on system utilization

[113]. However this is very dependent on the workload. In general the less reservations are in-

jected, the better for an overall system utilization. A good tradeoff can be attained by setting a

limit for maximum reservations per user or day.

In general post-treatment workload studies of a specific system is of particular importance

because it can reveal scenarios that could not have been realized differently [123]. A change on the

60

scheduling policy or a specific parameter may provide an important optimization. Scientists need

to deal with a big number of tradeoffs for all different cases and there is never one best solution

to be applied upon all contexts. Particular experimental approaches like the dynP scheduler [124]

provide a dynamic policy switching. The basic idea of self-tuning is to generate complete schedules

for some policies in each scheduling step. Then these schedules are measured by means of quality

metrics like average response and turnaround times and the policy which generates the best result

is chosen. On the same context of self-tuning scheduling, the work in [125] describes an approach

based on flexible coscheduling that can automatically adapt the scheduling of jobs according to

dynamic measurement of applications’ communication patterns and proper synchronization needs

of each application and trying to optimize the entire system’s performance while addressing these

needs.

3.4 Survey of Resource and Job Management Systems

In this section we present some of the most common Resource and Job Management Systems of

our time. We provide an analysis of each one of them according to the main points discussed on

the previous sections: a) Principal Concepts and b) Approaches to deal with Research challenges.

Annexe 1 provides analytical tables with each systems supported functionalities for conceptual

comparison. Finally, in section 5 we provide an overall synthesis and discussion upon all systems.

3.4.1 Commercial RJMS

The commercial Resource and Job management systems provide highly developed solutions and

better maintenance support when compared to their open-source opponents. Their main advantages

are their support of a big number of architecture platforms and operating systems, their highly

developed graphic interface for visualization, monitoring and transparency of use along with a

good support for Interfacing standards like Parallel libraries, Grids and Clouds. Moreover the

software is normally installed and maintened by specialized expert teams.

Loadleveler

LoadLeveler [126] is a RJMS production system developed by IBM and initially based on CON-

DOR open-source system. It is a commercial IBM product designed initially for IBM clusters but

it can also be used in any cluster. It works with AIX and LINUX operating systems.

61

LoadLeveler is mainly a Resource and Job Manager that offers basic functionalities as sched-

uler. Its architecture [127] is designed with scalability as the main concern. It is composed by

several daemons running upon the master and execution hosts. The central controller called ne-

gotiator is responsible for collecting resource information, keep system wide objects and perform

general coordination of daemons and requests. The scheduler daemons can be configured on mul-

tiple machines. One of the central differences is that the system’s wide tasks such as scheduling

and collecting information from execution hosts are distributed to different daemons. These mech-

anisms ease the task of the negotiator and contributes to an overall scalable design.

LoadLeveler makes use of stanzas which are groups of machines along with their selected

characteristics. Specialized daemons make the selection of the particular machine (machines) that

the job will be assigned to. Its Resource Management subsystem supports basic functionalities

like scalable job launching, task placement using the cpuset mechanism and advanced features

like high availability where any execution host can become central negotiator in case of failure of

the former. However LoadLeveler lacks the support of energy efficient techniques and network

topology aware scheduling.

As job manager it uses classes which are classifications to which a job can belong. For example,

short running jobs may belong to a job class called short jobs. The system administrator can define

these job classes and select the users that are authorized to submit jobs of these classes. It is

possible to specify which types of jobs will run on a machine by specifying the types of job classes

the machine will support. Queuing of jobs is implemented internally. Queues are list of jobs that

are waiting to be processed upon each class.

When a user submits a job to LoadLeveler, the job is entered into an internal database, which

resides on one of the machines in the LoadLeveler cluster, until it is ready to be dispatched to

run on another machine. It provides accounting and reporting console and tight integration with

some MPI libraries (MPICH and MVAPICH) but does not provide support for interfacing with

Grid technologies, neither graphical or visualization interface.

Loadleveler’s scheduler [128] supports backfill, preemption and fairsharing. It provides inter-

facing capabilities to integrate with external scheduler such as Maui, Moab or Catalina and an API

to implement new scheduler like EASY [114]. Loadleveler was the first RJMS to support Gang

scheduling [129] but since version 3.4.3 it removed the support for this policy.

62

LSF

LSF is a commercial RJMS supported by Platform Computing, considered as one of the most eval-

uated job schedulers. This software is originated from Utopia system [130] which was a research

project, developed in the university of Toronto, providing dynamic and transparent load sharing

functionalities in large-scale distributed systems.

Since the beggining LSF has been evolving mostly as a job management and scheduling system

and less as a resource management solution. The architecture of LSF [76] has a rather complicated

design with several daemons running on the central controller and the computing nodes. 5 daemons

function on the central controller responsible for collection of resource management information,

initiation of communications with the computing nodes and scheduling, whereas 4 daemons con-

tinuously turn on the execution hosts for the correct job execution and control. The controller-node

and intra-node communication is made by sockets and remote procedure calls. There is a possibil-

ity to use a database for reporting and accounting information.

Its Resource Management subsystem supports basic features like task placement, resources

monitoring and high availability, but lacks features like hierarchical view of resources or network

topology aware scheduling. Even if the resources monitoring and reporting console is evoluated

enough with detailed information like CPU and I/O bandwidth utilization the resources treatment

is static and the task placement affinity is set by the administrator.

In order to provide a complete RJMS solution vendors like HP and BULL used integrated

technologies of LSF scheduler upon SLURM [131] or RMS resource managers. Nevertheless,

some features like user or kernel level checkpoint restart and preemption were not supported. In

any way the integration of Resource Manager with a Job Scheduler seems to be less used nowadays

because of complicated designs and overheads due to the interaction of two different systems.

However, the LSF scheduler provides a lot of enhancements when compared to other job sched-

ulers and it was the first scheduler to offer the possibility to configure one scheduling algorithm per

queue. LSF scheduler makes use of queues for job dispatching. Queues implement different job

scheduling and control policies. All jobs submitted to the same queue share the same scheduling

and control policy. Each queue can use all server hosts, or a configured subset of the server hosts.

There are several scheduling policies in LSF: the simple FCFS, Fairshare scheduling, Deadline and

exclusive scheduling, preemptive scheduling, and SLA-driven scheduling. A very important func-

tionality supported by LSF is the feature of malleable and evolving jobs. That means that jobs can

dynamically change their allocation, either per system or per application call, during their execu-

tion. For evolving jobs it provides only the possibility of shrinking. In addition LSF provides tight

63

integration with all MPI libraries and has interfacing facilities with Grid standards like DRMAA.

There are some innovative features concerning task placement and energy consumption effi-

ciency. For the first one a job can be assigned a specific amount of memory which provides an

important advantage for multicore architectures [132]. Furthermore, studies for understanding and

predicting thermodynamics of the cluster have been initiated and jobs could be intelligently placed

upon ’cooler’ machines in order to maintain or reduce the overall temperature [133].

Finally LSF has been reported to be scalable upto 40000+ CPUs reaching the limits of 100000

jobs scheduling per day LSF provides an opensource limited version of their scheduler which

called LAVA. It supports limited features of the commercial full version and it is scalable until 512

nodes. It is currently integrated as one of the schedulers of NPACI Rocks Cluster Solution [134].

Moab

Moab [135] is a job scheduler originated of PBS resource and job management system. It is the

commercial version of the widely used Maui scheduler [136],[137],[138]. It does not provide a

resource and job management subsystem so it has to be integrated upon a specialized software like

Torque, LoadLeveler, LSF, SLURM or RMS. Moab enables capabilities through simply directing

the resource and job manager regarding when, where, and how to run and manipulate jobs.

This integration implies that the queuing management is made on the resource and job manager

side, thus Moab default configuration is to use a single global queue, however it may be configured

to use multiple queues internally if needed. It provides the concept of throttling policies which can

be imposed to define resource limits on users, groups, and accounts of interest as well as elaborate

job prioritization control to allow jobs to be ordered according to credentials, resources, history,

desired service levels and other attributes.

The integration with the Resource and Job Manager allows the interchange of all kind of infor-

mation that may conclude in efficient scheduling. The concept of node sets has been adopted in

order to improve the performance of parallel jobs upon heterogeneous platforms. In addition, the

treatment of consumable resources like CPU, Memory, swap space and disk bandwidth contributes

to best-fit task placement decisions. Nevertheless, this information interchange is the reason of

important complicated integration design and overall overheads.

It provides all the basic and most of the enhanced features for job scheduling in HPC like a

big number of scheduling policies (backfill, preemption, fairshare, multipriority-based), advanced

reservations and license managers integration. Furthermore the support of moldable and malleable

jobs is supported with the limitation that the underlying resource and job manager provides also

64

the necessary mechanisms for modifying the amount of resources of a job.

Scalability and efficiency issues have also been taken into account. The use of node sets allows

the dynamic grouping of resources which contributes to a more scalable scheduling. The system

was reported to scale good upto 160000 cpus and 40000 jobs.

PBSPro

PBS Pro [139] is a RJMS which was developed in NASA laboratories and came as an extension to

the older Network Queuing System (NQS).

It is based upon a simple architectural design [140],[76] with support to a big number of ar-

chitectures and operating systems. The central controller is running 2 daemons, one for answering

requests and exchanging information with the execution hosts and the other one for scheduling

purposes. The execution hosts maintain only one which is responsible for managing the physical

resources, applying policies and task launching. The resource and job management subsystems

are enhanced with most of the basic and advanced features. In particular, the concept of vnodes

which is similar to the node sets described previously for Moab allow a finer resources grouping

for a more efficient task placement. It provides enhanced topology aware scheduling and high

availability techniques. The concept of cycle harvesting nodes as used in Condor also exists under

PBSPro which allows the integration of desktop grid approaches upon PBSPro managed clusters.

Moreover, it offers one of the most powerfull graphical interface with a web submission portal and

visuazilization monitoring capabilities along with enhanced accounting and reporting tools with

charts. Tight integration with Parallel libraries and interfacing with Globus is also proposed.

An interesting mechanism initiated in PBSPro is that of hooks which are objects that allow

to accept or reject specific actions like modify input parameters and change internal or external

values. The hooks can be executed before or during a job is run to provide specific modifications

upon a job or a reservation.

As far as the scheduling subsystem concerns it supports most of the general policies in schedul-

ing, such as FIFO, backfill, fairshare, preemption and multi-priority based. It allows one schedul-

ing mechanism per queue and by default, jobs in the highest priority queues will be considered for

execution before jobs from the next highest priority queue. This is configurable as a round-robin

fashion that queues will be cycled through attempting to run one job from each queue. There are

two types of queues, routing and execution. A routing queue is used to move jobs to other queues

including those that exist on the different PBS servers.

One major drawback is that the accounting features use flat files for data storing in place of

65

a database. Apart the complicated design of storing information upon files in place of a database

this can impose overheads on the efficiency of the fairsharing scheduling policy. Even if the pro-

gramming structure is not known since the project is commercial it seems that it is not flexible

enough.

3.4.2 Opensource RJMS

The opensource RJMS, initiated by universities and research centers, even if most of them do

not support a big number of platforms and operating systems they provide more innovation and a

certain flexibility when compared to the commercial solutions.

CONDOR

Condor [141] is the older and most innovative opensource Resource and Job Management Sys-

tem that is still in production. Developed by the Condor research project at the University of

Wisconsin-Madison, it has been used as a research tool and a production system since 1984. It is

a unique RJMS in the sense that since all other solutions aim for High Performance Computing,

which means big amounts of computing power over a short period of time, Condor aims for High

Throughput Computing (HTC) [142]. The goal of a High-Throughput Computing environment is

to provide large amounts of computational power over prolonged periods of time by effectively

utilizing all resources available to the network. The key to HTC is to efficiently harness the use of

all available resources even individual workstations. Condor can manage a dedicated cluster as all

other RJMS do. Its main advantage comes from the ability to effectively harness non-dedicated,

preexisting resources under distributed ownership [143], [144]. This concept is called opportunis-

tic computing.

One of its basic concepts is the expression of ClassAd. ClassAds are a flexible mechanism for

representing the characteristics and constraints of resources, jobs, submitters or even daemons in

the Condor system. It is a set of uniquely named attributes. They provide an expressive framework

for matchmaking resource requests with resource offers.

As a Resource Manager [145] Condor supports cpu affinity techniques upon multicore and

NUMA architectures. The way SMP machines are represented to the Condor system is that the

shared resources are broken up into individual slots. Each slot can be matched and claimed by

users and it is represented by individual ClassAd.

It’s main strength and flexibility is centered on its job management system. It provides the

support of different kind of environments, as called in Condor system, (standard, parallel, virtual

66

machines, java, etc) which depict the support of different kind of types of jobs along with specific

quality of services for each one of them. Built-in Checkpoint/restart techniques, virtual machine

deployment, enhanced security mechanisms, powerfull data-staging mechanisms are some of the

services offered. Furthermore, a sophisticated mechanism exists to provide the description of

inter-job dependencies along with an explicit meta-scheduler (DAGMAN), that is responsible for

scheduling, recovering and reporting inter-dependent programs inside Condor. Condor offers the

possibility for direct applications interfacing through a web service API using SOAP or DRMAA

API. One of its main strong aspects is its support of every kind of grid computing approach either

mainstream standards like Globus through Condor-G, alternative desktop grid approaches for bag-

of-tasks applications like Boinc through Condor Flocking or even interfacing upon Clouds like

Hadoop or Amazon EC.

The architecture of Condor’s scheduler is different than the other RJMS. It is the result of

cooperation of two different daemons. The first one (sched) maintains the submitted jobs in a

queue and calculates job priorities, the second (negotiator) is responsible for making the matching

of the job characteristics upon resources. The matching information are send back to the sched

daemon which can make subsequent scheduling decisions before it launches the jobs. This hierar-

chical, distributed scheduling architecture makes Condor more scalable and flexible especially for

multicluster platforms. Nevertheless, its scheduling power decreases when it comes for dedicated

resources. Its scheduler is mainly governed by multi-priorities and fairsharing policies along with

preemption features. But the major drawback is is that there is no backfill implementation for

scheduling optimizations which can result into innefficient system exploitation.

Concerning Scalability and Efficiency issues Condor supports High Availability and Energy

Efficiency, proposes internal node topology aware placement techniques and scalable sceduling

for non dedicated resources. However, there is no network-topology aware scheduling. and its

propagation techniques do not use any enhanced algorithm for optimization and since they are

characterized by highly secure communication mechanisms they will have the drawback of poor

scalability.

SGE

Sun Grid Engine (SGE) [146] which has recently became Oracle Grid Engine is an enhanced

opensource RJMS migrated from CODINE which originated from DQS. Sun Grid Engine [147]

aggregates the compute power available in dedicated computing clusters, networked servers and

desktop workstations, and presents a single access point to users needing compute cycles.

67

Like PBSPro its architecture is based upon simple deamons exchanging information for job

submission, scheduling decisions and task placement. The design makes use of a relational database

for storing reporting information for nodes states and accounting information for jobs. A backup

controller guarantees the high availability of the system and mechanisms for any computing node

to become central controller in case of further failure of the backup controller exists. It provides a

kind of hierarchical treatment of resources by defining concepts like host groups, and consumable

resources. It allows a fine task placement which can bind tasks upon sockets,cores and threads.

Its job management system supports all basic type of jobs along with array jobs and job with

dependencies. It supports only MPICH parallel library with tight-coupled integration. This is a

major drawback for systems that use OpenMPI or MVAPICH libraries because those implemen-

tation are loosely coupled integrated. The disadvantages of loosely coupled integration are two

folds, first the user needs to write specific scripts for each different MPI library, which may vary

with their different programming model and second, the spawned processes escapes the control

and monitoring of SGE after launching a job. In the case of loosely coupled integration there is no

meaning of using enhanced task placement techniques like cpuset because processes will not be

binded upon the specified cores.

On the other hand, a major advantage of SGE job manager is its support to a specific Grid stan-

dardized API called Distributed Resource Management Application API (DRMAA) that allows

programs to interface directly upon SGE. Furthermore, a command line along with a graphical

user interface is proposed. An advanced accounting and reporting console which makes use of the

SQL database is also provided.

Finally the SGE default scheduling subsystem [148] follows a rather complicated design and

provides differences with the other schedulers. It uses the concepts of queues as a logical abstrac-

tion that aggregates a set of job slots across one or more execution hosts. A queue also defines

attributes related to priority policies and how jobs are going to be executed upon the hosts. The

scheduler selects a job from a queue. In addition it uses the concept of tickets where each ticket

policy has a ticket pool from which tickets are allocated to jobs that are entering the Grid Engine

system. The queue from which the job is going to be selected for execution is chosen by the

amount of tickets. Each routine ticket policy that is in force allocates some tickets to each new job.

The ticket policy can reallocate tickets to the executing job at each scheduling interval. Only one

scheduler can be used for the system and this supports algorithms like tickets priority based, fair-

share, backfill and preemption. SGE also supports advanced reservations and applications licenses

integration.

68

However it seems that the Scheduler API is not flexible enough to allow the easy program-

ming of a new external scheduler [76] and the complicated design does not seem easy enough for

maintaining and scaling upto big number of nodes and jobs.

Nevertheless, innovative features exist like the slotwise preemption which is a bestfit preemp-

tion policy and provides the means to ensure that high priority jobs get the resources they need,

while at the same time low priority jobs on the same host are not unnecessarily preempted, thus

maximizing the host utilization.

Concerning the scalability and efficiency issues SGE provides methods for energy efficient

consumption and its scheduler which runs as a thread in the central controller daemon, may en-

able faster job starts and improved job throughput. It seems that on the latest version there have

been made enhancements to the communications protocols and the architectural design. Sun Grid

Engine has been reported to operate clusters that have more 60,000 CPUs effectively. Even if

it provides enhanced internal node topology placement techniques it does not support network

topology aware scheduling.

Torque and Maui

Torque [149] is the opensource version of PBSPro commercial product while Maui [136] is the

relevant opensource version of Moab. The maintenance of Maui has stopped since 2003 and all

later enhancements for this product have passed to Moab. Torque and Maui [150] are tightly inte-

grated and provide a complete solution that is widely used upon systems that prefer an opensource

RJMS.

The architectural designs are the same with their commercial relevants and the only differences

are limited to their supported features.

The Resource Manager subsystem provides high availability and internal node topology schedul-

ing but it offers a limited resources treatment with no particular concern for multicore architectures.

The support of cpuset enhances its task placement capabilities. A feature that usually lacks on other

opensource RJMS and is provided in Torque is the support of file stagein and stegeout mechanisms.

This feature is used by jobs that have need for data propagation before the start and after the end

of a job. However this feature can be rather contrainting for scheduling efficiency when having a

large number of nodes.

Maui scheduler supports different scheduling policies like FIFO, backfilling, fairsharing and

preemption along with advanced reservations. No support for licenses managers or moldable and

malleable jobs is proposed.

69

Client Server

Computing Nodes

Submission

Scheduling
Job Management

Resource Management

Users

Job Declaration, Control,
 Monitoring

Job propagation, binding,
execution control

Job priorities,
Resource matching

Log, Accounting

SLURM-RJMS

slurmctld slurmd slurmd slurmd.

Backup
Server

slurmctld
backup

Database

slurmdbd
slurmdbd
backup

srun
salloc
sbatch
scontrol
sinfo
squeue
scancel
sacct
sview

munged
munged munged munged.

munged

Figure 3.6: SLURM architecture

3.4.3 SLURM

SLURM [151] is an open source Resource and Job Management System designed for clusters of

all sizes. In contrary with most of commercial and open-source RJMS it is developed to support

only Linux platforms. It is one of the youngest and most evoluated open-source solutions and it is

currently used upon some of the biggest computing clusters in the world according to TOP500.

SLURM initially provided more evolutions on the Resource Management layer giving particu-

lar care upon robustness, security, task placement and scalability, letting aside some important job

management and scheduling issues. Thus, the use of an external scheduler was necessary if the

users needed more advanced scheduling policies. Nevertheless, after some major enhancements

upon the job management and scheduling layers during the last 2 years, the software can be used

as a standalone system providing a lot of the advanced functionalities.

As shown in figure 3.6 SLURM’s architecture follows the same design as other RJMS. It is

based upon one central controller daemon upon the master node (slurmctld) which is responsible

for the controls and procedures related to jobs and resources, a daemon responsible for the database

controls (slurmdbd) and one daemon installed upon each computing node (slurmd) for information

exchange with the master, task placement and resources monitoring. Specific daemons (munged)

70

are used to provide secure authentication. SLURM uses a general purpose plug-in mechanism to

select various features such as scheduling policies, process tracking or node allocation mechanisms

which allows it to be flexible and utilize custom as well as default methods. It uses the concept

of partitions which represent group of nodes with specific characteristics such as job limits and

access controls and it arbitrates conflicting requests for resources by managing one queue of pend-

ing work. The submitted user jobs can contain specific job steps which are are sets of (possibly

parallel) tasks within a job that can utilize all or parts of the job’s allocation. The concept of job

step has similarities with the array jobs found on other RJMS and also with the container jobs

found in OAR RJMS.

SLURM Resource Management

SLURM Resource Manager subsystem is characterized by its scalability and robustness. There is

no hierarchical viewing of resources but there are specific plugins (select/cons res) that can treat

the resources upto finer granularities (like cores or threads). The concept of partitions can be used

to treat the heterogeneity of clusters by grouping nodes with similar characteristics on the same

partition. The communication between the master and the computing nodes is made with sock-

ets and is normally based upon Ethernet Network. A common configuration mainly upon large

clusters is to use Ethernet for SLURM communications and a second possible high-speed network

connection like Infiniband or Myrinet exclusively for the applications communication. Further-

more, SLURM uses a sophisticated propagation algorithm based upon a dynamic adapted tree

structure which has prooven to be highly scalable. SLURM provides specialized mechanisms for

task placement according to the desired level of granularity and specific commands for resources

monitoring and execution control.

Concerning the advanced resource management features SLURM provides secure communi-

cation with different ways to be configured: munged or authd authentication mechanisms with

munged being the default method. A prototype using Kerberos exist as well. It provides high avail-

ability features by using a backup central controller (slurmctld backup) and if a database is used

for accounting purposes then a backup database daemon can be also used (slurmdbd backup). A

backup daemon is notified when a primary daemon fails and then the backup takes the control. The

particularity of the approach is hidden on the database fault-tolerance technique, where SLURM

uses a flat file to store all the necessary data while the database is down. When the database returns

back to service the data are copied into the database and the normal function is restored. A specific

overhead should be expected especially when the down-time was large and the amount of data to

71

be copied is significant.

The task placement in SLURM benefits of both network and hardware topology aware tech-

niques which can result into important application performance improvements. Concerning hard-

ware topology it provides two different plugins (select/linear or select/cons res). The first manages

jobs placement considering nodes to be one single resource for exclusive use whereas the second

one takes into account finer granularities like socket, core and thread. The first approach is far more

scalable than the second, but the second is indispensable for use upon SMP or NUMA architec-

tures in order to avoid internal fragmentation. However, the second approach turns the launching

and scheduling procedures much more complex, especially on large clusters, since they have to

deal with much larger sets of resources. As described on section 3.5 the task placement upon re-

sources is not enough and explicit binding of processes upon the cores or threads is needed for

better treatment, control and performance. SLURM provides a specialized plugin (task/affinity) in

order to deal with this issue. It supports both Linux kernel mechanisms sched and cpuset, with

sched being the default. In addition a prototype implementation for support of cgroups exist

already but a significant performance issue upon memory subsystem preventing it’s official use for

the moment.

Finally, SLURM provides energy reduction mechanisms by explicitly shuting down otherwise

un-utilized machines after a predefined period of un-utilization. When jobs that need those nodes

appear the nodes are waked-up again. The mechanism avoids to shut-down or wake-up big number

of machines on the same time because of big electrical power imbalances hence this procedure is

issued by chunks of machines.

SLURM Job Management

As Job Management System SLURM supports only simple and parallel jobs. However the sup-

port upon parallel jobs includes most of the known MPI implementations (MPICH, MVAPICH,

OpenMPI, HP-MPI, ...) with tightly coupled integration. This means that SLURM initiates and

controls the parallel job through the whole MPI execution. Some MPI implementations like Blue-

Gene or Intel MPI are currently loosely coopled integrated initiated by ssh. The notion of array

jobs which is a feature usefull for issuing big numbers of jobs with common characteristics is sup-

ported through the concept of job steps. Concerning security, job step digital signature verification

can be used with munged or openSSL credential keys in order to authenticate the job step user upon

an allocated computing node. These keys are the first messages to be propagated on job execution.

72

It provides various options for controlling the jobs before and after the start of execution. An im-

portant feature that exists only on LSF is the automatic shrinking of job size during its execution.

This is a limited support of evolving jobs. Interfaces for monitoring and controling jobs through

command line or a graphical GUI (sview) exist but no explicit support for DRMAA API or any

kind of grid or cloud computing interface is supported.

As far as the advanced features concerns, job fault-tolerance is offered through the support

of BLCR system-level checkpoint/restart library. Application-level checkpoint/restart can be also

provided to jobs through the use of signals. Suspend/Resume features using job or partition prior-

ities along with accounting with enhanced features is provided. Finally debuggers like TotalView

are also supported.

SLURM Scheduling

The until recently minimal scheduling subsystem of SLURM, defined by a simple FIFO policy

and integration mechanisms for interfacing with external schedulers (like Moab, LSF, Maui or

Catalina) has been recently replaced with an updated system which supports most of the known

scheduling algorithms like backfill scheduling, fairsharing, preemption based on jobs or queues

policies, gang scheduling, resource limits by user account, and sophisticated multifactor job pri-

oritization algorithms. It is the only production RJMS that provides gang scheduling as an option

for algorithms. This policy minimizes the jobs waiting times and under certain circumstances can

contribute to better system exploitation and optimized jobs turnaround times. This is because it

enables the efficient filling up of all the ’holes’ in the scheduling space. It allows jobs to time-

share their allocated resources and suspend/resume their execution for dedicated utilization under

specific time intervals. However in case the application is large enough and cannot be suspended

upon RAM it has to use the swap space of disk which will lead to bad scheduling performance. In

SLURM this scheduling policy is implemented with an option that defines the number of jobs that

can share a resource.

SLURM provides one queue for pending jobs but the role of partitions share a lot of similarities

with the queues defined in other RJMS like Torque or LSF. SLURM allows the use of only one

scheduling algorithm per system. This is an important missing feature of SLURM and could

provide a possible enhancement for future releases. Finally, some other existing features are the

advanced reservation and the support for application licenses.

As far as the scalability features concern SLURM provides major enhancements and our ex-

perimentation results show better this argument.

73

SLURM Scalability and Efficiency

SLURM has been designed with scalability as one of its principal goals. It is currently the Re-

source and Job Management System of about the 40% of worlds largest computers according to

TOP500 including a new system constructed by BULL for CEA research center called Tera100

which has a theoretic power of 1.25 Petaflops. SLURM systems’ architectural choices based upon

the precompiled language C and particular daemons: one for the central controller and one per

computing node keep the system simple and highly scalable to the size of the clusters and re-

sponsive to large workloads. This scalability is also enhanced with the optimized propagation

techniques for communication between the central controller and the nodes.

Concerning the efficiency issues, SLURM provides various scheduling policies like back-

fill,fairsharing and preemption and is the only RJMS that supports gang scheduling. Furthermore,

optional best-fit algorithms for the topology aware placement of tasks, are provided as enhance-

ment of the above policies, which can enable the scheduling of applications considering the par-

ticular architectural characteristics of the cluster. The only drawback that we can note is the fact

that only one scheduler is supported at a time which could provide a bottleneck of the system if a

particular scheduler encounters difficulties under particular workloads.

Experimental evaluations put more light on our conceptual observations in the last section of

this chapter.

3.4.4 OAR

OAR [60] is an open source Resource and Job Management System. Similarly with SLURM

it supports only Linux and MacOS platforms. It has been designed and implemented in LIG

laboratory and it has been widely used as a research tool (CIMENT) and a production system

(Grid5000) in various contexts. It is the default RJMS for one of the biggest international-wide

computer science research platforms Grid5000 [152].

It is a rather particular RJMS that provides a lot of differences in architecture and concepts than

all other solutions. Its uniqueness is hidden on its capacities for adaptability upon different kind of

environments and its flexibility to adopt needed features easily.

OAR is based upon a particular modular architecture build around a relational database. An

important characteristic of its architecture plays the programming language; which has been cho-

sen to be mainly the high-level scripting language Perl (along with some modules in ruby and

bash scripts). Its the only RJMS implemented solely on high-level languages and this choice is

74

Client
Server

Computing Nodes

Submission

Scheduling
Job Management

Resource Management

Users

Job Declaration, Control,
 Monitoring

Job propagation, binding,
execution control

Job priorities,
Resource matching

Log, Accounting

SLURM-RJMS

Almighty
.

Backup
Server

Almighty
backup

Database

oarsub
oarstat
oarnodes
oarcancel
oarnodesett ing
oaraccounting
oarproperty
oarmonitor
oarnoti fy
oaradmin

Backup
Database

Ping_checker

taktuk / oarsh

oarexec

taktuk / oarsh

Figure 3.7: OAR architecture

motivated by two reasons : a scripting language is generally well suited for all the low-level sys-

tem tasks (such as the distant execution of jobs on the nodes of the cluster) and it is fairly easy

to develop simple programs using Perl because it has built-in high level data structures. However,

due to the modular conception of OAR, it is possible to develop any part of the system in another

language.

As we can notice on figure 3.7 the modular architecture of OAR is made of three main com-

ponents : a database engine (MySQL or PostgreSQL), a central controller part Almighty (with an

optional backup for high availability) and an ’on-the-fly’ execution part with no daemons installed

upon the computing nodes. All necessary commands for job launching (oarexec) and resources

monitoring (Ping checker) are made through special scripts that are propagated upon the nodes.

The database engine is used to match ressources (using the rich expressive power of sql queries)

and to store and exploit logging and accounting information. The interpreted scripting language

75

Perl, that is used for the modules implementation, has a straightforward syntax with built-in high-

level data structures such as hash tables and regular expressions which make the development cycle

short and the code both simple and concise. Perl is compiled on-the-fly during the execution of

the script, so an overhead is expected compared to compiled languages such as C. The executive

part of OAR is made of a collection of independent modules. Each of them is in charge of a small

specific task. For instance, tasks such as jobs monitoring, jobs deletion, jobs submission, jobs

execution, jobs scheduling, errors logging are all handled by separate modules. All these modules

are executed each time the according task has to be performed. They all interact with the system

using the database, which takes a central place within the architecture of the system. Contrary to

other systems such as SLURM, LSF or Condor that also make use of an internal database engine,

in OAR the use of the database is not limited to backup and accounting purposes, but hold all the

internal data and thus is the only communication medium between modules.

OAR Resource Management

Based upon the above architecture the Resource Management subsystem of OAR provides an hier-

archical view and treatment of resources. This means that a cluster is treated like a tree of resources

where each resource may have parents and childs other resources depending on the architecture of

the system. For example a switch will be connected upon nodes which will have cpus which in

their turn will be composed by multi-cores and even multi-threads. The concept of hierarchical

treatment of resources has been initially conceived to answer to the recent multicore architectures

and their hierarchical model. A graphic representation of this hierarchical treatment is presented

on figure 3.8. OAR also supports multicluster infrastructures which means that multiple clusters

with their hierarchical trees can be imagined as childs of one single OAR Resource Manager..

OAR then will be in charge of submitting jobs, monitoring and accounting more than one clusters

following the same administrative rules.

This representation and treatment is a very flexible and open model for management of re-

sources allowing the support of any kind of architectures along with the management of hetero-

geneous clusters. Moreover it provides a simple way for users to describe their demands for re-

sources. On the other hand dealing the resources with their finer granularity induce the scheduler

into additional complexity, since it has to deal with a bigger number of possible execution host

candidates, especially on the new many-cores architectures.

OAR is based upon a specifically adapted version of ssh network protocol (oarsh) for secure

76

Cluster

Switch1 Switch2

Node1 Node2 Node3 Node4

CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 CPU8

CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7 CORE8 CORE9 CORE10 CORE11 CORE12 CORE13 CORE14 CORE15 CORE16 CORE17 CORE18 CORE19 CORE20 CORE21 CORE22 CORE23 CORE24 CORE25 CORE26 CORE27 CORE28 CORE29 CORE30 CORE31 CORE32

Figure 3.8: OAR hierarchical treatment of resources

communication between the server and the computing nodes and among the nodes. The authenti-

cation is made through ssh keys cryptography and a command (oardo) that allows users to execute

programs with the security privileges of another user, similar function with sudo. The commands

propagation and monitoring of tasks are handled by a separate tool (Taktuk [107]) that is called

from OAR and interfaced with the database. Taktuk tool, as described in section 3.4.4 can use any

kind of network protocol (like ssh or rsh) and in the case of OAR it uses oarsh protocol. Taktuk

guarantees a scalable propagation and monitoring of resources for OAR.

Failure detection of nodes is made by testing their responsiveness to attempts for connection

(reachability). Standard clients for remote execution have their own mechanisms to detect a failure

on a single connection. These mechanisms rely on timeouts (during the response wait) and any

node that is not reached by the time allowed for the initiation of the connection is considered as

failed. As Taktuk uses an adaptative deployment tree, non responsive nodes do not take part in the

deployment process. Thus, the duration of the failure detection last for the deployment time added

to the timeout for the last connection. To improve the responsiveness and thereby the overall

deployment time, timeouts for connection can be changed in Taktuk. This approach is the most

flexible as it allows the user to choose the quality of service it needs: a very reactive behavior (with

the risk of wrongly considering some nodes as failing) or a behavior closer to the actual nodes state

(with a high confidence in failure detection but a low performance due to large timeouts).

Once the job is launched upon the computing nodes, the different processes need to be placed

77

upon the specific resources that were allocated to the job. OAR uses the cpuset (section 3.4.1)

kernel mechanism in order to provide CPU affinity. This means that the job processes will be

bound on the specific cores attributed to it. A problem that had to be solved was the case when

a user wants to connect upon a specific node of his allocation in order to check details about the

progress of his job. The specific processes of the interactive shell should be bound upon the created

cpusets for his job allowing the user to use only the specific CPUS attributed to him. This was

treated with the creation of oarsh which in reality is just a wrapper around the ssh command which

through the propagation of environmental variables (OAR CPUSET and OAR JOB USER) allows

to a user to securely connect himself upon every node of his allocation and have the permission to

use only his CPUS. This feature allows the proper management and cleaning of job processes after

the end of the job.

OAR provides high availability mechanisms for the server and the database [153]. This func-

tionality is based upon two different tools:1) the heartbeat which is a daemon responsible for

monitoring services upon a server and in case of problem detection it can migrate the service on a

backup server and 2)DRDB which is a fault-tolerance tool for databases which can mirror a whole

block device via an assigned network. The functionality implies the use of one master server with a

central database along with an additional server and database that will be used as backup in case of

failure of the principal ones. The heartbeat daemons that allow the communication between both

servers are enabled with a mechanism for providing the same IP to the clients through a mechansim

called virtual-IP. Furthermore, DRDB guarantees the continuous mirroring of data, like a network

based RAID-1.

OAR provides energy efficient management of resources through mechanisms that detect the

machines unutilization periods and may trigger actions like power-OFF or stand-BY, in case

of job appearance the machines are notified for waking up. As we will see on chapter 6 the energy

reductions are traded-off with the waiting time of jobs while the machines are powered-ON. In

order to decrease these waiting times, especially for jobs that demand small number of nodes, a

technique that automatically keeps specific number of nodes waken-UP is provided as an enhance-

ment.

Finally the topology aware placement is a feature that takes advantage of the powerfull hierar-

chical treatment of resources in OAR. This enables the management of resources as elements that

belong to a specific branch of a tree. This can help for both network topology aware placement

and internal node topologies characteristics. For the first case, this tree structure hierarchy allows a

flexible selection of resources that belong to a specific number of islands through expressions that

78

can allocate particular branches of the tree. In a similar way the internal node topology placement

can benefit of this hierarchical treatment since the tree it can go down until the threads in case of

multithreaded architectures. The correct declaration of hardware internals matching the physical

resources with the numerotation of the tree structure in OAR will allow an optimized selection of

resources according to the application needs. This is enabled by the powerfull expressions provided

by the OAR Job Management System.

The drawback of the OAR mechanisms for topology aware placement is that they make use

of first-fit approaches of selection of resources which means that there is no specific algorithm

that takes into account different choices between which there could exist a best-fit selection. This

is an important difference with SLURM which provides best-fit algorithms for topology aware

placement. Their mechanisms are compared in the last section of this chapter.

OAR Job Management

OAR has a powerful Job Management Subsystem characterized by the hierarchical viewing and

treatment of resources and the support of different kind of jobs with ways to describe job attributes

demands. The submission and monitoring of jobs in OAR is made through particular commands

which are as separated as possible from the rest of the system. These commands send and retrieve

information using directly the database and they interact with OAR modules by sending notifica-

tions to the central module. This direct use of database enables the expression of user demands

properties through sql queries directly in the job descriptions, which gives a lot of flexibility to

OAR jobs.

A particular concept used in OAR is that of admission rules. These rules are used to set the

value of parameters that are not provided by the user and to check the validity of the submission.

Possible parameters include a queue name, a limit on the execution time, the number of needed

nodes and so on. The rules are stored as Perl code in the database and might be used to call an

intermediate program so the admission can be as elaborate and general as needed. Admission rules

can be as simple as setting a default duration of a job, or to make sure that a user does not ask too

many resources at once; But also complex like providing automatic topology aware placement to

the jobs tasks by selecting nodes of the same islands (section 3.5.2).

The hierarchical treatment of resources supported by OAR enables a simple and powerful way

of expressing submission demands. It takes in consideration the topological architecture of a clus-

ter and allows the user to express its demands with hierarchical manner in order to allocate specific

branches of the hierarchical tree, structured by the resources. Hence, a hierarchical expression can

79

look like: switch=1/nodes=15/cpus=3/core=2 which demands 2 cores upon 3 sockets of 15 nodes,

all located on the same island.

OAR supports a big number of types of jobs. Apart the standards (interactive, batch, parallel)

it also supports:

• array job type with or without dependencies for the execution of jobs that use the same

executables with different parameters,

• environment deployment job type through the integration with kadeploy tool [62, 63],

• cosystem job type which allow the encapsulation of other jobs in order to provide a virtual

dedicated cluster for use by another RJMS,

• moldable job type provide a certain flexibility for the selection of the number of resources

before the start of execution of the job with according execution times,

• besteffort job type which have the lower possible priority and always occupy otherwise uni-

tilized resources with the compromise that they are forced for interruption in case a normal

job demands the resources.

• timesharing job type provide a mechanism for allowing jobs to share the same resources

with other timesharing jobs. This feature implies the use of the operating system scheduler

for the sharing of the internal hardware resources (CPU, memory, I/O)

• container job type allow the submission of other inner OAR jobs inside them , like a

sub-scheduling mechanism

It provides the possibility of application or system level checkpoint/restart through signals.

However there is no implicit support of system-level checkpoint/restart mechanism like BLCR

[154] or other. Techniques like suspend/resume are also implemented. The accounting of users

jobs is provided with a straightforward manner through the database that keeps all the logistics of

resources, events and workloads.

Concerning OAR systems’ interfacing capabilities, the support of parallel libraries like MPI

or PVM is provided through specialized scripts but there are no builtin parameters for the various

implementations that exist. Nevertheless, this support is enhanced by tightly coupling mechanisms

through the use of the particularly adapted for OAR ssh protocol called oarsh. Through this wrap-

per, OAR makes sure that the parallel tasks of an MPI job stay bound upon the particular resources

that it has been granted access. Furthermore it can properly clean the resources after the end of

80

the job. There is no interfacing with Globus or Cloud approaches but there is integration with

lightweight grid approaches like CIGRI (see chapter 4) which enables distributed large scale ex-

ecution of jobs on the grid by aggregating idle resources of the clusters or ComputeMode which

is a cycle-stealing software which allowing the construction of a virtual cluster through the use of

independent PC’s connected on the network.

In addition, there is no GUI or web portal for jobs submission but there are specific visualization

interfaces for monitoring of jobs and a Restfull-API for development of exterior programs like web

portal to interface with OAR. This API is based upon a cgi script being served by an http server (like

Apache) that allows the programming of interfaces to OAR using a REST library. In this context

most of Unix commands that exist for OAR can be implemented through http requests and this API

based upon any programming language. REST defines a set of architectural principles by which

Web services can be designed that focus on a system’s resources. This includes how resource states

are addressed and transferred over HTTP. REST has emerged in the last few years as a predominant

Web service design model as a simple style of SOAP -and WSDL- based interfaces

OAR Scheduling

OAR scheduler is based upon the concepts of queues for general jobs grouping characterization.

All the most important functionalities such as priorities on jobs, reservations, resources matching

and backfilling are implemented. The priorities are managed through submission queues. All the

jobs are submitted to a particular queue which has its own admission rules, scheduling policy and

priority. A metascheduler exists to launch the schedule for each queue according to their priorities

and provide management for advanced reservations. The scheduling module maintains an internal

representation of the available ressources similar to a Gantt diagram and updates this diagram by

removing time slots already reserved. Initially, the only occupied time slots are the ones on which

some job is executing and the ones that have been reserved. The whole algorithm schedules each

queue in turn by decreasing priority using it associated scheduler. An important advantage of OAR

scheduling system is the capability of having a scheduling policy per queue and allowing the on-

the-fly change of policy and queue through the metascheduler. Based upon the concept of Gantt

diagram the internals of the scheduler enable mechanisms like simple estimation of the start time

of a job or visualization of the scheduling decisions

Compared to approaches like Maui in which all the jobs are given an individual priority, OAR

determines jobs priority using their queue. Of course both approaches are equivalent (it is sufficient

to define a new queue for each distinct priority value) but queues make a partition of jobs into

81

groups. This is easier to handle for the administrator (an entire queue can be interrupted for some

time or cancelled if needed) and this make possible different scheduling optimizations for different

queues (response time for interactive jobs, throughput for large and slow computations, and so on).

This represents a good tradeoff between simplicity and expression power and both the design and

the understanding of the scheduler are extremely simple (policy for choice of queue and policy for

choice of job in a queue).

As scheduling policies it currently supports only conservative backfilling, timesharing and fair-

sharing. In addition the support of application licences is also provided.

OAR Scalability and Efficiency

The flexibility and modularity of OAR comes with a tradeoff in scalability issues. Indeed the

architectural choices of OAR based upon the scripting programming language Perl which has to

be compiled on-the-fly, and the hierarchical architecture which increases the number of elements

that need to be treated by the scheduler provide important issues that need to be treated in order to

make OAR efficient for large-scale computing clusters.

The development of a new prototype scheduler based upon CAML precompiled language along

with optimizations to deal with the big number of elements in case of large clusters provide some

initial steps towards optimizations of scalability. On the other hand the highly optimized propa-

gation algorithms used for the exchange of information and submission of commands through the

use of Taktuk provide a guarantee at this resource management level.

Moreover, we think that the ease of development cycle makes an appropriate approach for a

research platform : as there is no interface to limit possibilities, scheduler developers can quickly

implement prototypes for new functionalities, perform test and debug by accessing directly to the

database. They also can easily make statistical or qualitative analysis on any internal data of the

system using the sql engine.

OAR is a versatile resource and job management system easy for maintenance and support

of new functionalities. That’s why OAR has been used as our development testbed upon which

we have implemented our prototypes for improving the system exploitation as we will see on the

following chapters.

3.4.5 Synthesis

In this section we provide a general comparison of functionalities support among the above open-

source and proprietary Resource and Job Management Systems. Table 3.3 presents a representative

82

summary of the evaluations and the extended version of the results are provided on the Annexes

section 8.1 where each general concept of table 3.3 is decomposed into a number of particular

features. The evaluation and comparison method is simple and it is based on assigning values to

reflect the level of support of every concept by each RJMS. These values are presented on table

3.4. The extended version of the comparison (annexes, section 8.1) also includes an evaluation

with points in order to obtain quantifiable results concerning the functionalities support of each

RJMS.

Characteristics / SLURM CONDOR TORQUE OAR SGE MAUI MOAB LSF PBSPro LoadLeveler

RJMS Software

RESOURCE MANAGEMENT

FEATURES

Resources Treatment YY YY YY YY Y NO NO YY YY YY

Job Launching, Propagation, YYY YY YY YY YY NO NO YYY YYY YY

Execution control

Task Placement YYY YY YY YYY YY NO NO YY YYY YYY

JOB MANAGEMENT

FEATURES

Job Declaration YY YYY YY YY YY YY YYY YYY YYY YY

Job Control YYY YY YY YY YY YY YY YYY YY

Monitoring YY YY YY YY YYY YY YYY YYY YYY YYY

Authentication YYY YY YY YY YY Y YY YY YYY YYY

Quality of Services YY YY YY YY YY YY YYY YYY YYY YYY

Interfacing YY YYY YY YY YYY Y YYY YYY YYY YY

SCHEDULING

FEATURES

Scheduling Algorithms YYY YY Y YY YY YYY YYY YYY YY YYY

Queues Management YY YYY YYY YYY YYY YYY YYY YYY YY YY

SCALABILITY AND EFFICIENCY

CHALLENGES

Topology Aware Placement YYY YY NO Y Y NO Y Y YY YY

High Availability YY YY NO YY YYY Y YYY YY YY YYY

Energy Consumption YY YY Y YYY YY NO YYY YYY YY NO

Launcher and Scheduler YYY YY Y YY YY YY YY YYY YY YYY

Table 3.3: Conceptual comparison among various RJMS

Way/Level of Support Representation

Advanced Support YYY

Simple Support YY

Limited Support Y

No Support NO

Table 3.4: Symbols used in the comparsion table

The overall quantifiable results of table 8.6 show that the RJMS which has the better noted

functionalities support, overall, is the LSF system. The second is SLURM open-source system

83

and then OAR with SGE systems. With a closer look of independent evaluation results we can

deduce that LSF has the most evoluated Job Management System with Condor being really close

in notes, whereas SLURM has the best noted Resource Manager and Scheduling Subsystems.

OAR provides a rather good Resource Management System whereas SGE has better notes in the

Job Management layer.

However, we argue that our results concerning some concepts or features may not be 100/%

correct because of limited documentations (especially for proprietary RJMS cases) or possible

misleading understanding of the description of a feature in the provided documentations. Hence

system like Loadleveler might be actually more evoluted than the notes reflect and this is because

we think that not all of the details of the proprietary systems are published. Moreover, in the case of

Maui and Moab the low overall notes are expected because those systems are meant to be integrated

upon a Resource Manager System so their real evaluation should be centered on Job Management

and Scheduling Subsystems. In a similar way, Condor software is not like the other RJMS since its

main power comes on points where the other RJMS are weaker: on the ability to effectively harness

non-dedicated resources and it is focused on features concerning High Throughput Computing. In

our case, the choice of the particular features for comparison is made according to our point of

views and tries to reflect the general current needs for Resource and Job Management Systems for

High Performance Computing. Hence our results prove that Condor is a good RJMS for HPC and

dedicated resources but fail to provide its strong points, since those features are out of the scope of

our research.

Furthermore, the results concerning the general characteristics of table 8.1 have not been in-

cluded in the final evaluation scores since they cannot be easily quantified. Nevertheless those

results should give a precedence for commercial systems, Condor and SGE because they provide

a bigger number of platforms and operating systems support, whereas SLURM, OAR and Torque

are mainly developed for Linux type and MacOS systems. On the other hand, the type of particular

programming language that has been used along with the number of code lines can provide a first

insight of the complexity of the development of the software. In this case OAR system has the

lighter approach of all systems with the less voluminous source code and this is one of the reasons

of its high versatility and ease of development cycle.

84

3.5 Performance Evaluation of opensource RJMS

In this section we present and discuss real scale performance evaluation experiments of open-

source Resource and Job Management Systems upon various cluster infrastructures. In the first

part performance evaluation results concerning workload treatment efficiency with SLURM, OAR

and Torque+Maui systems are provided. The second part presents results upon evaluation of net-

work topology aware placement of SLURM and OAR systems. Finally 3.4.3 provides experiments

concerning scalability issues of SLURM resource and job management system.

3.5.1 Launching and Scheduling Evaluation

In this first series of experiments our goal is to experiment with different opensource Resource

and Job Management Systems and their capabilities to treat the same synthetic workloads and

applications execution, deployed upon the same cluster infrastructures. For these tests we have

made use of ESP benchmark [52] composed by a synthetic workload of 230 jobs with different

sizes and target run times where each job executes the same parallel toy application pchksum

(section 2.3.2). We have effectuated our experiments upon 2 different cluster infrastructures of

Grid5000 platform.

• Genepi Cluster in Grenoble site with Intel Xeon E5420 QC 2.5 GHz biCPU-quadCores with

8GB of memory and network structured by 1Gigabit Ethernet + Infiniband 20G.

• Griffon Cluster in Nancy site with Intel Xeon L5420 2.5 Ghz biCPU-quadCores with 16 GB

memory and network structured by 1Gigabit Ethernet + Infiniband 20G.

In these infrastructures the use of Infiniband is restricted to the applications MPI communica-

tion, which can benefit of the advantages of high-speed links, whereas Ethernet is used only for

message exchanges for management purposes.

Regardless the real sizes of each cluster our experiments deployed personalized clusters, with

different RJMS and policies for dedicated use, based on the methodology presented on chapter 2.

The first set of deployments, made upon Genepi cluster, consisted of an 8 computing nodes system

plus 1 separate node used for central server of the RJMS. The testbed consists of deploying OAR,

SLURM and Torque+Maui as the responsible RJMS and observe their efficiency to treat the same

synthetic workload (adapted ESP for 64resources cluster) under real dedicated conditions (no other

users or jobs make use of the system). We have tested specifically selected scheduling policies of

each RJMS. Each RJMS proposes different policies and various configurations (annexes), however

85

in this study we wanted to experiment with the most practical used ones. The final efficiency of

each case is a function of multiple dependent internal procedures for each RJMS. However the

main functions that are put under stress are the scheduling and launching capabilities of the RJMS.

RJMS/policy OAR SLURM TORQUE+Maui

backfill 83.7% 83.9% 83.1%

preemption Not Supported 84.9% 85.4%

gang-scheduling Not Supported 94.8% Not Supported

Table 3.5: OAR, SLURM and Torque+Maui experiments upon a cluster of 64

resources (8nodes-biCPU/quadCORE): Efficiency Percentage

different scheduling policies for ESP benchmark

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
es

ou
rc

es
 (

co
re

s)

Time (sec)

System Utilization with ESP Benchmark and OAR RJMS: 8 nodes cluster (dualCPU-quadCore)

OAR Instant Utilization
Job Start Time Impulse

Figure 3.9: Instant system utilization for ESP Benchmark with OAR and

Backfill policy (83.7% efficiency) upon a cluster of 64 resources

The results presented on table 3.5 show average values after 5 repetitions of the same experi-

ment. The variations of results were rather small and the standard deviation s of the experiments

86

Figure 3.10: Instant system utilization for ESP Benchmark with

Torque+Maui and Preemption policy (88.4% Efficiency) upon a

cluster of 64 resources

remained with values below 2/% in all cases. We observe that backfill schedulers (conservative

cases) of the tested RJMS have similar performances with a slight advantage of SLURM sched-

uler. We also see that preemption has much better results than simple backfill scheduling. This

is because ESP benchmark makes use of 2 higher priority jobs which demand all the resources of

the cluster. With normal backfill schedulers these ’all resources’ jobs provide a barrier, constrain-

ing the backfilling of smaller jobs, during the time they are waiting for execution. On the other

hand when preemption is used, these jobs are executed immediately so they do not constrain the

backfilling.

The best performance is attained by gang-scheduling which is supported only by SLURM. The

very good performance of this scheduling policy is related to the fact that it allows the efficient

filling up of all the ’holes’ in the scheduling space jobs. They make dedicated use of resources

through suspend/resume techniques(as explained on section 3.3.4). The simpliciy of the particu-

lar application, used in ESP benchmark, eases the work of the system to perform suspension of

87

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000

R
es

ou
rc

es
 (

co
re

s)

Time (sec)

System Utilization with ESP Benchmark and SLURM: 8 nodes cluster (dualCPU-quadCore)

SLURM
Job Start Time Impulse

Figure 3.11: Instant system utilization for ESP Benchmark with SLURM and

Gang-Scheduling policy (94.8% efficiency) upon a cluster of 64

resources

execution upon memory and no need for swapping is needed which would provide additional over-

head. In particular, SLURM provides the possibility for configuration of 2,3 or 4 coscheduled jobs

upon the same resource. In this experiment we have tested only with 1 pair of jobs upon the same

resource.

Regardless the very good efficiency of gang scheduling, it is a policy that is not used in pro-

duction. The reason is that in case the application cannot be suspended only upon RAM (which

is the case for plenty of real applications) it has to use the swap space of disk and this will lead

to additional performance degradation and scheduling overhead. On the other hand preemption,

which makes use of the same technique of suspend/resume but only for selected high priority jobs;

has become an indispensable feature that can really optimize the performance of the RJMS in pro-

duction use. In this case the change of context is made only once so there is no big overhead upon

scheduling. OAR RJMS needs to be enhanced with this policy as well.

Figures 3.9, 3.10, 3.11 show the instant system utilizations throughout the execution of the

whole workload for different RJMS and scheduling policies. The figure provides the instant start

time impulse of each job showing the size of the demanded resources. Only the behaviour of one

88

RJMS is shown for each policy since the graphs do not have big differences between them apart

the final turnaround time of the whole workload execution. It is interesting to observe how the

higher priority jobs are executed instantly when they are submitted in the cases of Torque+Maui

preemption and SLURM gang-scheduling whereas they need to wait the termination of executing

jobs and the scheduling decisions in the case of simple backfill case of OAR. The scheduler selected

to delay the execution of the first Z-type job (that allocates all resources) and relate it with the

second one (one after the other) as a best fit option. The same strategy is also followed by SLURM

and Torque+Maui backfill schedulers

The second set of deployments was made upon Griffon cluster and consisted of a larger system

of 64nodes (biCPU/quadCore) with a total of 512 computing resources and 1 central controller

as the RJMS server. We performed the same experiments for backfill policies for each different

RJMS case. Table 3.6 show average results after 5 repetitions of the experiments. It is interesting

to observe how both OAR and Torque+Maui are induced to important performance degradation

for ESP efficiencies.

RJMS/Results OAR SLURM TORQUE+Maui

Average Wait time 3206sec 2872sec 3324sec

Total Execution time 13613sec 13013sec 13894

Efficieny for backfill policy 79.1% 82.7% 77.1%

Table 3.6: OAR, SLURM and Torque+Maui experiments upon a cluster of

512 resources (64nodes-biCPU/quadCORE): Efficiency

Percentage for ESP benchmark and backfill policies

Closer observation of the internals of each system showed us that these degradations are due

to different reasons for each case. OAR provides an hierarchical treatment of resources which fa-

cilitates their use and management but is induced to increased complexity with the scaling of the

cluster size and the elements that need to be taken into account on the scheduling procedure. In

addition the default scheduler is implemented in Perl scripting language which is less efficient due

to the on-the-fly compilation of the code. New versions of the scheduler implemented in CAML

which is powerfull pre-compiled language with advanced scheduling techniques are already pro-

totyped and will be soon in production. Due to lack of time this new OAR scheduler has not been

tested.

On the other side, for Torque+Maui system, the ESP efficiency degradation is not due to

scheduling overheads but due to slower resource management and launching mechanisms. In

89

particular the fact that Torque resource manager does not provide resource management with fine

granularities in relation with the use of CPUSET mechanism, for job confinement, still in experi-

mental phase induced important overheads in the whole process. It has to be noted that this feature

was configured in all 3 RJMS and both OAR and SLURM have provided its support much earlier

than Torque. Experiments without the use of CPUSET shown better performance for Torque but

still we believe that Torque needs to provide the option for finer granularities in order to reduce

cases of internal fragmentation during scheduling. However newer versions of the system already

provide the stable version of job confinement with CPUSET mechanisms.

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
um

be
r

of
 R

es
ou

rc
es

Time sec

Resources Utilization for ESP benchmark with OAR (64nodes-biCPU/quadCORE)

Utilization
Job Start Time Impulse

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
um

be
r

of
 R

es
ou

rc
es

Time sec

Resources Utilization for ESP benchmark with SLURM (64nodes-biCPU/quadCORE)

Utilization
Job Start Time Impulse

Figure 3.12: Instant system utilization for ESP Benchmark with OAR(79.1%

Efficiency)(left) and SLURM(82.7% Efficiency)(right) upon a

cluster of 512 resources (64nodes:biCPU-quadCORE)

Figures 3.12 show the instant system utilization along with the jobs start-time impulses for ESP

execution with OAR and SLURM for the same experiments shown on table 3.6. The choices for

job executions seem similar however SLURM manages to finish the whole workload faster than

OAR. An interesting observation is to see how the management of SLURM leads to continuous

constant system utilization whereas a lot of variations are observed for OAR case.

Figure 3.13 shows the cumulated distribution function on wait time for the same experiments.

The advance of SLURM versus OAR is clear considering the impact of scheduling upon jobs

waiting times. The same result can be also observed by the differnce in jobs average waiting time

shown in table 3.6. In a whole, SLURM is more scalable than OAR and Torque+Maui and the

scalability capabilities of SLURM will be also discussed on the following sections.

90

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF on Wait time for ESP benchmark on a 64nodes−biCPU/quadCORE cluster

Wait time [s]

Jo
bs

 [%
]

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF on Wait time for ESP benchmark on a 64nodes−biCPU/quadCORE cluster

Wait time [s]

Jo
bs

 [%
]

OAR
SLURM

Figure 3.13: CDF on wait time for ESP benchmark and Backfill policies of

OAR(79.1% Efficiency) and SLURM(82.7% Efficiency)

3.5.2 Network Topology Aware placement Evaluation

The goal of these second series of experiments is to evaluate the mechanisms for dealing with

efficient placement of jobs regarding network topology characteristics. The experiments have been

effectuated upon Griffon Cluster in Nancy site with Intel Xeon L5420 2.5 Ghz biCPU-quadCores

with 16 GB memory and network structured by 1 Gigabit Ethernet + Infiniband 20G. For this suite

of experiments we have taken into account the network topology architecture of the cluster. In

particular we have chosen 64 nodes dispersed upon 3 different islands of nodes (groups of nodes

that are connected upon the same switch 3.3.1) . At the particular cluster we have fat-tree network

topology. Hence the performance degradation due to network contention is going to be inexistent.

Our motivation is to experiment with the schedulers in order to obtain the best possible strategy

for placement, thus we provide the mechanisms to favorize the network topology placement and

we evaluate the efficiency depending on their choices for placing the jobs upon 1,2 or 3 islands.

For the experiments we have made use of the synthetic workload of ESP benchmark. The table

91

Job Type Fraction of Job Size Job size for a 512cores Least number of Count of the number Percentage Target Run Time

relative to total system cluster (in cores) needed islands of total jobs of job instance (Seconds)

size

A 0.03125 16 1 75 32.6% 267

B 0.06250 32 1 9 3.9% 322

C 0.50000 256 2 3 1.3% 534

D 0.25000 128 1 3 1.3% 616

E 0.50000 256 2 3 1.3% 315

F 0.06250 32 1 9 3.9% 1846

G 0.12500 64 1 6 2.6% 1334

H 0.15820 81 1 6 2.6% 1067

I 0.03125 16 1 24 10.4% 1432

J 0.06250 32 1 24 10.4% 725

K 0.09570 49 1 15 6.5% 487

L 0.12500 64 1 36 15.6% 366

M 0.25000 128 1 15 6.5% 187

Z 1.00000 512 3 2 0.9% 100

Total 230

Table 3.7: ESP benchmark characteristics for 512 cores cluster

2.2 of the previous chapter has been adapted to fit the case of 512 cores cluster and the values are

presented on table 3.7. The column Least number of needed islands shows that only 3 classes of

jobs (C, E and Z representing the 2.6% of the total number of jobs) cannot be executed on 1 island

(1 island contains 168 or 176 cores), the rest of them should be ideally placed upon 1 island.

The use of the default ESP benchmark implies that the target run-times of each job is fixed

even if they make MPI communication between their allocated resources. This means that the

topological placement capabilities of each RJMS (that could favor the execution times of specific

applications) will not have any effect on the final efficiency of the RJMS. In contrast, efficient

placement techniques may increase the waiting times of the jobs, since the scheduler will take

more time to decide, which can lead to poor ESP efficiency.

In our evaluation we deal only with SLURM and OAR systems since Torque+Maui system

does not provide mechanisms for dealing with network topology optimizations.

OAR through moldable jobs

The mechanism for dealing with network topology placement for OAR resource and job man-

agement system takes advantage of the hierarchical treatment of resources and the use of a specific

kind of flexible jobs termed as moldable [60] (which adapt themselves according to availabilities

before their execution). In OAR, every resource can be considered as a leaf with a different path

in the hierarchical resources tree (figure 3.8). Hence the network topology architecture is known

by default. This can be taken into account by OAR and jobs that can fit on single islands could

be specifically placed upon one of them. According to this technique a normal job demanding a

number of random resources can be modified to a moldable one that demands resources related to

the islands that they are connected favoring those that are connected on a single island.

Different levels of flexibility can be provided through moldable jobs. The moldable jobs can be

92

adapted to allocate resources upon 1,2 or 3 islands according to the fastest availability or they can

provide stricter options for a by default execution of jobs upon the exact switches that are needed.

Apart the choices that the user can make the administrator can provide by default network

topology placement through OAR. For this a simple techinque which passes from the powerfull

expression of admission rules exists. The administrator of the cluster can configure a specific

admission rule to fit to the wanted strategy by automatically changing a normal job to moldable

one.

SLURM through constraints or Topology aware plugin

In contrast with OAR, SLURM provides a specific plugin to support topology aware placement

of jobs. The advantage of this plugin is its best-fit approach to deal with this aspect. This means

that the plugin will not only favor the placement of jobs upon the number of switches that are

really needed, but it will consider a best-fit approach for example to select a nearly full island in

place of an empty one in order to leave the empty island for jobs that could ask more resources

and can potetntially fit upon one island. Choices like this cannot be taken with the technique of

moldable jobs of OAR which consider a first-fit approach. However since SLURM does not pro-

vide hierarchical management of resources the network topology architecture needs to be provided

in a separate file where all the connections between the different levels of switches and the leaf

nodes are provided. Besides the topology aware plugin similar functionality with moldable jobs is

provided by the help of constraints which are features that have been assigned to resources by the

administrator and can be used by the users in the form of parameters inside the jobs [151].

The administrator can specifically provide the different islands of nodes as features of each

partition inside the main configuration file of SLURM. Similarly with the functionality of moldable

jobs the constraints of user jobs can provide different levels of flexibility allowing the user to adapt

its job according to the sensitivity of the application to network topology placement. Hence a large

time-consuming application sensitive to network communication could be adapted for strict use

of exactly the number of switches that it fits in, whereas smaller applications with less sensitivity

could simply benefit of the automatic topology aware scheduling of the plugin.

Figure 3.14 shows the efficiency of the above placement strategies for the selection of resources

that are contained on 1, 2 or 3 different islands of our cluster infrastructure for the different cases

of OAR and SLURM. The barplots show the percentages of jobs that are placed upon 1, 2 or 3

islands during their execution with and without topology aware placement techniques. We can

observe that the default hierarchical treatment of resources of OAR provides better placement for

bigger percentage of jobs than the default placement of SLURM without considering topology

93

 0

 20

 40

 60

 80

 100

1 2 3

Jo
bs

 P
er

ce
nt

ag
es

Number of used islands

Topology aware placement OAR: 230 ESP jobs upon 64node(biCPU-quadCORE) cluster

NO-TOPOLOGY-Default-Hierarchical(ESP-Efficiency=79.1%)
TOPOLOGY-MoldableFlex(ESP-Efficiency=77.6%)

TOPOLOGY-MoldableStrict(ESP-Efficiency=74.8%)

 0

 20

 40

 60

 80

 100

1 2 3

Jo
bs

 P
er

ce
nt

ag
es

Number of used islands

Topology aware placement SLURM: 230 ESP jobs upon 64node(biCPU-quadCORE) cluster

NO-TOPOLOGY-Default(ESP-Efficiency=82.7%)
withTOPOLOGY-AwarePlugin(ESP-Efficiency=82.5%)

TOPOLOGY-with-ConstraintsSTRICT(ESP-Efficiency=77.8%)

Figure 3.14: Efficiency of network Topology aware placement mechanisms

OAR(left) vs SLURM(right)

ESP Characteristics Theoretic SLURM OAR

Ideal values with Topology with Topology

aware plugin aware moldable jobs

Total Elapsed Time(sec) 10773 13050 13877

Average Waiting-Time(sec) - 2987 3411

Efficiency 100% 82.5% 77.6%

Jobs on 1 island 222 168 182

Jobs on 2 islands 6 45 35

Jobs on 3 islands 2 17 13

Table 3.8: Topological and ESP characteristics with the default Topology

aware placement techniques of SLURM and OAR

issues. This is an advance of the hierarchical treatment of resources which takes into account the

different levels of granularities concerning the resources. On the other side this has an impact on

the efficiency of the schedulers speed as wee can see on the efficiency of the ESP benchmark for

each case. It is interesting to see how the topology aware plugin does not provide any impact

on the efficiency of SLURM scheduler, since the ESP efficiency between the two cases is nearly

the same, whereas an important improvement can be observed on the selection of islands. The

topology aware plugin favors the placement regarding topology characteristics but if the best-fit

choices cannot be attained then it compromises with not best-fit choice so as not to waste a lot of

time due to external fragmentation.

94

 0

 20

 40

 60

 80

 100

1 2 3

Jo
bs

 P
er

ce
nt

ag
es

Number of used islands

Topology aware placement OAR vs SLURM: 230 ESP jobs upon 64node(biCPU-quadCORE) cluster

OAR-withTOPOLOGY-MoldableFlex(ESP-Efficiency=77.6%)
SLURM-withTOPOLOGY-AwarePlugin(ESP-Efficiency=82.5%)

Figure 3.15: Efficiency of the Default Topology aware placement techniques

for SLURM and OAR

We can see how the strict approaches of both cases present important degradation in perfor-

mance due to larger waiting times for the best placement but with an impact on ESP-efficiency.

Finally figures 3.15 and table 3.8 show in more detail the evaluation characteristics of the De-

fault Topology aware placement techniques for SLURM and OAR. The results proove that OAR

can attain better placement for more jobs with a loss in average waiting times and ESP efficiency.

However SLURM can also attain similar results for better jobs placement with the use of the mech-

anism of constraints. In the same time OAR could attain similar efficiency with the use of faster

scheduler.

3.5.3 Scalability and Efficiency Evaluation

In this third series of experiments we perform experiments of SLURM resource and job man-

agement system upon a dedicated cluster of large-size. The tests have been effectuated upon a

95

production BULL cluster constructed for testing purposes before it can be delivered to specific

client in industry. This temporarary cluster was a part of the Tera100 supercomputer constructed

by BULL for CEA-DAM research center. It is composed by Intel Xeon series 7500 processors

(quadCPU-octoCORE) with 32GB of Memory and Ethernet+Infiniband networks. The Infiniband

network is based on fat-tree topology with a pruning effect between the top level and the medium

level switches. Additional architectural information cannot be given since they are BULL and CEA

confidential.

For these experiments we have made use of the same workloads and applications that have

been utilized on the previous chapters. In particular initially we used different cluster sizes (512

and 9216 resources) for adapted ESP benchmark and we observe the efficiency of the execution

of whole ESP workload making use of the parallel toy application pchksum. Then we perform

throughput experiments in order to measure the behaviour of SLURM under jobs submission burst.

Finally a modified ESP benchmark has been introduced in order to provide a way to experiment

with the actual efficiency of the topology aware placement mechanism of SLURM upon a fat-tree

topology

Scaling size of cluster and size of jobs

Initially our goal is to check the efficiency of the scheduler and the launcher while scaling up

the size of the cluster. For the specific experiments SLURM was configured with the following

parameters:

• task affinity/CPUSETS, for the task confinement upon particular number of processors(cores)),

• cons res, for a fine granularity of task placement

• CR Core Memory, for task placement with granularities Core and Memory

• backfill scheduling policy, as permanent scheduling algorithm

• accounting with mysql + slurmdbd enabled, for jobs accounting with security

• SLURM-High Availability NOT enabled, which means that the backup control deamon and

backup database deamon are not working

• Topology plugin NOT enabled, which means that the scheduling plugin that favors the place-

ment of jobs upon the same or limited number of islands will not take effect

• Job priorities WITH Preemption, for an immediate execution of higher priority jobs after

suspension of lower priority that occupy the demanded resources

96

Table 3.9 present the final evaluation results concerning the ESP benchmarks executions with

512 and 9216 cores. The degredation in efficiency is trivial and this represents a good result

concerning the scalability of SLURM.

SLURM NB cores / ESP-Results 512 9216

Average Wait time(sec) 2766 2919

Total Execution time 12992 13099

Efficieny for backfill+preemption policy 82.9% 82.3%

Table 3.9: ESP benchmark results

Figures 3.16 show us the system utilization graph during the execution of the ESP synthetic

workload for a configuration of 512 and 9216cores. In both figures the y-axxis represent the

number of utilized resources and the x-axxis the time in seconds. We can observe that there are

practically no differences in the scheduling of the tasks and that SLURM manages to keep a good

system utilization while we increase the size of the cluster.

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
um

be
r

of
 C

or
es

Time sec

System utilization for ESP synthetic workload and SLURM - 512 cores

SLURM
Job Start Time Impulse

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000 12000 14000 16000

C
or

es
 U

til
iz

at
io

n

Time sec

System utilization for ESP synthetic workload and SLURM - 1024 cores

SLURM
Job Start Time Impulse

Figure 3.16: Instant system utilization for ESP Benchmark with SLURM and

cluster size of 512 (left) and 9216 (right) resources

Figures 3.17 present the strech times of all the 230 jobs of the ESP workload for two cluster

configurations of 512 and 9612cores. The less the factor for the jobs, better quality of service for

the Resource and Job Management System. We can observe a slightly higher stretch on the last

97

jobs for the 9216resources case.

1 9 19 31 43 55 67 79 91 104 119 134 149 164 179 194 209 224

Stretch Time for 230 jobs of ESP workload
 upon a 16nodes−4CPU−8CORE cluster (SLURM)

Jobs

S
tr

et
ch

 T
im

e
(s

ec
)

0
5

10
15

20
25

30

1 9 19 31 43 55 67 79 91 104 119 134 149 164 179 194 209 224

Stretch Time for 230 jobs of ESP workload
 upon a 288nodes−4CPU−8CORE cluster (SLURM)

Jobs

S
tr

et
ch

 T
im

e
(s

ec
)

0
5

10
15

20
25

30

Figure 3.17: ESP Benchmark slowdown for SLURM 512-9216 cores

Figure 3.18 show us the cumulated distribution function of jobs waiting time during the ex-

ecution of the ESP workload for the cases of 512 and 9216 cores. The graphs proove that the

difference in waiting times are trivial as they are also shown by the average values of table 3.9.

Throughput experiments

The goal of these experiments is to stress the launching mechanisms of SLURM with large

number of small sized jobs. In particular these experiments have been effectuated upon the same

cluster as before with a configuration of 320 nodes for a total of 10240 resources. Our testbed is

composed by a script that launches a for loop of batch jobs which demand for 1 core and perform

a simple sleep function for 1000 seconds. Our testbed submitted 11000 jobs of this type in order

to observe how many jobs are treated by SLURM per second and if there are any limits beyond

which there is a degradation of performance.

The figures presented in 3.19 show the number of submitted jobs per second in the left and

the number of terminated jobs per second in the right as treated by SLURM . In more detail the

figure in the left implies the passage of jobs from Waiting to Running state whereas the figure in

the right implies the passage of jobs from Running to Terminated state. Surprisingly the thoughput

experiments of backfill scheduler showed us very good results with constant rate of about 160 jobs

per second in average that start execution. Similarly in the right we observe the termination of jobs

with constant rate of about 70 jobs per second in average which can arrive up to instant throughput

of 220 jobs at the right of the graph.

We have effectuated the same experiments for backfill+preemption scheduling policy (with no

98

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF on Wait time for ESP benchmark on a 64nodes−biCPU/quadCORE cluster

Wait time [s]

Jo
bs

 [%
]

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF on Wait time for ESP benchmark on a 64nodes−biCPU/quadCORE cluster

Wait time [s]

Jo
bs

 [%
]

SLURM512
SLURM9216

Figure 3.18: ESP benchmark CDF on wait time SLURM 512-9216 cores

Figure 3.19: Throughput for submission(left) and termination(right) of jobs

with SLURM - Backfill scheduler

different priorities between jobs so the preemption could not take effect) and we observed that the

scheduler provided important problems and literally hanged after the submission of about 7500

99

0 50 100 150 200 250 300

0
50

10
0

15
0

Instant Throughput for 7000 submitted jobs (1core each)
 upon a 10240 cores cluster (Backfill+Preemption Mode)

Time(sec)

N
um

be
r

of
 J

ob
s

0 50 100 150 200 250 300

0
10

20
30

40
50

60
70

Instant Throughput for 7000 terminating jobs (1core each)
 upon a 10240 cores cluster (Backfill+Preemption mode)

Time(sec)

N
um

be
r

of
 J

ob
s

Figure 3.20: Throughput for submission(left) and termination(right) of jobs

with SLURM - Backfill+Preemption scheduler

jobs. Hence a submission of 11000 jobs upon the same cluster with backfill+preemption policy

was not possible and after several repetitions we obtained correct behaviour without system hang-

ing at the limit of 7000 jobs. The measures obtained are shown on figures 3.20 The degradation

of performance in throughout is obvious in both figures in comparison with the relevant for simple

backfill scheduler. As might be expected, it is straightforward to understand that the preemption

logic induces additional complexities on the scheduler and that’s why how this degradation in

throughput is explained. However we argue that since no higher priority job is used and no pre-

emption is demanded throughout the whole experiment the scheduler should be able to perform

its function with same complexity and results as the simple backfill scheduler. The complexity of

scheduling jobs with preemption should be induced only when preempted and preemptable jobs

exist.

Network Topology aware placement

For the evaluation of the efficiency of the Topology Plugin we have performed some changes on

the default ESP benchmark by making use of NAS NPB-MPI parallel applications. As described

on 2.3.2 we needed to particularly modify ESP benchmark to use applications with their normal

target run times. Hence the new modified ESP benchmark, named TOPO-ESP-NAS, has been

created with the following characteristics. The use of NAS application (CG class D) has been

selected in place of the default pchksum MPI toy application, in order to be able to make use of

applications that perform intense network communications. Moreover we deactivate the predifined

execution time and we let the application perform the whole execution so as to measure its actual

turnaround time. Our goal here is to observe the results upon application performance and overall

100

workload efficiency when making use of the topology aware best-fit plugin and to compare it with

a similar execution without the use of the plugin.

The NAS parallel benchmarks [66], are widely used to evaluate the performance of parallel

supercomputers as described in section 2.4.5. In our case we make use of only CG (Conjugate

Gradient) benchmark which according to previous studies [67] is one of the most sensible ones to

network contention.

Job Type Fraction of Job Size Job size for a 4096 cores Least number of Count of the number Percentage Target Run Time (in sec) Target Run Time (in sec)

relative to total system cluster (in cores) needed islands of total jobs of job instance for execution upon 1 island for execution upon 2 islands

size

A 0.03125 128 1 75 32.6% 212 215

B 0.06250 256 1 9 3.9% 147 152

C 0.50000 2048 1 3 1.3% 374 523

D 0.25000 1024 1 3 1.3% 711 1143

E 0.50000 2048 1 3 1.3% 374 523

F 0.06250 256 1 9 3.9% 147 152

G 0.12500 512 1 6 2.6% 870 878

H 0.15820 648 1 6 2.6% 1003 1001

I 0.03125 128 1 24 10.4% 212 215

J 0.06250 256 1 24 10.4% 147 152

K 0.09570 392 1 15 6.5% 167 165

L 0.12500 512 1 36 15.6% 870 878

M 0.25000 1024 1 15 6.5% 711 1143

Z 1.00000 4096 2 2 0.9% 314 481

Total 230

Table 3.10: Topo-ESP-NAS benchmark characteristics for 4096 resources

cluster

SLURM NB cores-TOPO Cons / Topo-ESP-NAS-Results Theoretic- Ideal values 4096 NO-Topology Aware 4096 Topology Aware

Total Execution time(sec) 12227 17518 16985

Average Wait time(sec) - 4575 4617

Average Execution time(sec) - 502 483

Efficieny for Topo-ESP-NAS 100% 69.8% 72.0%

Jobs on 1 island 228 165 183

Jobs on 2 islands 2 65 47

Table 3.11: TOPO-ESP-NAS benchmark results for 4096 resources cluster

The experiments have been effectuated upon the same cluster as our last experiments with a

configuration of 128 computing nodes with a total of 4096 resources (cores) and 1 machine use as

SLURM central controller. The network topology architecture consists of a fat tree with two islands

of 64 nodes (2048 resources) each. The specific fat tree has a certain pruning level between the top

switch and the medium level switches which means that there is not an all-to-all communication

between the nodes of different islands.

101

The ESP benchmark table of job classes has been adapted for 4096 cores system and the run-

times provided are the average execution times observed after 10 repetitions (with standard de-

viation less than 3/%) of jobs execution of CG benchmark class D upon the relevant number of

resources. The values of these execution times are used to provide the best case for the Total Ex-

ecution time (=12227sec in case all jobs are executed upon 1 island) of the new TOPO-ESP-NAS

benchmark as provided on the second column of table 3.11. As we can observe the pruning effect

can particularly influence the application performance on jobs with sizes more than 1024 resources

as we can observe on the last two columns of 3.10. This is because of the particular topological

interconnection which allows small jobs to have the posibility of an all-to-all communication even

if they are placed to different islands.

The actual experimentation that were performed showed a marginal advance on Average Execu-

tion time along with a slight degredation in Average Waiting time when comparing the Topology-

Aware Placement with the No-Topology Aware case. This is followed by an overall advance in

Efficiency in Topo-ESP-NAS benchmark for the Topology-Aware Placement case. This difference

is due to the fact that the Topology aware scheduling resulted into 79.6/% of the total jobs placed

upon 1 island whereas in case of No-Topology aware this percentage is 71.7/%. Hence we have a

difference of 7.9/% of jobs that benefit of a better placement for faster communication and possibly

faster application performance.

Nevertheless the difference in Topo-ESP-NAS overall Efficiency is marginal. This is due to

the fact that the pruning level does not really have an effect in all job sizes as we can observe

on table 3.10 and the small number of islands makes performance differences quite similar for

both cases. Ofcourse a tradeoff that needs to be considered is the Average Waiting time. The

observed degredation is expected due to the imposed overhead to the scheduler to take into account

topological characteristics in its algorithms. We need to observe this tradeoff between Execution

time and Waiting time since it will play an important role in the overall efficiency results of the

topology aware plcament techniques. However we expect that larger networks with larger depths

and bigger number of islands will definately provide an additional overhead to the Topology Aware

Placement plugin but also faster execution times for applications that are optimally placed and this

will lead to differences on the final TOPO-ESP-NAS efficiency.

102

3.6 Conclusions

Management of Resources and Jobs for high performance computing in modern architectures has

become a complex procedure with interesting research issues. Opensource and commercial Re-

source and Job Management Systems have been evolving to provide efficient exploitation of the

infrastructures along with quality of services to the users. In this chapter we have made an in depth

analysis of the internals of a RJMS and we have discussed about current research issues. A con-

ceptual analysis and comparison of various opensource and commercial RJMS has been provided

and some principal differences between the systems have been discussed.

In this chapter, additional light have been set to some research issues. The particularities of

both inter-node and network topological architectures have to be taken into account to avoid appli-

cation performance degredations. The overall system energy consumption needs to be considered

and power-efficient management of resources need to be adopted. The increase of number of re-

sources and jobs enforces the scalability issues of the launching and scheduling mechanisms of the

RJMS. System High availability and techniques for jobs execution fault-tolerance need to provide

certain guarantees especially in large-scale system were the possibilities for failures are more im-

portant. Various techniques are adopted by the different RJMS to deal with these issues. Particular

experimental results upon specific RJMS gave us better insight for the understanding and analysis

of these functionalities and provided performance evaluation comparisons bettween the RJMS.

Furthermore an analytical functionalities comparison between RJMS has been presented along

with quantifiable evaluation scores which resulted to providing the best overall score for function-

alities support to LSF commercial system. The second best score was reached by SLURM and

the third and fourth position by OAR and SGE software. Closer look to the results showed that

LSF provides the most evoluated Job Management System whereas SLURM has the better Job

Management and Scheduling subsystems. However we argue that based on the constant evolution

of technologies and software systems those results should not be taken as granted but more as

an reference base for helping researchers to evaluate and compare the functionalities of Resource

and Job Management Systems. This quantifiable evaluation can be utilized as the continuity of

the research that has been started on 1994 by Kaplan [73], and Baker [74] and that it can be up-

graded accordingly with the future technological evolutions and needs. Moreover the real-scale

performance evaluation can be extended to be used for all different RJMS and provide complete

performance evaluation results for all systems.

In our case, our principal interest is mainly upon the two systems that we have been studied

extensively OAR and SLURM. The one aims more on simplicity and versatility. The second has as

103

goal scalability and efficiency. SLURM has been our testing system for scalability and efficiency

upon large-scale infrastructures whereas OAR has been our testbed for the various prototype im-

plementations that we propose on the following chapters. Both tools have their advantages and

drawbacks and they are destined to different kind of environments. However we believe that both

systems can take lessons from each other. The scalability issues of OAR scheduler observed during

our evaluation process could be adressed in the future with the currently ongoing development of

a new scheduler that benefits of a precompiled structural language. On the same time SLURM has

been observed to be highly scalable in both number of nodes and jobs. However the slight through-

put overheads of the backfill+preemption scheduler could be partially treated with the possibility

of developping a scheduler per pending queue or partition (in SLURM terms).

104

Chapter 4

Improving system utilization in a

lightweight grid context

Large scale scientific research, linking geographically distributed computational resources, is achieved

by platforms known as computational grids and technologies termed grid computing. These infras-

tructures refer to a coordinated resource sharing of multi-institutional organizations with a common

goal to perform particular scientific or technical large-scale computations [155]. They are often

composed by multiple loosely coupled and geographically dispersed clusters with different admin-

istrative policies. Specialized software, termed as grid middleware, are used for the monitoring,

discovery, and management of resources in order to promote the application execution upon the

grid. At this level a collaboration between the local cluster resource and job management system

and the grid middleware is needed to guarantee the local site autonomy.

The project with the greatest visibility on grid computing is Globus [156]. This mainstream

approach, provides a software infrastructure that enables applications to handle distributed hetero-

geneous computing resources as a single virtual machine. It is based upon standardized services

and formal allocation procedures established with the local RJMS of the cluster. Other approaches

propose more opportunistic ways for the execution of large-scale distributed applications. Tech-

nologies like desktop grid or volunteer computing enabled scientists to perform computations more

flexibly but with less guarantees, through the exploitation of idle cycles of desktop PCs connected

on the internet. In a similar context alternative grid technologies proposed the idea of harvesting

unutilised resources of multiple distinct administrative domains (clusters) that want to share their

resources. This technology, usually termed as global computing was initially proposed by Con-

dor [12] and implies the use of clusters’ otherwise idle resources for execution of large-scale grid

105

applications.

In these environments, where no guarantee is provided for resources availabilities, the appli-

cations should be able to adapt themselves. A particular class of scientific applications known

as bag-of-tasks is widely used under these contexts. They are composed by independent sequen-

tial tasks, able to use otherwise unutilized machines and would not be interrupted due to loss of

resources. Furthermore their adaptability can play an important role on improving the systems

utilization and reducing the external fragmentation.

Based on this context, this chapter presents CIGRI [25] which is a simple, lightweight, scalable

and fault tolerant grid computing approach. It works discreetly on the interconnected clusters,

without influencing the normal functionality of the local Resource and Job Management System.

This is achieved by utilizing a transparent technique of harnessing the idle cluster resources for

executing larger-scale computations. The platform supports all kind of parallel applications but

our concern is centered on the use of bag-of-tasks applications.

One of the major challenges of the various approaches that exploit idle resources on grids, lies

in their volatility. A common solution to deal with the high volatility of the resources on this kind

of grid approaches, is checkpointing. In case of node failure or resource demand by a local user,

the interrupted running task can be restarted on another resource from its last checkpoint. Hence,

valuable computation does not get wasted and this may lead to faster execution of independent

tasks and contribute to optimize the turnaround time of the whole grid application. Eventually,

jobs smaller turnaround times may result into more efficient system utilization.

In this chapter, we explore the benefits of the checkpoint/restart technique as an optimization

feature to the already existing fault-treatment mechanism of CIGRI system. Our contribution is

based upon the BLCR [154] system-level implementation of checkpoint/restart. It consists of

an application-transparent mechanism for rollback recovery on bag-of-tasks applications along

with two different proposed strategies for the generation of checkpoints. Guided from a real-scale

experimentation, with controlled parameters and trace files, we investigate the best strategy for

optimization of the overall system utilization.

Based on the methodology described on chapter 2, we evaluate our prototype implementation of

checkpoint/restart enhancements upon the lightweight grid CIGRI using real workload traces. Our

experimentation is based on a large-scale deployment of the grid system under real-life conditions

upon the French nationwide grid platform Grid5000 [157] using a real scientific Monte-Carlo type,

bag-of-tasks application [70].

106

4.1 Background Information and Related Work

In this section we provide related work upon grid and alternative grid technologies, we discuss the

research conducted in the areas of fault-treatment upon grids and scheduling for bag-of-tasks appli-

cations and we provide background information concerning the checkpoint/restart fault-tolerance

technique.

4.1.1 Grid and alternative grid technologies

The worldwide research in Grid computing, has resulted in numerous different Grid packages

and various approaches. Globus [156] toolkit, provides standardized services and capabilities to

construct computational Grids. Most of research and commercialized projects on the grid that

tend to evolve towards assurance and interoperablity with standards, are based on Globus toolkit.

In this category we can find projects like Condor/G [158] which is a project that combines the

security, resource discovery and resource access in grid environments as supported in Globus, with

the computation management and harnessing of resources, on a single site, provided by Condor

resource and job management system. In Condor/G, the use of cluster resources passes by a formal

allocation procedure through the Grid Resource Allocation and Management (GRAM) protocol

[159], which is part of Globus toolkit. However, the installation, configuration, customization and

maintenance of a system like Globus, is a rather complicated task and requires a highly skilled

support team, which not a lot laboratories are willing to afford.

The opportunity of performing large computations at low-cost, motivated scientists to come

up with other technological solutions. The approach, usually reffered as volunteer computing or

desktop grid, was based on the idea of harvesting the computing power (of individual desktop

computers) going idle on the Internet. This technology, which is mostly used for bag of tasks

applications, has become widely known by the application Seti@home [160]. The infrastructure

that lies behind Seti@home is called BOINC [9] and was developed by the same team. This

project aims to create a desktop grid computing infrastructure that can be used by several different

desktop grid applications. On the same category we find WaveGrid [161] which introduced the

idea of migrating jobs on available cycles of hosts located in idle night-time zones, around the

globe. This work, addresses the fast-turnaround scheduling problem through migration strategies

in peer-based cycle sharing system.

The work presented on [162] proposes a transparent resource allocation strategy to harness idle

cluster resources in Computational Grids. This is part of a known project called OurGrid [11],

107

which provides an open, free-to-join, cooperative grid in which labs donate their idle computa-

tional resources in exchange for accessing other labs’ idle resources. This project has to overcome

security issues since it is based on the fact that there is no trust between the machine owners and

the users that wish to use resources. In the same context, the ”Flock of Condors” as presented

on [12], provides a similar platform, with the difference that there is a significant amount of trust

between grid users and cluster owners, permitting lighter security measures. In contrast to Ourgrid,

this platform supports the execution of parallel applications.

4.1.2 Fault Treatment upon grid technologies

Computational grids provide an attractive platform for execution of complex computations. Never-

theless, due to their complicated characteristics (heterogeneity, complexity, distribution), they are

more prone to failures than traditional computing platforms. There are many projects that try to

address these technical challenges.

Medeiros et al. in [163] did a survey of failures in the grid environment and found out that

for most of the grid users the greatest problem for recovering from a failure is to diagnose it.

Phoenix [164], is a solution able to detect and possibly recover from failures in data intensive grid

applications. It uses a ”probabilistic” strategy to detect failures in file transfers and classify them

into permanent and temporary. In the case of temporary errors, it tries to recover but in case of

permanent it doesn’t indicate actions to fix the system.

The work presented on [165] proposes failure analysis techniques which are used on the Blue-

Gene/L IBM prototype. The focus lies upon the filtering and preprocessing techniques, used to

substantially compress the error logs. In that way, it can accurately provide the failure occurrences

of the system. In CIGRI case the fault-treatment mechanism approach, is influenced by this last

project.

The most common mechanism to deal with failures on grids make use of rollback recovery

techniques.

The project XtremWeb [10] is a desktop grid platform that provides fault-treatment mech-

anisms using the concept of concurrent RPCs and application-level checkpoints. The platform

works effectively also in the case of parallel applications. Condor system [142, 166] provides fault

tolerant mechanism through an advanced user-level checkpoint/restart library for Bag-of-Tasks and

parallel applications. In this case the application needs to be compiled using the specific Condor li-

braries. HPC4U [167] is a Grid-enabled cluster middleware system. Its fault tolerance mechanism

is based on the BLCR implementation of checkpointing and a virtualization toolkit, to provide

108

task migration on a cluster with different architectures. This is an enhancement comparing with

our approach that does not provide task migration for different platforms. Furthermore, another

difference is the fact that the checkpoint/restart mechanism is provided by the cluster resource

manager, while in our case, it is provided on the grid level (CIGRI). Another interesting work re-

garding sharing checkpoints to enhance turnaround time on grids is presented in [168]. In contrast

to our work, the former investigates only the case of application level checkpoints on institutional

desktop grids and presents simulated results of their scheduling mechanisms. However, it is partly

proprietary and in addition it lies upon mainstream grid approaches like Globus and the standards

that are bound to it. Therefore it is rather different from our visions.

4.1.3 Scheduling for bag-of-tasks applications

The area of scheduling for bag-of-tasks applications upon volatile environments like desktop grids

and global computing was subject of thorough research. Some systems are mostly interested

for high throughput computing [12], while others provide mechanisms for optimization of jobs

turnaround times [11], [169].

Kondo et al. in [170] analyzed several strategies for various configurations of institutional

desktop grid environments. Strategies such as resource prioritization, resource exclusion and task

duplication were compared and good results were observed for resource exclusion with makespan

prediction along with task duplication. However the work considered only small-sized jobs which

is not always the case and did not take into account checkpointing, assuming that interrupted tasks

would be restarted from scratch.

Another project that proposes a similar method of task-duplication is OurGrid [11]. The pro-

posed scheduling policy of OurGrid is named workqueue-with-replication (WQR). This policy,

implies that tasks are assigned in a FIFO manner, regardless of the metrics related with perfor-

mance of machines. When all tasks have been distributed to resources, and if there are enough

free resources, the system creates replicas from randomly chosen tasks. This is different than the

task duplication in the previous example where the duplication starts when the number of the idle

resources is greater than the number of tasks to schedule. WQR does not guarantee the execution

of all tasks but in comparison with simple FIFO policy it significantly augments the probability of

an application being terminated.

Anglano et al. [169] propose a fault-tolerant version of workqueue WQR-FT. This policy ex-

tends the basic WQR methodology with checkpointing mechanisms. They recommend checkpoint-

ing usage for environments with unknown availability, since it yields significant improvements

109

when volatility of resources is high. Likewise WQR, WQR-FT is also limited by its best-effort

approach, with no guarantee that all tasks comprising a given application are effectively executed.

The work in [168] exploits the use of private and shared checkpoints for the scheduling of

bag-of-tasks applications upon volatile environments. Simulation results were obtained through

the experimentation of real trace files. The results presented variations depending the time of the

day but in general the shared checkpoints lead to faster turnaround times than the private ones.

Furthermore strategies combining task replication and checkpoints were highly efficient especially

on heterogeneous machines.

Weng et al. [171] study the scheduling of bag-of-tasks depending on the needed input data of

each application. They propose the Qsufferage algorithm which considers the influence of input

data repositories location on scheduling. The study confirms that the size of the input data of tasks

has an impact in the performance of the heuristic-based algorithms.

One of the latest studies proposes [8] strategies for dealing with multiple bag-of-tasks applica-

tions which is an area that not a lot of research has been performed yet.

The scheduling method proposed in CIGRI is based upon a simple FIFO policy for the different

tasks of the BoT application. Our implementation extends this polciy with tasks prioritization

mechanisms for the tasks that provide checkpoints.

4.1.4 Checkpoint-Restart Recovery technique

A widely used solution to cope with the high failure rate of the computing nodes is the technique

of checkpoint/restart. There are two main types of checkpoint: application level and system level.

The first ones are recognized as more time and space efficient, while the use of the system-level

checkpoints can offer benefits like application transparency and preemption.

BLCR is a robust open source implementation of rollback recovery capable to checkpoint a

wide range of applications, without requiring changes to be made to the application code. It can

be used either as a stand-alone system for checkpointing applications (multi-process or multi-

threaded) on a single node or interfaced by a scheduling system (SLURM, Torque, etc), grid mid-

dlewares [167] and parallel communication libraries for checkpointing and restarting parallel jobs

running on multiple nodes (MVAPICH2, LAM-MPI [172], OpenMPI). BLCR is implemented as

a Linux kernel module which means that it performs checkpointing and restarting inside the linux

kernel. One of its limitations is that it does not support open sockets (TCP/IP, Unix domain, etc.).

The support of parallel and distributed applications is implemented through a mechanism to regis-

ter user-level callback functions that are triggered whenever a checkpoint occurs, and that continue

110

when the process restarts. These callbacks allow the application to shutdown its network activity

before a checkpoint is taken, and restore them later.

Since the time this study took place, the latest BLCR version [173] has provided significant

advances in particular on the support of different kernel versions, architectures and features like

unlinked open files, pid virtualization and other operating system artifacts.

4.2 An alternative lightweight grid computing approach for bag-

of-tasks applications

CIGRI system provides an alternative, lightweight approach of a classic grid platform by aggre-

gating the clusters’ idle computing resources.

Back in 2002 when the project CIMENT CIGRI began, scientists of different disciplines (en-

vironment, chemistry, physics, astrophysics, biology, mathematics,etc) wished to mutualise the

computing power of their private laboratories cluster resources, so that they could effectuate larger

scale computations. However, the prominent mainstream solution of Globus seemed a very com-

plicated and expensive solution for their demands. On the same time, the emergence of desktop

grid systems and the idea of ”cycle stealing” technologies, provided a good base for building our

approach. CIGRI project was born in this environment. The result, has been a simple lightweight

system based on a modular architecture and high level components that facilitates the aggregation

of the clusters’ locally unutilized resources, for execution of bag of tasks applications.

CIGRI software has been in production and an active open-source research project since 2002

[25]. In one of the cases where it is utilized, its users can benefit of the power of 6 different clusters

and a total of more than 700 processors of heterogeneous machines.

4.2.1 Lightweight grid and cluster utilization policy

CIGRI software is based on the concept of lightweight grid, which are infrastructures that simplify

the general problem of the grids. This simplification generally goes through a certain homogeneity

of services and administration procedures: by adopting the same services and configurations on all

interconnected clusters.

The main concern behind CIGRI system, is to provide a platform that focuses on the research

and development of specific problems that come along with the execution of large-scale grid jobs

(scheduling, fault tolerance,...) upon distributed grid environments. The initial environment for

111

which the system was designed, had been laboratories clusters, where users enjoyed a significant

trust. Under those terms, our approach does not deal with critical problems inherent on computa-

tional grids like security, authentication mechanisms and resource location.

Another objective had been not to influence the normal functionality of the interconnected

clusters by the use of CIGRI platform. In contrast to Globus and OurGrid approaches, no specific

CIGRI software has to be installed on the clusters apart a local RJMS with some specific features.

CIGRI software uses the Resource and Job Management System (RJMS) of each cluster and acts

like a normal user to submit jobs upon the clusters and collect the results.

An important issue to treat is the policy concerning the use of the different clusters. Thanks

to this grid approach, outside users can use the computing power of a cluster. However, the jobs

submitted by CIGRI on the clusters, must not disturb the use of them by their local users. The idea

is to use only the idle resources of the cluster. Thus the proposed solution was to introduce the

concept of best effort tasks on the RJMS. More specifically, the jobs submitted by CIGRI on the

different clusters are submitted with the help of the local RJMS as a special type of jobs named best

effort. The jobs of this type have the minimum null execution priority and are submitted only if

there is an available unutilized resource. Moreover, if during the execution of this job the resource

is requested by a local cluster user, the CIGRI best-effort job is killed by the local RJMS and

CIGRI grid server is notified. As we will see on next section, the fault-treatment mechanism takes

the appropriate measures to resubmit the killed jobs and thus guarantees a successful completion

of the whole calculation.

One other issue that emerged from the need of simplicity had been the type of applications that

are supported. Initially CIGRI platform supported only bag-of-tasks applications but latest version

have been enhanced with the support of all parallel applications. In this study we deal only with

the case of bag-of-tasks applications through CIGRI.

4.2.2 Global Architecture

CIGRI software is composed by a server which communicates with all the Resource and Job Man-

agement Systems of the clusters. It works like a normal user, submitting minimum priority jobs

as best-effort tasks. There is no specific CIGRI software installed on the clusters, but it makes

use of the local RJMS for submission of jobs, execution control and monitoring of resources. Fur-

thermore, it just takes advantage of the classic system tools (ssh, bash, sudo, cat, ls, scp, tar...)

and the NFS file system of the cluster. Currently CIGRI supports only the OAR resource and job

management system which has been also developed by the same team. However the interaction

112

 CIGRI
Grid Server

 Cluster
Resource and Job Management System

1)Submission of a grid

"bag of tasks" application

2)Request of idle resources

 as a normal user
3)Returns the number of

idle resources (ex. 5 nodes)4)Submission of tasks as

 type of jobs

on the cluster RJMS

(ex. randomnly select 5 tasks

from the "bag")

5)Execution of the tasks as

low-priority jobsbest-effort

best-effort

6) Local job submission

requesting resources

(ex 3 nodes)

7)Low-priority

 jobs stopped (3 jobs killed)

best-effort
8)Notification of the killing

 of the tasks.

9)Killed tasks reentered on

the "bag" to be re-scheduled

for later execution.

Grid user

Cluster user

Figure 4.1: CIGRI cluster utilization policy: best effort jobs.

with other RJMS is possible if a feature like best-effort jobs exists on the RJMS. The best-effort

type of jobs has been introduced to OAR to support the aggregation of idle cluster resources and

the lightweight grid approach of CIGRI. The platform architecture is shown on figure 4.2.

High level componennts

The system is designed using a modular architecture based upon two high level components.

Those are the SQL database and the scripting language Perl. The recipe of high level components,

has already been tested and validated on the case of OAR in [174]. Similarly with OAR in CIGRI

platform, the database is used to hold all the internal data and works as the only communication

medium between the modules.

It is used to store information such as: the state of clusters’ nodes, the state of submitted jobs,

113

Grid User

Cluster C
OAR RJMS
server C Local user

cluster C

Computing
nodes C

Cluster B
OAR RJMS
server B Local user

cluster B

Computing
nodes B

Cluster A

OAR RJMS
server A Local user

cluster A

Computing
nodes A

CIGRI server

 ssh
connections

Figure 4.2: CIGRI platform architecture

the various errors that can be obtained and logged, logging of all activities, information about the

users, etc. The choice of a database as the central component, ensures the management of big

amounts of information and guarantees the reliability of the platform.

Modular Architecture and functionalities

The central part of CIGRI is made of a collection of independent modules. Each of them is in

charge of a specific task. Tasks such as jobs scheduling, jobs monitoring, results collecting, error

logging are all handled by separate modules. They all interact with the system using the database.

The whole system is managed by a central module which is in charge of calling the other modules

to perform either regular tasks (such as monitoring) or on-demand tasks (such as submission).

Figure 4.3 shows the design of the several modules and describes their functionalities

For the transfer of the necceasary data of the application from the grid server to the clusters,

the specific Cluster Synchronizing module is responsible for automatic and transparent transfer of

114

coordination of modules

Database

Fault treatment

Scheduling

Coordinator

Monitoring Erasing

Submitting

Cluster Collecting

Updates database

with all new info

Cleaning up module

 (killing jobs)

Events management

 and Treatment

Decides on which cluster

 a task can be submitted

 Submits the tasks as

best-effort jobs on a cluster

Results collecting from clusters

on the CIGRI server

Synchronizing
Data transfer between clusters

Figure 4.3: CIGRI internal modules and their operation.

data to all the clusters that will take part on the computation. This module in cooperation with the

Scheduling module guarantees that tasks will start their execution on a specific cluster only if the

necessary data are completely transfered.

Another important functionality is the results’ collection from the clusters, along with the clean-

ing of temporary files. A specially designed module, auxiliary to the system is responsible to pe-

riodically collect the result files and archive them on the grid server and on the same time erase

them from the cluster. Hence, the user can collect the results of its computation on one centralized

115

place and on the same time the cluster’s storage resources are not overbooked by grid application

data. Moreover, a web portal exists to monitor the jobs on the grid.

Fault treatment mechanisms

In Cigri fault treatment mechanism the initial concern is to be able to locate, log and categorize

the different errors that are possible to occur. A possible error is located by the mechanism and

logged as an event type in the database, for further analysis. To facilitate the treatment of these

events we decided to classify them into 4 different classes (depending on the treatment that they

should have). Thus, we have errors that are relative to the Scheduler, the Clusters, the individual

submitted tasks and finally to the grid bag of tasks jobs. In that way, every different module

controls its own possible anomalies or errors by providing control checks and execution timeouts

to its different commands. To ensure the platforms’ reliability, the Fault Treatment mechanism

provides automatic actions to be taken for every different category.

Taking as example an error that occurs due to a problem on the cluster RJMS; Since Cigri

system does not interfere directly with the clusters’ functionality, the decision to be made is to

automatically stop the usage of this cluster, by blacklisting it, on the grid level and inform admin-

istrators, with automatic email, to restore the cluster into its normal operation. While the usage of

a cluster is restricted, the execution of the applications can be continued on the rest of the clusters.

The mechanism works similarly for any errors may occur in the ”Scheduler” or ”Cluster” classes.

However, there are types of events that can be automatically and transparently treated. This

happens, for example, when a grid best-effort task is killed by the local cluster RJMS, so that

the resource can be occupied, by a higher priority local cluster job. In this case, the Monitoring

module detects that the job was killed and issues a specific event which is logged and treated by

the Fault-Treatment module. Hence, the task is reentered on the bag of tasks to be submitted when

and where it can be rescheduled (default strategy). This happens when there are free resources on

any of the clusters and the Scheduler chooses, in random, the specific task.

4.3 Enhancements for turnaround time optimization

Grid approaches like volunteer computing, Condor, OurGrid and CIGRI suffer much more failures

than those met on mainstream grid technologies. Apart from the volatility failures of the resources

(network outages and machine crashes), the most common interruptions of job executions are

provoked by interference failures. Those failures occur when the local user claims utilization of

resources that are used opportunistically for a grid job and as a consequence, the particular tasks

116

have to be interrupted. Under specific circumstances, this can lead to very large turnaround times

for particular bag-of-tasks applications that their tasks are continuously interrupted. In this case,

hours of computation can turn out wasted and the utilization of otherwise idle resources will not

be that beneficial after all.

In order to deal with these failures and provide a beneficial utilization of the otherwise idle

resources, we propose a turnaround time enhancement upon the lightweight grid solution CIGRI,

through the use of a checkpoint/restart mechanism.

4.3.1 Transparent Checkpoint/Restart mechanism for a lightweight grid

The enhancements that we have designed and implemented for the CIGRI lightweight grid plat-

form are based upon the widely used system-level implementation of checkpoint/restart BLCR

[154, 154]. We have taken advantage of its transparent capabilities of supporting checkpoint/restart

upon a wide range of applications. BLCR provides a user-level library along with specific com-

mands for checkpointing (cr checkpoint) and restarting (cr restart) applications. In or-

der to make the application checkpointable through BLCR, a particular command (cr run) has

to be used, that loads the BLCR library into the application at startup time.

The Cigri scheduler module collects the idle resources from each cluster and designates the

tasks that are going to be executed upon each cluster. Once this decision is made another module

(Runner) is responsible for preparing the task as an OAR best-effort job and send it to the

cluster. Our design to provide Checkpoint/Restart through BLCR is composed by a wrapper that

packs up each task executable with the particular BLCR commands. In particular the job is sub-

mitted as a simple bash script that makes use of the cr run command and a signal trapper that can

trigger a checkpoint generation through cr checkpoint. Once the application has begun execu-

tion a transmission of a linux signal (SIGUSR1) upon it will be trapped and the cr checkpoint

command will be triggered which makes the application to checkpoint itself. The checkpoint file

produced is initially stored on a temporary directory and then moved on the NFS file system of

the cluster. In this case, NFS facilitates a possible job migration on another homogeneous node of

the same cluster. As we will see on the following section, our design provides different methods

for the timing of the checkpoint generation and this is related with the moment that this signal is

transmitted.

The default fault treatment mechanism of CIGRI system, as mentioned on 4.2.2, implies that

the interrupted task will be reentered into the ’bag’ (of tasks) and will wait to be rescheduled

whenever there is an idle cluster resource available and it’s turn for execution arrives. This policy

117

has been slightly changed for the checkpoint/restart scenarios, in order to favor the jobs that have

generated checkpoints. The difference is that a checkpointed job will begin execution from it’s

last valid saved state thus gaining important computation time. Indeed the checkpointed jobs are

closer to termination and that’s why they are treated in priority by the scheduler. The particular

task is prepared using a similar bash script using the BLCR command cr restart The use of

both cr run and cr restart in the same script allows the application to be restarted from a

valid checkpoint and still remain checkpointable through the trapping mechanism.

4.3.2 Periodic and Triggered checkpoints strategies

Our design provided two different strategies for the checkpoint/restart mechanisms support. The

strategies are defined by the specific timings that the checkpoints will take place. Figure 4.4 pro-

vides a view of the default fault-treatment strategy, while figures 4.5 show a graphical representa-

tion of the different enhanced checkpoint/restart strategies.

A

B

A B

(when new idle
resource appears

Restar t

Bag of Tasks

Resource Fai lure - Task Interuption
B

Execution

Figure 4.4: Fault treatment default strategy

Periodic Checkpoints

The first strategy is based upon a mechanism that allows the periodic checkpointing of the

different tasks. This mechanism is introduced by the inclusion of a parameter on the submission

of the bag-of-tasks grid job which will determine the periodicity (in seconds or minutes) that the

checkpointing should take place. Thus the job executed on the cluster, powered by the special

BLCR commands, can checkpoint itself and the periodicity of the checkpoint procedure depends

on the value provided by the user. The advantage of this strategy is that it permits the application to

118

be fault-tolerant for every kind of failures, either interference or hardware ones. On the other hand

system-level checkpoint implementations have the drawback of the big overhead. The checkpoint

file can be large and the duration to checkpoint can also take a lot of time. Therefore, taking a big

number of checkpoints on jobs that finally are not killed, can be a big waste of time, crucial for the

final turnaround time of the whole computation.

Triggered Checkpoints

In order to treat the drawbacks of the Periodic Checkpoints strategy we have designed a sec-

ond strategy more flexible but more constrainted than the previous one. This one provides fault-

tolerance by placing more emphasis on the final turnaround time of the computation. The Triggered

Checkpoints strategy addresses only the interference failures, which under normal conditions on

this context, are the most common. In this kind of failures the local RJMS kills immidiately the

besteffort job and gives the resources to the higher priority job. Our proposal is to add to the RJMS

the capability of notifying the specific ”to be killed” job, so that it can checkpoint itself, just before

it gets interrupted. Following this approach we ensure that every checkpoint taken, will worth the

overhead.

This grace time delay that the RJMS should wait for the checkpoint procedure, before it re-

moves the resources from the job has been an important issue of this method. At the time of this

study other studies [175] were underway to investigate the relevance among the memory that a

particular task occupies during its execution and the size of the produced checkpoint file along

with the duration of the checkpointing procedure. Considering these values we could deduce the

time delay that the RJMS worths waiting before it ”kills” a job. In our case, without the results

of those studies, the choice was taken empirically and set to a specific small constant value (4sec)

according to the particular application that we used for experimentation. Ofcourse we argue that

a grace time delay beyond 20sec can no more be considered as grace time by the RJMS so the

support of really complex and large applications is not provided. So another drawback of this

method is that it supports rather simple applications that do not fill up the memory while executing

and do not produce large checkpoint files. On the other hand, applications that fit the supported

characteristics could benefit from guaranteed small turnaround times.

4.4 Experimentation Results

Based on the experimental methodology that we have developed, described on chapter 2, we

have effectuated real-life large-scale evaluation of our prototype. We have deployed CIGRI as

119

A

B

A B

B

(when new idle
resource appears

Restar t

Bag of Tasks

Resource Fai lure - Task Interuption

Checkpoint s tate

Execution

A

B

A B

B

(when new idle
resource appears

Restar t

Bag of Tasks

Inter ference Fai lure

Checkpoint s tate

Grace t ime delay

Task Interupt ion

Execution

Figure 4.5: Fault treatment strategies: Periodic checkpoints (top), Triggered

checkpoints (bottom)

a lightweight grid of 5 clusters. The experiments were based on the one hand upon real production

workload traces of a particular grid platform DAS2 [5] representing the local jobs of each cluster;

On the other hand upon a real astrophysical bag-of-tasks application MCFOST [70] submitted to

CIGRI for large-scale computation, representing a grid job. Depending on the different strategies

used we observe the valuable and wasted computation during the exploitation of idle resources by

the CIGRI approach.

4.4.1 Deploying a lightweight grid upon Grid5000 platform

Taking advantage of the capability of environment deployment based on kadeploy toolkit of Grid5000,

as described on chapter 2 a user can very easily deploy his own cluster or even grid upon the

Grid5000 platform. In more detail, for our experiments we constructed an environment containing

all the needed software (OAR, CIGRI, NFS, BLCR, ssh,...) installed and ready for configuration.

Once the environment is deployed on all the allocated nodes, we proceed to the software config-

uration and the attribution of the roles (Grid server, Cluster server, computing node, ...) just by

120

choosing the specific services to be launched to each deployed node. Hence, finally we obtain a

grid infrastructure ready for experimentation.

Grid5000 is composed of 11 sites from 1 to 4 clusters each one of them and various architec-

tures. Since the choice of our experiments infrastructure has to be identical to this of the DAS2

DUAL CPU nodes grid platform, we have chosen a site with DUAL CPU (one core) Opteron ar-

chitecture on 2.0GHz or 2.4GHz and 2MB of memory. In more detail DAS2 grid platform [5] is

consisted of 4 clusters of 32 computing nodes each and 1 cluster of 72 nodes. In our experiments

we deploy a grid, identical to DAS2 grid platform, using the nodes of one Grid5000 cluster (the

GDX cluster at Orsay). For the needs of the experiment we deploy: 132(= 32 x 4 + 4) similar

nodes (Opteron 2.0GHz) to represent the 4 clusters (of 32nodes) along with their 4 cluster RJMS

servers; and 74(= 72 + 1 + 1) similar nodes (Opteron 2.4GHz) to represent the 1 cluster (of 72

nodes), its RJMS server and finally one more node to be used as the CIGRI grid Server.

Our initial concern was how we could choose specific parts of the workload traces that we could

use on our experiments. As described on chapter 2 (section 2.4) the criterion for that, was decided

to be the percentage of the used resources in relevance with the total amount of them throughout

the grid, for a specific duration. Hence, according to our desired duration of the experiment,

we can decide high cluster user load (80%) or low cluster user load (15%). This choice allows

us to experiment the function of CIGRI under various conditions. The jobs submitted by Xionee

(chapter 2-section 2.5) toolkit, have the corresponding characteristics (allocated procs, launch time,

end time , duration, ...) of the different workload traces of the DAS2 grid platform. However for the

sake of these experiments no particular task was sent for execution for these slots of time. Hence,

the local cluster jobs perform no real computation, they just occupy the resources for a specific

duration (sleep jobs). However, these local workloads provide the interference failures (towards

the grid bag-of-tasks job) that are needed for the observation of the function of the lightweight grid

experimentation testbed.

In contrast with the local cluster jobs which don’t make real calculations, the grid submitted

application performs valuable computations. In more detail, the bag-of-tasks application submitted

to the grid through CIGRI is a benchmark of a 3D radiative transfer code based on Monte-Carlo

method, called MCFOST [70] (described on chapter 2 section 2.4).

Concerning the results presented on the following section we submitted 30000 tasks of 45min

of computation each (on one Opteron CPU 2.0Gz, 2MB of memory) on every different experimen-

tation. Since our testbed lasts only 5 hours, the completion of the computation was impossible but

the goal was to successfully execute as many tasks as possible.

121

4.4.2 Performance Evaluation

The purpose of the experiments presented has been the testing of the new checkpoint/restart feature

as a fault-tolerance mechanism and an optimization method of the overall turnaround time of the

computation of a bag of task application. In more detail, our experiments are driven by a big

number of parameters and conditions that can be selected before the start of the experiments. The

grace time delay of the RJMS, discussed on Section 4.3, for the Triggered Checkpoints strategy

was set to 4sec and the checkpoint periodicity for the Periodic Checkpoints strategy was defined to

be 20min. These values were defined empirically after observations and were selected as optimized

cases for each strategy.

Since the cost of real-life experimentation is high, we initially constructed small scale versions

of the experiments, so that we can better understand the function of the checkpoint feature and

observe the differences between the strategies. Hence, we experimented with a grid that contains

only one 32nodes cluster and was driven by a 5hours part of a DAS2 trace. Figure 4.6 presents

3 experiments each representing a different strategy Triggered Checkpoints, Periodic Checkpoints

and No Checkpoints (default) for grid fault-tolerance. The experiments were driven by the same

trace representing 40% local cluster utilization.

The y-axis represents the jobs execution time multiplied by the occupied resources. For ex-

ample on a 64CPU cluster, occupied for 5hours, the maximum usage can be 1152000 CPUxsec.

The line is the difference between the maximum cluster utilisation potential minus the local cluster

usage, thus represents the maximum utilization that can be effectuated by the grid users. The first

bar on each strategy named as Total represents the total system utilization of the grid besteffort

jobs on the cluster. The big gap between the edge of the bar and the maximum cluster utilization

potential (red line), on the second experiment, shows a very low efficiency in exploiting the cluster

idle resources. The reason is the big checkpoint overhead along with the big number of useless

periodic checkpoints.

The bars Terminated, Running and Error represent the system utilization of jobs that

were found on these respective states after the end of the experiments. The bars Fail.NotValuable

and Fail.Valuable represent the cluster utilisation of jobs that were failed due to interference

by a higher-priority local cluster job. The cluster utilization is valuable if the job is restarted from

a checkpoint and finally arrives to termination. In case of a checkpoint error or inexistance or if

simply we use the default strategy without checkpoints, this cluster utilization is wasted and is

represented by the Fail.NotValuable bar. Indeed, on the default fault-treatment mechanism

No checkpoints once the job is killed the already produced work turns out to be completely wasted.

122

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

Specific Checkpoints(interf. fail) Periodic Checkpoints(every fail) No Checkpoints(default)

C
lu

st
er

 U
til

is
at

io
n

(#
Jo

bs
 x

 #
C

P
U

 x
 s

ec
)

Type of jobs

Grid utilisation of CIGRI grid besteffort jobs for 5 hours and 40% local cluster workload

Maximum grid utilisation potential

Total
Terminated

Running
Error

Fail.NotValuable
Fail.Valuable

Figure 4.6: CIGRI grid utilization for 1 cluster of 32nodes grid (3 strategies

comparison)

Strategies / Jobs Total Terminated Running Error Inter. Failures Inter. Failures

Not Valuable Valuable

Triggered checkpoints 338 156 14 20 70 78

Periodic checkpoints 302 50 6 45 168 33

No checkpoints 343 134 14 1 194 0

Table 4.1: State of grid jobs for 5hours experiments of 1cluster, 32nodes,

40% local workload and 3 strategies

The sum of the system utilizations represented by Terminated, Running, Error, Fail.NotValuable

and Fail.Valuable for each strategy results in the total system utilization of each one of them.

It is interesting to observe on figure 4.6 how a part of the NotValuable utilization of No Check-

points strategy becomes Valuable utilization on the Triggered Checkpoints strategy. Respectively

123

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

Total Terminated Running Error Fail.NotValuable Fail.Valuable

C
lu

st
er

 U
til

is
at

io
n

(#
Jo

bs
 x

 #
C

P
U

 x
 s

ec
)

Type of jobs

Grid utilisation of CIGRI besteffort jobs for 5h and 60% local cluster workload (Triggered Checkpoints)

32nodes_cluster1
32nodes_cluster2
32nodes_cluster3
32nodes_cluster4
72nodes_cluster5

Max. util. potential for a cluster(32n)
Max. util. potential for two clusters(64n)

Max. util. potential for three clusters(96n)
Max. util. potential for four clusters(128n)
Max. util. potential for five clusters(200n)

Figure 4.7: CIGRI grid utilization for 5 clusters of of 200nodes grid,

Triggered checkpoints strategy

we can see how the Periodic Checkpoints method is limited by its overheads and how this in-

fluences the overall usefull exploitation of the cluster. Table 4.1 shows the final results with the

Total number of treated tasks (of the bag-of-tasks application) figuring on the first column and

the number of tasks for each relevant state is represented on the following 5 columns The last 2

columns Inter. Failures Not Valuable and Inter Failures Valuable rep-

resent the tasks that have been interrupted and rescheduled with wasted or valuable computations

respectively. It is interesting to see how the Triggerred checkpoints strategy results into bigger

number of Terminated jobs and thus to a more efficient exploitation of otherwise idle resources.

The experiments were then reapeted on the real scale of DAS2 grid platform. Under the same

context, figures 4.7 and 4.8 present a large-scale experimentation of the CIGRI grid platform ex-

ploiting the resources of 5 clusters which are driven by the DAS2 grid platform traces. The two

graphs represent a different fault-tolerant strategy for the same parameters and conditions (5hours

of experimentation, 60% local cluster grid workload). In this second phase of experimentations we

124

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

Total Terminated Running Error Fail.NotValuable Fail.Valuable

C
lu

st
er

 U
til

is
at

io
n

(#
Jo

bs
 x

 #
C

P
U

 x
 s

ec
)

Type of jobs

Grid utilisation of CIGRI besteffort jobs for 5h and 60% local cluster workload (No Checkpoints)

32nodes_cluster1
32nodes_cluster2
32nodes_cluster3
32nodes_cluster4
72nodes_cluster5

Max. util. potential for a cluster(32n)
Max. util. potential for two clusters(64n)

Max. util. potential for three clusters(96n)
Max. util. potential for four clusters(128n)
Max. util. potential for five clusters(200n)

Figure 4.8: CIGRI grid utilization for 5 clusters of of 200nodes grid, No

checkpoints strategy

have experimented only with the triggered checkpoints and the default strategy, since the periodic

checkpoints gave us poor results on the first phase.

Like on the previous representation of results, the different lines represent the maximum cluster

utilisation potential that can be effectuated by the grid users according to each clusters local work-

load. It is interesting to see that the grid utilization of the Terminated jobs is less on the Triggered

checkpoints than the No checkpoints strategy. This is due to the fact that, in the case of the check-

pointing strategy, a job restarted from a checkpoint takes less time to terminate its execution than

a normal uncheckpointed job. As a matter of fact the grid utilization of those checkpointed jobs,

that were restarted and ’Terminated’ successfully, is represented by the Fail. Valuable bar.

As we can see from the table 4.2, we observed 212 checkpointed jobs (”Inter.Failures Valuable”)

that their checkpoint was used for a successful termination of a job in contrast with the 581 jobs

(”Inter.Failures Not Valuable”) of wasted computation of the No checkpoints strategy. The same

125

Strategies / Jobs Total Terminated Running Error Inter. Failures Inter. Failures

Not Valuable Valuable

Triggered checkpoints 1377 762 74 103 226 212

No checkpoints 1420 739 74 8 581 0

Table 4.2: State of grid jobs for 5h experiments of 5clusters, 200nodes, 60%

local workload and 2 strategies

gain can be observed on the relevant bars of figures 4.7 and 4.8. Hence, the result is a larger num-

ber of Terminated jobs for the Triggered checkpoints strategy, for the same experimentation time

duration (5hours).

Obviously, the gain regarding our expectations, is marginal 761 terminated jobs with the Trig-

gered checkpoints strategy versus 739 with the No Checkpoints strategy. Nevertheless, the expla-

nation lies partly on the really large number of ’Error’ state jobs observed on all our experiments

with checkpointing strategies. Indeed, the tasks of the specific astrophysical application sometimes

could result into Segmentation Fault, but the probability of this Segmentation Fault becomes higher

if the job is checkpointed and then restarted using BLCR. This bug is currently under investigation.

Finally, for our future experimentations we are considering not only various scenarios but different

applications as well. We effectuated repeated experiments to observe the behaviour of the different

fault-treatment strategies by changing the local cluster workload percentage and the duration of

the executed tasks of the application submitted to the grid. The experiments shown in this chapter

represent a good sample of our total observations.

4.5 Conclusions

In this chapter we studied the effects of a system-level checkpoint/restart mechanism as enhance-

ment of the scheduling and fault-treatment policies of a lightweight grid platform for bag-of-tasks

applications. Driven by the motivation of improvement of the exploitation of the cluster, we pro-

posed different strategies to guarantee that the optimization of system utilization is also beneficial

for the users and contains less wasted computations, resulting in faster jobs turnaround times. In

particular one of our strategies has specifically treated the interference failures which are the main

reason of resources volatility in a desktop grid or global computing context. Our evaluation re-

sults showed marginal improvements on valuable exploitation of the system and more research is

needed for optimizations of this technique.

126

Indeed, the complication of real large-scale experimentation along with the big number of

parameters that influenced the function of the system did not let us to study all different factors in

depth. Particularly more research is needed for size of the checkpoints along with the respective

time to generate them and how this influences the results of our strategies. A future version of

our implementation will take into account the work in [175] in order to predict the time that an

application needs to checkpoint itself giving the capability to the scheduler to dynamically set the

grace-time delay.

Our approach initially was designed and implemented for grids with homogeneous clusters so

jobs could be restarted upon any cluster without migration limitations. This assumption simplified

our initial implementation since we did not deal with architecture dependency issues. The migra-

tion possibilities could be also studied in a context of shared checkpoints between clusters. This

approach could provide better system utilization but with an impact to jobs waiting times.

Finally a big part of the contributions of this chapter lies on the experimentation methodology.

The real-scale experimentation of a real grid platform (DAS2) upon a controlled infrastructure

(Grid5000) is something that was not possible before. Moreover the use of a real astrophysi-

cal application related with the fact that all the computations performed for the experimentation

phase were stored and utilized for scientific purposes made our experimental testbed an interest-

ing research tool. Nevertheless we argue that a real-scale experimentation method for this kind

of experiments has to be preceded by simulation results in order to spot the interesting paths of

research. This will help avoid wasting computational cycles for experimenting with approaches

that have limited performance.

127

Chapter 5

Improving resources exploitation with

Malleability techniques

One of the latest evolutions of current parallel architectures is the use of multicore processors.

Resource and Job Management Systems (RJMS) need to be sufficiently equipped in order to be

capable to treat this new hierarchy of resources. Limited treatment of this affinity of resources

results in inefficient utilization of the system. In the same time, the high complexity of workloads,

with variations in resources demands and execution times may result in bad scheduling perfor-

mance producing long waiting jobs, big turnaround times and large underutilization periods. In

such dynamic scenario, achieving a good resources utilization is a challenge. The scheduler of the

resource and job management system is attributed the difficult task of adapting itself upon the high

dynamicity of users’ workloads.

In order to treat inefficiency and underutilization in a similar context, the RJMS could provide

the support of applications that can adapt themselves on resources availabilities. According to

Feitelson and Rudolph [13], parallel applications can be: rigid, moldable, malleable or evolving.

We are especially interested in malleable jobs because they can adapt themselves to resources

with dynamic availability, and thus be able to follow the RJMS decisions for schedule adaptation.

However, the support of malleable jobs demand a special treatment, from the RJMS side, with

more complex allocation and scheduling procedures. In particular, specific communication and

negotiation procedures need to be developed, which will enable the on-the-fly adaptation of the

application. New scheduling policies need to be defined in order to take into account recources

dynamicity. In this study, we examine the complexity of treating malleable jobs upon the RJMS

while observing improvements on resources utilization. Furthermore, we extend a flexible RJMS,

128

so as to provide the support of malleable applications.

Most of todays parallel applications belong to the class of rigid type, which are programmed

for a specific constant number of resources. The complexity of programming a malleable applica-

tion or even reprogramming a normal rigid parallel application into malleable, implies important

difficulties that have been a real challenge for programmers. In more detail, applications that use

the MPI-2 implementation need to use MPI comm spawn function for dynamic process creation in

case of application growing and adapted fault-tolerance mechanisms in case of shrinking. Hence,

due to programming complexities, the number of existing malleable applications is actually lim-

ited. Indeed, as shown in following chapter, most of related works try to solve those programming

difficulties by proposing a co-design of the programming environment and the runtime system.

However, it seems that even if those systems solve some difficulties, their utilization is heavy and

complex. Therefore, in an effort to allow a bigger number of applications to take advantage of mal-

leability features and at the same time to enable the RJMS with the possibility of better resources

exploitation, we moved a step further. We have implemented a simple transparent technique for

automatic expanding and folding of rigid applications, upon multicore architectures.

Our study uses two approaches to provide malleability: dynamic MPI and dynamic CPUSET

mapping. The first one uses a dynamic MPI application, able to adapt itself to the available clus-

ter nodes. Dynamic MPI (malleable) applications are developed by employing MPI-2 dynamic

process creation and fault tolerance mechanisms. The second approach is well-adapted to multi-

core architectures and allows any parallel job to exploit malleability through a -transparent to the

application- fine control and manipulation of the available cores.

The support of those two malleability approaches is implemented upon the resource and job

management system OAR [79]. Our prototype was tested in real-scale upon the controlled platform

Grid5000 uing real production workload traces

5.1 Background and Related Work

In this section we describe some Background information in order to specify the context of our

work and we analyze the Related works on the field of malleability and its support by the runtime

system. We examine the subject from 3 different perspectives. The first one has to do with the

applications and the workloads, along with the programming models used to implement adaptive

applications. The second one is related to the research conducted in the field of Scheduling of

129

Who decides When decided

At submission During Execution

Application Rigid Evolving

System Moldable Malleable

Table 5.1: Classification of parallel applications

adaptive applications along with the approaches for support upon RJMS. Finally, the third cate-

gory examines previous work of the communication protocols between applications and runtime

systems.

5.1.1 Dynamic Applications and Programming

In the context of resource and job management systems, parallel applications are represented as

jobs, which have a running time t and a number of processors p. Feitelson and Rudolph [13]

proposed four job classes based on the relation of who is responsible for the decisions and which

moment these decisions can take place 5.1. Rigid jobs require a fixed p, specified by the users, for

a certain time t. In moldable, the RJMS chooses a specific p followed with its related t from a

range of choices given by the users. The decision is made at start time and the job adapts to p that

will not change until the end of the execution. In evolving, the p may change on-the-fly according

to the jobs requests. This adaptation must be satisfied by the RJMS in order to avoid crashes. In

malleable, p may also change on-the-fly, but the changes are required by the RJMS, according to

resources availabilities and the schedulers decisions.

The structure of dynamic applications is different from that of rigid applications. They need

to reconfigure themeselves when additional resources are consumed or idle resources are released.

The reconfiguration may require data redistribution, creation of new processes or deletion of exist-

ing ones, etc.

The Message Passing Interface (MPI) is currently the most dominant model for programming

parallel computers today. The static model of MPI-1 means the number of tasks is fixed at job

launch time. The MPI-2 specification added support for dynamic process management which

allowed MPI applications to create and communicate with new processes, thus providing a new

paradigm for programming MPI applications. Various implementations of the MPI-2 standard exist

that support the dynamic process management LAM-MPI, MVAPICH2, MPICH2, OpenMPI.

There are a lot of scientific and engineering applications which work with large input data and

130

are computationally intensive. The total amount of computation for these applications does not

vary from execution to execution for the same input data. Currently these applications are imple-

mented as rigid or moldable. These applications are good candidates for conversion to malleable.

As far as our knowledge no real malleable application was found in the literature. Hence, for the

sake of our experiments we have reprogrammed a traditionally rigid application into malleable one

(chapter 2 section 2.5). Nevertheless, as described on chapter 4, a big number of scientific appli-

cations that can be considered malleable ones is the bag-of-tasks which are embarassingly parallel

applications.

Examples of evolving applications are parallel applications where computational workload

varies during the execution due to the nature of the problem, the employed algorithm and an un-

predictable non-uniform distribution of input data. An example of evolving applications can be

considered the parallel Fast Multipole algorithm for N-body simulation [176]. This problem has

been used in different areas of science like astrophysics, molecular checmistry, biophysics, etc.

The total computational workload of these applications does not vary from execution to execution

for the same input data but the computational resources requirements change during a single run.

On the other hand, there exist evolving applications where computational workload varies from

execution to execution for the same input data. The most important example in the category is

weather prediction. Even if the traditional weather forecasting systems are static in nature, the

researchers are working on the next generation which will adapt dynamically both in time and

space[177]. Due to unpredictable data that occur during their execution the amount of computation

may be in constant change.

Malleable applications provide difficulties in their programming but may pay off those com-

plexities because they can atain smaller waiting and turnaround times on the queues of the RJMS

scheduler. Moreover, their adaptative nature may result in more efficient system utilization. On

the other hand evolving applications not only poses difficulties on their programming but their use

in mixed workloads provides additional complexities, to the scheduler, due to their opportunistic

behaviour. The RJMS that supports evolving applications needs to be equiped with specific pre-

emption mechanisms in order to be able to service their requests. Our study is focused only on the

class of malleable applications.

131

5.1.2 Resource Management and Dynamicity

There is a growing interest to offer malleability in practice, because it can improve both resource

utilization and response time [13, 178, 179, 180, 181]. Nevertheless, very few actual implementa-

tions have been proposed in the community.

A good approach towards the support of malleable jobs can be achieved by a co-design of

runtime-system and programming environment [13]. This assertion can be observed in some prac-

tical malleability initiatives like PCM and Dynaco.

PCM (Process Checkpointing and Migration) [182, 183, 184] uses migration to implement

split and merge operations reconfiguring application according to resources availability. PCM

demands an instrumentation of MPI code, using its API and specifying which data structures are

involved in malleable operations. It interacts with a specific framework, IOS (Internet Operating

System), performing like a resource manager, which is composed by an agents network to profile

informations about resources and applications.

In the same way, Dynaco [185] enables MPI applications to spawn new processes when re-

sources become available or stop them when resources are announced to disappear. To provide

malleable features, Dynaco must know the adaptive decision procedures, a description of prob-

lems in the planning of adaptation, and the implementation of adaptive actions. Also, the pro-

grammer must include points on its source code identifying safe states to perform adaptive actions

ensuring application correctness. Dynaco has its own resource manager, Koala, providing data and

processor co-allocation, resource monitoring and fault tolerance.

Faucets [186] is an Adaptive Job Scheduler aiming at maximize the utility metric of a cluster

and ensure that quality of services requirements are met. Malleability is provided by Adaptive

MPI (AMPI), implement upon Charm++, which extends MPI supporting processor virtualization

and automatic load balancing through virtual processes migration. Job’s QoS requirements taken

into account to schedule jobs include the minimum and maximum number of processors that a job

can run on, an estimated number of CPU-seconds required, and a deadline before which it must

be completed. After take the appropriate decision the scheduler send a bit-vector to processors,

which contains informatios to shrink or expand jobs. A bit-vector handle sets the bit-vector in the

load-balancer, and in the next load-balancing cycle will use the newly information to reconfigure

the job. In this way the shrink and expand mechanism has a latency of one load-balancing cycle.

Excluding initiatives with their own systems to provide resource management like the previ-

ously introduced, and according to our up-to-date knowledge, there is no existing implementation

of malleable jobs support upon a generic resource and job management system since it is a rather

132

complicated task. Nevertheless, some previous work have studied specific prototypes for the direct

support of malleable jobs [181, 180] with different constraints. For instance, Utrera et al. [180]

proposes: a virtual malleability combining moldability (to decide the number of processes at start

time), folding (to make the jobs malleable) and Co-Scheduling (to share resources). It uses Co-

Scheduling to share processors after a job folding and migration to use the new processors after a

job expansion. Our work also explores a similar folding technique, with dynamic CPUSETs map-

ping in multicore machines. Further, its Launcher component is a user-level queuing system, that

decides the optimal number of processes and folding times to an arriving job according to its size,

the resources available and the running and waiting jobs. A CPU Manager schedules the job upon

the resources after its launching and monitorates jobs verifying if some is arriving or finishing, and

if necessary, it redistributes the processors. All informations needed by Launcher or CPUM are

shared through control structures.

In [181], an Application Parallelism Manager (APM) provides dynamic online scheduling with

malleable jobs upon shared memory architectures (SMP). The approach combined the advantages

of time and space sharing scheduling. It achieved a 100% system utilization and a direct response

time. Nevertheless the system was not directly adaptable to distributed-memory machines with

message-passing and this work, as far as we know, has not evolved in a real implementation of the

prototype.

As far as our knowledge, concerning malleable applications, two commercial resource and job

management systems support this kind of dynamicity, and these are LSF [187], described on 3.4.1

and Moab [188], described on 3.4.1. Nevertheless no specific publication has been found that

experiments or evaluates those features.

Finally, Ghafoor in his PhD thesis [15] has made an analytical study of adaptive applications

and his work included the implementation of a prototype resource management system that sup-

ports mixed workloads with malleable and rigid jobs.

5.1.3 RJMS and Applications Communication protocols

In this section we describe the communication and negotiation protocols between the RJMS and

the applications. In the traditional job-scheduling paradigm, once a job starts executing, no com-

munication takes place. In the case of a parallel system that supports malleability the RJMS needs

to inform the application for its exact resources availabilities along with the request for offering or

retrieving resources.

MPI applications use process managers to launch them as well as get information such as their

133

rank, the size of the job, etc. In the traditional static MPI paradigm the communication takes place

only in the initialization of the execution. However, in the dynamic MPI-2 paradigm communica-

tions may take place during the execution as well. Hence, to support adaptive applications, specific

libraries that support dynamic process management are needed. It seems that every MPI-2 compli-

ant implementation of MPI standard posseses its own specific communication library and runtime

support.

The MPICH2 implementation of MPI standard, specified an interface called the process man-

agement interface (PMI) [189] that is a set of functions that MPICH2 internals (or the internals

of other parallel programming models) can use to get such information from the process manager.

However, this specification did not a defined protocol on how the client-side part of the PMI would

talk to the process manager. Thus, many groups implemented their own PMI library (with com-

mon inteface). For example apart the default PMI library of MPICH2, Slurm RJMS provides its

own PMI library. In order to answer to scalability issues of modern platforms PMI version 1 is not

sufficient enough and PMI-2 [190] is currently under construction. One of the new updates is the

improvement of dynamic process management.

In addition, the OpenMPI implementation uses its own Open Run Time Environment ORTE

[191] and LA-MPI uses [192]. Hence from the point of view of the RJMS that wants to provide

support for every MPI implementation it needs to support all the different communication proto-

cols. For example Slurm RJMS has implemented its own PMI library in order to communicate

with all different MPI implementation based on MPICH it supports MVAPICH2, MPICH2 and

others. Hence, a most general runtime support is needed and it seems that a possible solution

could be STCI [193] which is an ongoing project that aims to provide a unified platform for the

implementation of a wide variety of tools for high performance computing. It proposes basic ser-

vices to provide all needed mechanisms and policies for the implementation of the management of

communications in a scalable manner or other scalable tools, like debuggers or the management of

user session and security issues.

In our study we have used LAM [194] MPI implementation which does not provide its own

communication library. In order to communicate with the applications during execution we have

implemented our own communication and negotiation protocols based on simple system calls and

file exchanges.

134

Figure 5.1: Single malleable application scenario. (1) Starting time; (2)

shrinking operation; (3) growing operation.

5.1.4 Scheduling with Dynamic Applications

Scheduling algorithms for dynamic applications are more complex than those for rigid applica-

tions. The scheduler has to respond as fast as possible to the demands not only of the queued

applications, but of the running ones as well. The category of evolving applications need a spe-

cial treatment concerning its scheduling. On the applications requests if enough resources are

not available the scheduler needs to perform preemption mechanisms (suspend/resume or check-

point/restart) in order to respond to the demand. On the other hand malleable applications can

ease the difficulties of the scheduler since they can adapt on resources availabilities and on sched-

ulers demands. Scheduling in a dynamic parallel system is a multi-step procedure that involves the

scheduling, the communication and negotiation with running applications and the re-computation

of the schedule.

There are relevant theoretical results describing requirements, execution scheme and algo-

rithms to efficiently schedule malleable applications [14]. Scheduling algorithms that have been

developed so far vary in their objectives and approaches selected. A thorough survey of related

work on scheduling of adaptive applications can be found on [15].

Equipartition scheduling policy distributes the available resources equally upon all running

malleable jobs [185, 181] as shown in figure 5.2. This approach has some issues as: (i) the amount

of available resources is not divisible by the number of malleable jobs running – Buisson at al. [185]

proposes to give the remainder resources to the least recently started job; (ii) If all jobs receive the

same amount of resources, smaller ones will finish earlier probably causing a new resource distri-

bution. Remaining unallocated resources are shared equally, respecting the maximum limitation

of each job. Experiments with actual applications and simulation showed that both system utiliza-

tion and mean response time improves with reconfigurable scheduling when compared to static

135

Figure 5.2: Multiple malleable application scenario. (1) Equipartition; (2)

FPSMA

scheduling consisted by moldable jobs only.

A similar algorithm is used in [15] and [178]. Each arriving job specifies the minimum and

maximum number of resources it can use. When a new job arrives, the scheduler recalculates the

number of resources allocated to each running job and redistributes them in a way that all jobs are

allocated their minimum number they can use.

Favour Previosly Started Malleable Applications FPSMA [185] policy favours previosly started

malleable jobs, as shown in figure 5.2. It starts growing from the earliest started malleable job and

shrinking from the lastest started one. In this approach, if the lastest job has suficient resources

shrinkable to attend an arriving job, it perform the resource scheduling requiring less commu-

nications than the Equipartition policy. The key issue is determine the initial requirement of an

malleable application. Whether malleable jobs can require a especific amount of resources at start

time, it is possible perform as communication as performed by Equipartition, in consequence per-

forming many shrinking operations.

Further, the Maximizing the Accumulated Current Speedup maxS∗ [181] takes the scalabil-

ity of jobs into account to increase the system usage efficiency. It considers the sum of all jobs

speedups and the diferencial speedup, which is the speedup difference when a job going from

p − 1 to p resources. The job with the largest differential speedup gets the resource assigned.

A new diferencial speedup is calculated considering the resource assigned and this procedure is

repeated until all resources are distributed. This approach is hard to illustrate because it depends

on speedup and differential speedup mesures, which can vary according to the application nature.

Also, it is dependent of speedup estimations and the knowledge of applications paramenters: ex-

ecution time, number of resources by job, communication overhead and so on. This approach

schedules one resource at time, this can induce a malleable application to perform many malleable

136

operations (growing or shrinking) one by one.

In this study we have focused on a context where the scheduler allows only one malleable job

at a time, mixed with rigid jobs (as shown in figure 5.1). This choice was made, in order to be able

to measure the overheads of the communication protocols along with the advantages upon system

utilization with the two different approaches for malleability. However studies are under way for

supporting mixed workloads of rigid, moldable and malleable jobs.

5.2 Malleability techniques: Implementation and Experimen-

tal Testbed

The main goal of our approach was to provide malleability, for optimization of the systems utiliza-

tion, without interfeering with the normal function of the resource and job management system.

The flexible and modular architecture of OAR [79] made it the most suited RJMS for implement-

ing our prototype. In this section we provide the architecture of this prototype for malleability and

its implementation as a wrapper around OAR. A description of the experimentation procedure is

also provided.

5.2.1 Implementation upon OAR resource manager

The prototype for malleability was designed as an external module to OAR that communicates

with OAR through normal user commands (oarsub for submission and oarstat for resource

discovery). To keep the prototype non intrusive to OAR, we exploit the capabilities of Best Effort

jobs which are able to harness the idle resources of a cluster, with no interference upon its normal

function but also no guarantees for task termination. However, we wanted to provide at least

a minimum guarantee for the malleable application to terminate itself, so we considered that a

normal job, with minimum resources requirements, should be submitted as well in order to make

sure that the application will succesfully terminate. In addition, the specific resources allocated by

this normal job will be utilized, by the prototype, to host the particular modules that will manage

the dynamic operation of the application (Malleability worker). Figure 5.3 provides a graphical

representation of the prototype which is represented by the different modules with red letters.

The prototype implementation consists of the following parts:

• the Malleability automaton for submission of jobs and decision making

137

• a Normal job, for management of dynamicity and guarantees for termination

• the Malleability worker which recides on the resources allocated by the normal job and is

responsible for the management of dynamic operations

• Best Effort jobs, for the adaptability and non intrusiveness to the cluster

• a Resource Discovery command, which provides the current and near-future available re-

sources

• a Communication Protocol, through sockets and file exchanges

Hence, to provide malleability using OAR we consider that a malleable job is constructed by

a rigid and a Best Effort part. The rigid part stays always intact so that it can guarantee the job

completeness. In the same time, the Best Effort part is responsible for the flexibility of the job.

Hence, using the resource discovery command, which informs the application for the variations

on the resources availability can lead to two actions: Best Effort jobs can be either killed meaning

application shrinking or further submitted, allowing the application growing.

As we will see on the following sections each malleability technique has each own particu-

larities and requirements but both are based on this same design. The differences reside on the

number of allocated resources that the normal job will use along with the functions of the mal-

leability workers in each case.

5.2.2 Experimentation through controlled platform and real traces

The experimentation that take place to validate our approaches and evaluate the behaviour of the

system for each technique is based upon the methodology presented in chapter 2. For the particular

experiments we have made use of Bordereau cluster in Bordeaux site of Grid5000 platform. The

cluster is composed by nodes of AMD Opteron 2218 processor (DualCPU-DualCORE with 2.6

GHz / 2 MB L2 cache / 800 MHz) with 4GB Memory and Gigabit Ethernet network. During

the evaluation procedure of the malleability prototypes we provide a first series of experiments to

validate the requirements and choices for each technique and measure the possible overheads or

side-effects of each method.

A second series of experiments was performed to measure the system utilization improvements

when using malleability techniques and compare it with a specific type of moldable approach. For

these experiments we use workload log of a real production system (DAS2 [5]). In our testbed

138

OAR RJMS

Centra l Server

Comput ing Nodes

 F i le exhanges
through sockets

 Discovery
 command

Mal leabi l i ty
 Automaton

Normal jobs

Malleable job

Users

Rigid Best-Effort

Mal leabi l i ty
 Worker

Jobs Execution

Figure 5.3: Malleability architecture upon OAR

we deploy this trace as the default rigid workload of the system and by enabling the submission

of one malleable job per time we calculate the optimization in system utilization. Only when the

malleable job has finished execution a new one can be submitted. We compare the optimization in

system utilization to the one that we could have in case of using a moldable-besteffort job which

cannot change its allocation during the execution.

In our context we are interested in a flexible environment where the dynamic jobs should be

the less intrusive the possible for the normal functionality of the system. That’s why we do not

compare the malleability techniques to a pure moldable jobs behaviour which would be intrusive

to the normal workload but to a moldable-besteffort job submission. In this context the moldable-

besteffort job would be killed in case of need of resources by a rigid job and a new moldable-

besteffort job, adapted to the new availabilities, would be submitted. The moldable-besteffort job

is exactly the context of jobs used for global computing or desktop grids (usually bag-of-tasks

applications as studied on chapter 4)

The advantage of moldable-besteffort jobs is that they have no side-effects on the default system

utilization and no impact on the jobs waiting times of the normal workload. On the other side

the malleable jobs provide a rigid part which is expected to impose a particular overhead and

an increase of the jobs waiting times. Therefore, our evaluation also considers the impact of the

malleability techniques on jobs waiting times.

During our experiments we have made use of Mandelbrot application reprogrammed to mal-

leable one as described on section 2.3.4 for the Dynamic MPI technique and the CG and BT (class

139

C) kernel and application of the NAS parallel benchmark suite [66] for the Dynamic CPUSET

technique.

5.3 Malleability on Clusters with Dynamic MPI

The malleable behaviour of the Dynamic MPI mechanism is defined by the respective implemented

modules upon OAR and the adaptive capabilities of the particular malleable MPI application. The

application performs growing and shrinking operations to adapt itself to the variations in the avail-

ability of the resources. This section provides the particularities of the implementation of the

technique upon OAR along with a study for performance evaluation. This work was made in col-

laboration with Marcia Cristina Cera and her research group GPPD of Parallel and Distributed

Processing Group from UFRGS university in Brazil.

5.3.1 Dynamic MPI mechanism Requirements

The implementation of the Dynamic MPI technique upon OAR followed the general paradigm

presented on the previous section. Figure 5.4 show the graphical representation of the architecture

of this malleability technique. We can see that the malleability worker of figure 5.3 is represented

by a particular module D-MPI manager which is responsible to deal with the requirements of

the malleable MPI applications.

Indeed to manage each different case of dynamicity (growing or shrinking) the D-MPI manager

module needs to provide specific techniques. Those techniques need to be adapted on requirements

of the particular MPI implementation used for the programming of the MPI application. In our case

was LAM/MPI1. As previously explained, in our experiments, a malleable job is composed by a

rigid part (normal job) and Best Effort jobs. In the context of dynamic MPI, the rigid part is com-

posed by the minimum unit manageable in LAM/MPI, which is one node. The Best Effort part

is as large as the amount of resources available, which is determined by the resource discovery

command.

When new idle resources become available the discovery command notifies the Malleability

automaton which issues a growing operation. In growing, a part of the applications’ workload

is destined to the newly available resources through the mechanism of MPI process spawning,

which is a feature of the MPI-2 norm (MPI Comm spawn and correlated primitives) [195]. This

1http : //www.lam − mpi.org/

140

is possible by the socket communication between the Malleability automaton (Central

Server) and the D-MPI Manager (computing node).

In shrinking, processes running on resources which have been demanded by the resource man-

ager (for higher priority jobs) must be safely finalized. This interruption requires a specific pro-

cedure in order to prevent application crash. In our context We adopted a simple one which is to

identify the particular tasks and restart them in the future. It is not optimal, but ensures application

results correctness.To ensure that this operation will be safely performed, a grace time delay is ap-

plied upon OAR, before the killing of the Best Effort jobs. Grace time delay represents the amount

of the time that the OAR system waits before destinate the resources to another job, ensuring that

they are free. The same solution was also presented on the previous chapter. Figure 5.5 illustrates

a malleable job upon 4 nodes with 4 cores performing growing and shrinking operations.

OAR RJMS

Centra l Server

Comput ing Nodes

 F i le exhanges
through sockets

 Discovery
 command

Mal leabi l i ty
 Automaton

Normal jobs

Malleable job

Users

Rigid Best-Effort

Jobs Execution

Core1

Core2

Core4

Core3

Core1

Core2

Core4

Core3

Core1

Core2

Core4

Core3

D-MPI
M a n a g e r

Figure 5.4: Dynamic MPI architecture

Entering more into the details of the dynamicity upon MPI applications; the malleability oper-

ations, growing and shrinking, are handled by the D-MPI Manager 5.4. This module interacts

with the Malleability automaton to receive information about variations in the amount

of resources available to dynamic MPI applications. According to these informations, D-MPI

Manager triggers the appropriate dynamic action enabling the adaptation of the application to the

availability of the resources. As part of the growing operation, it ensures that spawning processes

will be placed into the new resources. The library intercepts the MPI Comm spawn calls and sets

141

Growing Shrinking

CLUSTER
NODE 1 NODE 2 NODE 3 NODE 4

Application
Process

Rigid job
(malleable)

Best Effort job
(malleable)

 Rigid job
(external)

CORE 1

CORE 2

CORE 3

CORE 4

Figure 5.5: Dynamic MPI application performing growing and shrinking

upon 4 participating nodes.

the physical location of the new processes according to the informations provided by the automa-

ton. Previous work of our colleagues in Brazil, did not consider interactions with the resource

manager and proposed one of two scheduling policies for the dynamicity of jobs: Either a simple

Round-Robin (standard) or workload-based (based on the less overloaded resource) [196].

In the experiments of this chapter, D-MPI Manager and dynamic MPI application are im-

plemented with LAM/MPI2 distribution. This MPI distribution offers a stable implementation of

dynamic process creation and ways to manage dynamic resources. This last feature is provided by

two commands: lamgrow to increase and lamshrink to decrease the amount of nodes avail-

able in LAM/MPI network (LAM/MPI applications run up a known set of resources, which begins

by lamboot before application starting time and ends by lamhalt after application execution).

Note that LAM/MPI enables the management of nodes, which can be composed by many cores,

but cannot manage isolated cores. The lamgrow and lamshrink commands are always called

by D-MPI Manager when some change is announced by the Malleability automaton.

5.3.2 Evaluating Dynamic MPI technique

In this first part of evaluation of the technique our goal is to validate our choices, measure the

speedup of a malleable application when using the Dynamic MPI malleability technique. We have

2http : //www.lam − mpi.org/

142

made use of the Mandelbrot malleable application and provoked triggered growing and shrinking

in order to observe possible side-effects of this technique. We then calculated the theoretic speedup

and performed comparisons between our experimental and mathematical results.

For these experiments we used the maximum of 64 cores, coming from 16 nodes of the used

cluster described in section 5.2.2. Figures 5.6 and 5.7, show the execution time of the dynamic

MPI application performing growing and shrinking operations respectively. In the growing, the

application begins with the amount of cores shown in x axis (representing 25%, 50% and 75% of

the total number of cores) and grows until 64 cores. In shrinking, it starts with 64 and shrinks until

the x values of cores. We made two experiments: (i) a dynamic event is performed at a time limit,

and (ii) dynamic events are gradually performed until a time limit. Time limit is defined as 25%,

50% or 75% of the parallel reference time. Reference time is always the execution time with the

initial number of cores, i.e., x to growing and 64 to shrinking.

 0

 100

 200

 300

 400

 500

 600

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Number of Cores at Start Time
16 32 48

with x cores
dynamic event at 25%
dynamic event at 50%
dynamic event at 75%

dynamic events until 25%
dynamic events until 50%
dynamic events until 75%

with 64 cores

Figure 5.6: Growing in dynamic MPI application: execution time VS number

of cores at starting time.

143

 0

 100

 200

 300

 400

 500

 600
E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Number of Cores at End Time
16 32 48

with x cores
dynamic event at 25%
dynamic event at 50%
dynamic event at 75%

dynamic events until 25%
dynamic events until 50%
dynamic events until 75%

with 64 cores

Figure 5.7: Shrinking in dynamic MPI application: execution time VS

number of cores at ending time.

Let pr be the number of cores on which a reference time tr has been measured. Thus, the

parallel reference application performs W = tr × pr operations. The application is progressively

run on more than pr cores:

• In the first experiment (dynamic events at a time limit) it is run during αtr(0 ≤ α ≤ 1)

seconds on pr cores, and then on p cores;

• In the second experiment (dynamic events until a time limit) it is run during αtr(0 ≤ α ≤ 1)

seconds on a gradual increasing or decreasing number of cores, until reaching p cores. Then

it is run until completion, without anymore changes. The number of cores increases or

decreases at regular timesteps of c units. In fact, c = 4, since the lamgrow command only

enables to add a whole node (2 CPUs with 2 cores) to LAM/MPI network. The number of

gradual timesteps is therefore p−pr

c
, and each one lasts δ = αtr

p−pr

c

sec.

Ideal speedup in the first experiment. The execution on pr cores has duration αtr. At this point,

144

(1 − α)W operations remain to be performed, by p cores. Ideally, this second phase runs in time

(1 − α)W/p. Therefore, the total parallel time in this case is tp = αtr + (1 − α)trpr/p, and the

speedup tr/tp is:

S =
1

pr

p
(1 − α) + α

(5.1)

Ideal speedup in the second experiment. As in the previous case, the number of operations

performed during the first αtr seconds, can be computed, to obtain the parallel time of the second

part of the execution on p cores. At the ith timestep (i = 0...p−pr

c
− 1), the program is run with

pr + ci cores in time δ sec. Therefore, the number of operations ni that are executed is δ(pr + ci).

When all the p cores are available (i.e. at time αtr),
∑(p−pr)/c−1

i=0 ni operations have been run,

leaving W −
∑(p−pr)/c−1

i=0 ni to be run by p cores. Thus, the second phase has duration:

trpr −
∑(p−pr)/c−1

i=0 δ(pr + ci)

p
, (5.2)

and the total execution time in this second experiment is therefore:

tp = αtr +
trpr −

∑(p−pr)/c−1
i=0 δ(pr + ci)

p
. (5.3)

Besides,

(p−pr)/c−1∑

i=0

δ(pr + ci) = δpr
p − pr

c
+ cδ

p−pr

c
−1∑

i=0

i = δpr
p − pr

c
+ cδ

(p−pr

c
− 1)p−pr

c

2
. (5.4)

And since δ = αtr
p−pr

c

, the latter equation yields:

(p−pr)/c−1∑

i=0

δ(pr + ci) = αtrpr +
αtr
2

(p − pr − c). (5.5)

Therefore, the total parallel time in this case is:

tp = αtr +
trpr − αprtr −

αtr
2

(p − pr − c)

p
=

tr
2p

(2pr + α(p − pr + c)). (5.6)

And the parallel speedup tr/tp is:

145

Table 5.2: Speedup of the dynamic MPI application.

Growing Shrinking

pr p α S S(eq.5.1) S S(eq.5.7) pr p α S S(eq.5.1) S S(eq.5.7)

16 64

0.25 2.12 2.29 2.70 2.84

64 16

0.25 0.30 0.31 0.28 0.27

0.50 1.53 1.60 2.20 2.21 0.50 0.43 0.40 0.30 0.30

0.75 1.17 1.23 1.91 1.80 0.75 0.57 0.57 0.35 0.34

32 64

0.25 1.51 1.60 1.71 1.75

64 32

0.25 0.55 0.57 0.53 0.53

0.50 1.29 1.33 1.54 1.56 0.50 0.68 0.67 0.55 0.56

0.75 1.09 1.14 1.45 1.41 0.75 0.77 0.80 0.60 0.60

48 64

0.25 1.18 1.23 1.26 1.27

64 48

0.25 0.77 0.80 0.76 0.77

0.50 1.12 1.14 1.18 1.21 0.50 0.86 0.86 0.77 0.79

0.75 1.03 1.07 1.15 1.15 0.75 0.89 0.92 0.81 0.81

S =
2p

2pr + α(p − pr + c)
. (5.7)

Table 5.2 shows the speedups, in which S is the speedup in practice (tr/tp), S(eq.5.1) is the

ideal speedup to the first experiment using the Equation 5.1, and S(eq.5.7) to the second one using

the Equation 5.7. In growing, practical speedups are slightly lower than the ideal ones, represent-

ing the overhead to perform the spawning of new processes. As Lepère et al. [14] the standard

behavior in on-the-fly resources addition is that such addition cannot increases the application

execution time. In the Table 5.2, we observe that growing speedups are always greater than 1,

meaning that the new cores could improve application performance decreasing its execution time

as expected. In shrinking, all speedups values are lower than 1, as the exclusion of nodes decreases

the performance. In this case, practical speedup is quite similar to the theoretical one and the vari-

ations become from the execution of the procedures to avoid application crash. Summing up, the

speedups show that our dynamic MPI application is able to perform upon resources with a dynamic

availability.

5.4 Malleability on Multicore Nodes with Dynamic CPUSET

Mapping

The malleable behaviour of the Dynamic CPUSET Mapping technique is based on an internal

Linux Kernel mechanism for task confinement upon paticular cores of a computing node of the

146

cluster. This mechanism provides the necessary adaptability of executed tasks for the malleability

technique. The particular implemented modules of the prototype perform folding or expanding of

the application upon single multicore nodes using exactly the resources that are unutilized by the

normal workload of the cluster. This section provides the particularities of the implementation of

the technique upon OAR along with a study for possible sideffects.

5.4.1 Dynamic CPUSETs Mapping Requirements

CPUSET [82] are lightweight objects in the Linux kernel that enable users to partition their multi-

processor machine by creating execution areas, and confine the execution of the application tasks.

They are used by the resource management systems to provide CPU binding to tasks and cleaner

process deletion when the job is finished.

Dynamic CPUSET mapping technique is the on-the-fly manipulation of the amount of cores

per node allocated to an application. This technique is inspired by the latest advances in multipro-

cessing (increasing number of cores per single CPU) and the flexibility of the CPUSET objects to

bind tasks upon cores of multicore architectures. Dynamic CPUSET mapping allows expanding or

folding of the application upon the same node. In more detail, if we have multiple processes of a

MPI application executing upon a multicore node, then those processes can be executed upon one

or more cores of the same node.

It is a prototype system level technique which can provide a level of malleability upon any par-

allel application and it is completely independent of the application source code.The only restric-

tion is that the malleability is performed separately and individually upon each node. In contrast

with the Dynamic MPI technique there are no new processes of the application that are spawned.

All the application processes are initiated in the beggining but they are bound to only the cores

that are initially available. To take full advantage of the malleability possibilities, the number of

processes started upon a node should be equal or larger than the number of cores per node. For

instance, a 16 processes MPI application should be ideally initiated upon 4 nodes of a 4 cores-per-

node cluster or upon 2 nodes of a 8 cores-per-node cluster.

Based on the design architecture described on section 5.3, figure 5.8 provides a graphical rep-

resentation of the particular requirements of this technique. As we see the particular D-Cpuset

Manager has to make use of one core per node in order to guarantee the dynamic operations of

the CPUSET Mapping technique.

This malleability prototype defines the rigid part (normal job) of a malleable job to occupy one

core of each participating node. Initially all the tasks of the application will be bound upon one

147

OAR RJMS

Centra l Server

Comput ing Nodes

 F i le exhanges
through sockets

 Discovery
 command

Mal leabi l i ty
 Automaton

Normal jobs

Malleable job

Users

Rigid Best-Effort

D-CPUSET Manager

Jobs Execution

Core1

Core2

Core4

Core3

D-CPUSET Manager

Core1

Core2

Core4

Core3

D-CPUSET Manager

Core1

Core2

Core4

Core3

Figure 5.8: Dynamic CPUSETs Mapping architecture

single core per node. When more cores of the same nodes become available, then Best Effort jobs

are further submitted and the malleability automaton notifies the D-Cpuset Manager

to perform expanding operations so that the application processes that were sharing a core migrate

to the newly available cores. In the opposite case, when an external high priority job asks for

resources, some resources need to be relieved and hence Best Effort jobs are killed. In this case,

the CPUSET mapping technique performs a folding of processes on the fewer remaining cores, and

the demanded cores are given to the arriving higher priority job. Therefore, malleability is achieved

by the use of Best Effort jobs and the CPUSET folding and expanding of processes. Figure 5.9

presents some scenarios, showing the different stages for only one of the participating nodes of the

cluster.

It seems that besides the restrictions, this system level approach can actually provide malleabil-

ity without complicating the function of OAR resource manager. Nevertheless, there are issues that

have to be taken into account. The overhead of the expanding or folding operation upon the ap-

plication has to be measured. Furthermore, since our context concerns cluster of shared memory

architectures, it will be interesting to see how two different MPI applications running upon differ-

ent cores on the same node, would perform during the expanding and folding phases.

148

Growing Shrinking

NODE
CORE 1 CORE 2 CORE 3 CORE 4

Application
Process

Rigid job
(malleable)

Best Effort job
(malleable)

 Rigid job
(external)

Figure 5.9: Behaviour of CPUSET mapping technique upon one of the

participating nodes.

5.4.2 Evaluating Dynamic CPUSETs Mapping technique

In this series of experiments we evaluate the impact of the CPUSETs expansion upon NAS bench-

marks. We have particularly chose BT and CG class C NAS benchmarks. These two benchmarks

cover a wide spectrum of applications and communication patterns. In Figure 5.10 we present the

results of NAS BT application performing static and dynamic CPUSET expansion. In each case

the ’Static-1/4cores/node’ box implies the use of 1 core per participating node that is the minimum

folding of processes that can be applied. On the other hand, ’Static-4/4cores/node’ box implies the

use of 4 cores per node, which represents the maximum expansion of processes that can be made

upon a dualCPU/dualCore architecture. For instance, in the case of BT-36 we use 9 nodes with 4

processes running upon each node: 4 processes on 1 core for the Static-1/4 case and 1 process on 1

core for the Static 4/4 case. The 3 boxes between the above ’Static-1/4’ and ’Static-4/4’ instances

represent different dynamic instances using the dynamic CPUSET mapping approach. All 3 in-

stances imply the use of 1 core per participating node at the beginning of the execution performing

a dynamic CPUSET expansion to use 4 cores after specific time intervals. The expansion trigger

moment is placed on the 25%, 50% and 75% of the ’Static-1/4cores/node’ execution time of each

BT.

It is interesting to see the speedup between the Static cases of ’1/4’ and ’4/4’ cores/node among

each different BT. We observe that this speedup becomes more important as the number of BT

149

 0

 500

 1000

 1500

 2000

 2500

BT-4 BT-9 BT-16 BT-25 BT-36 BT-49 BT-64

E
xe

cu
tio

n
T

im
e

in
 s

ec

Number of Processes used for NAS BT

NAS BT experiments with 1,2,4,6,9,12,16 nodes and CPUSETs Mapping (cluster bordereau dualCPU-dualCore)

Static-1/4cores/node
Expansion-1/4to4/4cores/node-at75%ofStatic-1/4cores/nodeTime
Expansion-1/4to4/4cores/node-at50%ofStatic-1/4cores/nodeTime
Expansion-1/4to4/4cores/node-at25%ofStatic-1/4cores/nodeTime

Static-4/4cores/node

Figure 5.10: NAS BT-(4,9,16,25,36,49,64) behavior with Static and Dynamic

CPUSET mapping operations with direct expansion from 1 to 4

cores.

processes go smaller. In the case of BT-4 the speedup from the use of 4/4 cores/node to 1/4 is

1597 sec. which means 61,5% of the 1/4 cores/node time. Whereas the relevant speedup of BT-25

is 350 sec. or 53,8% of the 1/4 time, and to BT-64 is 100 sec. or 33,3% of the 1/4 cores/node

time. Furthermore, the figure shows that the technique used for the dynamic CPUSET mapping

expansion from 1 to 4 cores works fine without complicated behaviour. Linear increase of the

expansion trigger moment results in a linear increase of the execution time.

Figure 5.11 illustrates the behaviour of NAS BT-36 execution upon 9 nodes. The figure shows

Static and Dynamic CPUSET mapping executions along with direct and gradual expansion cases.

Considering the static cases (with no expansions during the execution time), we observe a really

marginal speedup between the 2/4 to 3/4 and 3/4 to 4/4 cores/node cases (5 sec. and 25 sec. respec-

tively) in contrast with an important speedup between the 1/4 to 2/4 cases (200 sec.). This could be

partially explained by a communication congestion for BT after using more than 2cores/node. The

150

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

No Expansion 25/100 50/100 75/100

E
xe

cu
tio

n
T

im
e

in
 s

ec

Expansion Trigger Moment (No/Until/At) x/100 of Static-1/4cores/node Time

NAS BT-36 experiment with 9 nodes (36cores) and CPUSETs mapping (cluster bordereau dualCPU-dualCore)
Static-1/4cores/node
Static-2/4cores/node
Static-3/4cores/node
Static-4/4cores/node

Expansion-1/4to4/4cores/node-with-Steps(Until-x/100)
Expansion-1/4to4/4cores/node-Direct(At-x/100)

Figure 5.11: NAS BT-36 behavior with Static and Dynamic CPUSET

mapping operation with gradual and direct expansion from 1 to

4 cores.

histograms representing the dynamic CPUSET direct and gradual expansions, show us that grad-

ual expansions result in faster execution times. Indeed for each case of the gradual expansion, we

perform 3 expansions: 1/4 to 2/4, 2/4 to 3/4 and 3/4 to 4/4 cores/node until a specific instant. On

the opposite case of direct expansion we perform only one: from 1/4 to 4/4 cores/node at the above

same instant. Thus, after this same instant, both cases are using 4/4 cores/node. The difference is

that in the first one there has already taken place 3 expansions whereas in the second one only 1

expansion. For BT benchmark, the results show that it is better to perform gradual small expan-

sions whenever resources are free, in contrast of waiting multiple free resources and perform one

bigger direct expansion. Moreover, these results show that the overhead of the expansion process,

is marginal, when trading-off with the gain of using the one or more new cores.

Figure 5.12 illustrates the experiments of 3 different cases of BT upon different number of

nodes. In more detail we try to measure the impact of the use of different number of nodes - with

151

 0

 50

 100

 150

 200

 250

 300

 350

BT16 BT36 BT64

E
xe

cu
tio

n
T

im
e

in
 s

ec

Number of processes for BT experiment (1 process per core)

NAS BT-16,36,64 experiment with CPUSETs mapping (cluster bordereau dualCPU-dualCore)

16nodes-1/4cores/node
4nodes-4/4cores/node

36nodes-1/4cores/node
9nodes-4/4cores/node

64nodes-1/4cores/node
16nodes-4/4cores/node

Figure 5.12: NAS (BT-16,36,64) behavior with 1 process per core, different

number of nodes and Static CPUSET mapping operations.

one process per core - on their execution time. For every different BT, we experiment with the

ideal case of using equal number of nodes with processes (BT-16,36,64 with 16,36 and 64 nodes

respectively) along with the case of using equal number of processes with cores (BT-16,36,64 with

4,9 and 16 nodes respectively). It seems that it is always faster to use more nodes. This can be

explained by the fact that processes do not share communication links and memory. Nevertheless,

this speedup is not very significant implying that, for BT application, the second case is more

interesting to use. This is because, we can also perform malleability operations with dynamic

CPUSET mapping techniques. Hence, although we have a worst performance we can achieve

better overall resources utilization.

Figure 5.13 presents static and dynamic cases in a Dedicated (DM) or Shared Memory (SM)

context of BT-64 and CG-64 benchmarks. Concerning the Static and Dedicated memory cases

of BT-64 and CG-64 we can observe that the only important speedup is between the use of 1/4

to 2/4 cores/node for BT-64, whereas for all the rest the performance is quite the same. In the

152

 0

 50

 100

 150

 200

 250

 300

 350

 400

BT-Static-DM

CG-Static-DM

BT-Static-SM

CG-Static-SM

BT-Static-SM

CG-Static-SM

BT-Static-SM

CG-Static-SM

BT-Dynamic-SM

CG-Static-SM

E
xe

cu
tio

n
T

im
e

in
 s

ec

BT-CG Static or Dynamic with Dedicated (DM) or Shared Memory (SM)

NAS BT64-CG64 with 16 nodes (64cores) and CPUSETs Mapping (cluster bordereau dualCPU-dualCore)

1NAS-Static-1/4cores-DM
1NAS-Static-2/4cores-DM
1NAS-Static-3/4cores-DM
1NAS-Static-4/4cores-DM

2NAS-Static-1/4vs3/4cores-SM
2NAS-Static-3/4vs1/4cores-SM
2NAS-Static-2/4vs2/4cores-SM

2NAS-1/4ExpansionTo3/4vs-Static1/4cores-SM
2NAS-Static1/4vs1/4ExpansionTo3/4cores-SM

Figure 5.13: NAS BT-64 and CG-64 behavior, with Shared Memory and

Static/Dynamic CPUSET mapping operations.

shared memory context, all performances decreased as expected because the benchmarks were

sharing memory and communication links. Nevertheless, BT-64 presented an important sensitivity

to resources dynamism. This can be observed by the fact that we have a significant performance

degradation for BT-64 when it uses 1 core and CG-64 uses 3 cores of the same node; and by the

fact that the performance is upgraded for BT-64 when the above roles are inversed. Finally it seems

that a dynamic on-the-fly expansion, using from 1 to 3 cores/node, achieves a good performance

as compared to the Static cases with shared memory. On the same time the degradation of CG-64

performance is small when BT-64 is expanding.

In the second series of our experiments we will be using BT and CG in a shared memory con-

text. According to those last results, where BT presents more sensitivity in resources dynamism

than CG, we decided to implicate BT with malleability whereas CG will represent the rigid appli-

cations.

153

The figures of this section show the results obtained when performing only expanding opera-

tions. Nevertheless, our experiments indicated that there is no difference when performing folding

operations.

Our experiments validate the dynamic expansion of CPUSETs using specific NAS benchmarks.

Nevertheless we argue that all different NAS applications should have been used in order to have a

better view of the performance infulences. Intuitevly, We expect that CPU-bound applications will

have better speedups than Memory or I/O-bound applications. The choice of BT and CG was made

because they make use of similar resources making them good candidates for an average case of

applications.

5.5 Improving Resource Utilization using Malleability

The second series of experiments, aims at the evaluation of the two malleability techniques when

using automatic submission of real workload traces. The experiments were conducted upon the

cluster described on section 5.2.2. For the sake of these experiments 17 nodes of Bordereau cluster

were allocated from which 1 node was set as OAR central controller and 16 computing nodes

(DualCPU-DualCORE). A workload of 5 hours part of a DAS2 workload (for a cluster of 64

cores) with 40% of cluster utilization is injected into OAR. This workload charges the resources,

representing the normal workload of the cluster. At same time one malleable job per time is

submitted and will run upon the free resources, i.e. those that are not used by the normal workload.

The main differences of the experiments, for the two different malleability techniques, lay

upon the type of application executed and on the way the malleable job is submitted on each case.

For the Dynamic CPUSET mapping approach we execute BT benchmarks for the malleable job

and CG benchmarks for the static workload jobs, so that we can observe the impact on resources

utilization in a shared memory context. The malleable job is submitted to OAR in accordance to

the guidelines of Section 5.4.1. This means that one core per participating node has to be occupied

by the rigid part of the malleable job. Since the time of one NAS BT execution is rather small,

especially with big number of processes, we decided that the malleable job will have to execute

8 NAS BT applications in a row. At the same time, CG benchmarks are continuously executed

during the normal jobs allocation, as noted in the workload trace file. The number of processes

for each NAS execution during the experiment is chosen according to the number of current free

resources.

154

In the experiments of the Dynamic MPI case, the malleable job implies the execution of Man-

delbrot benchmark. The normal workload jobs (from DAS2 workload traces) are empty ’sleep’

jobs, just occupying the resources for a specific time. Since the malleability is performed using

whole nodes, there was no need to perform real application executions with the normal workload

jobs. As explained on subsection 5.3.1, the malleable job is submitted to OAR, by occupying only

one whole node in the rigid part of the malleable job and the besteffort part is as large as the

amount of remaining resources.

The dynamic executions of both techniques are compared with moldable experiments running

the same applications. In more details, the malleable jobs submission is substituted by moldable-

besteffort jobs submission. As such, we define a moldable job that starts its execution upon all free

cluster resources and remains without changes until its execution ending. However when some

resources are demanded to supply arriving jobs, it will be immediately killed, like a besteffort job.

Hence a moldable-besteffort job can take advantage of the cluster’s otherwise unutilized resources

by adapting itself on resources availabilities only before the start of its execution and does not

provide any dynamicity after that.

Since the experimental results figures are very similar for both malleability approaches, we in-

clude only the figures featuring the support of Dynamic-CPUSET Mapping technique upon OAR.

Nevertheless the graphs concerning the Dynamic-MPI technique are provided on the annexes sec-

tion 8.2. Figures 5.14 and 5.15 show the results of malleable and moldable-besteffort jobs respec-

tively. It is interesting to observe the gain upon the cluster resources utilization to the dynamic

context, presented in Figure 5.14, as compared to the moldable case in Figure 5.15. The white

vertical lines of Figure 5.14 until 5500 sec., represent the release of besteffort jobs resources.

This happens, when one group of 8 BT executions are finished until the next malleable job begins

and new besteffort jobs occupy the free resources. Also, at starting time the malleable job be-

gins, only with the rigid part (i.e only one core) and immediately expands using the other available

cores in the besteffort part of the malleable job. After 5500 sec. the execution of malleable

jobs start to be influenced by jobs from the workload (normal jobs). In that way, the white lines

(empty spaces) also mean that the application did not have enough time to grow itself, before a

new normal job arrived.

In terms of resources utilisation, since the normal workload makes use of 40% of cluster re-

sources, this leaves a total 60% of free resources. Table 5.3 shows overall results of our executions.

Moldable-besteffort jobs use a 32% of the idle resources arriving at 72% of total cluster resources

155

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

of

 c
or

es
 u

se
d

Time of simulation (5 hours)

malleable
workload

Figure 5.14: Malleable job executing BT application upon the free resources

of the normal workload.

Strategies Overall System Utilization Terminated Jobs Error Jobs Average Waiting Time for rigid jobs

Malleable Dynamic-CPUSET Mapping 97% 8 0 81sec

Malleable Dynamic-MPI 98% 8 0 44sec

Moldable-besteffort 72% 5 4 8 sec

Table 5.3: Comparison of malleable techniques and moldable besteffort

during execution of

used. On the other hand, in the dynamic context of malleability approaches, the use of idle re-

sources reach 57% arriving at 97% of overall cluster utilisation. Hence, an improvement of almost

25% of resources utilization is achieved when the dynamic approaches are compared with the

moldable one.

Furthermore, we observed the number of jobs executed during the 5 hours of experimentation.

In the dynamic context, we obtained 8 successfully ’Terminated’ malleable jobs, compared to 4

156

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

of

 c
or

es
 u

se
d

Time of simulation (5 hours)

moldable−besteffort
workload

Figure 5.15: Moldable-besteffort job executing BT application upon the free

resources of the normal workload.

’Terminated’ and 5 in ’Error State’, for the moldable one. That means that 5 moldable-besteffort

jobs have been started and killed due to need of resources by a rigid job. As expected there were

no ’Error State’ jobs in the malleable cases, since the rigid part guaranteed succesfull execution.

Hence the overall 97% of system’s utilization in the malleable case represents efficent system uti-

lization. On the other side the overall 72% in the moldable-besteffort jobs case does not represent

only terminated computations but also not valuable utilization.

Finally the impact of the response time, for the normal workload, was also measured. The

results have shown 8 sec. of average response time in the moldable context, compared to 81 sec.

of average response time in the dynamic CPUSET mapping technique and 44 sec. in the Dynamic

MPI technique. The big response time of the dynamic CPUSET mapping technique, is explained

by the allocation of one core per node by the rigid part of the malleable job. This limits the number

of free resources for jobs coming from the normal workload. The response time for Dynamic MPI

approach, is explained by the 40 sec. grace time delay to the MPI malleable application. This

157

grace time was added to OAR for the shrinking operations, as presented on Section 5.3.1.

5.6 Conclusions

In this chapter we have designed and implemented prototype techniques upon a resource and job

management system, to support malleability on multicore architectures. Two different approaches

were proposed that take advantage of the idle periods of clusters normal workloads and allow

jobs to adapt themselves according to the varied availabilities. The techniques are implemented as

external module of OAR without interfering with the normal functionality of the cluster. They take

advantage of the concept of besteffort jobs for the dynamicity and simple communication protocols

based on file exchanges between the malleable application and the server.

The malleable Dynamic-MPI technique requires a real malleable parallel application programmed

with the MPI comm spawn primitives to be dynamic according to resources disponibilities but is

the least intrusive to the system by keeping only one node as the rigid part of the malleable job. On

the other hand, the Dynamic-CPUSET Mapping technique allows to every kind of parallel appli-

cation to have malleable behaviour through the dynamicity of CPUSET mechanim upon multicore

architectures. However this technique is more intrusive to the system since it absolutely needs 1

core per node as the rigid part of the malleable job.

Both techniques attain very high results of optimization of system utilization achieving an

improvement of 25% when compared to a moldable-besteffort approach. However this gain comes

with a trade-off upon the waiting times of rigid jobs of the normal workload. As expected the

loss was bigger in the Dynamic-CPUSET technique. Ofcourse we argue that in a context of pure

besteffort jobs like in an environment similar with the lightwight grid Cigri discussed on chapter 3

the overall system utilization would be nearly 100% but the real efficient utilization is much less

than that as we have seen in the cas of moldable-besteffort jobs and in our experiments on section

3.4.2. At least in the case of our malleability techniques the overall systems’ utilizations depict

real efficient computations.

Hence, the malleable jobs as prototyped upon OAR system, represent an upgraded version of

the CIGRI lightweight grid jobs provided on chapter 4, since they offer the guarantee of execution

of rigid jobs followed by the dynamicity of a besteffort job.

Nevertheless, our study has let some aspects in the side. Our initial design considers only one

malleable job at a time, for simplicity and better measurement of the side-effects, but future studies

are planned for the support of multiple malleable jobs submission. Our experimentation could be

158

also further extended to take into account more complex applications in both cases of malleabil-

ity techniques. Concerning the Dynamic-MPI technique we are willing to test a real application

reprogrammed into malleable one with the MPI comm spawn primitives. On the same time the

variations of all the NAS benchmarks with different application profiles could provide more valu-

able results for the shared memory contexts of the Dynamic-CPUSET Mapping technique, where

we believe that more research is needed. The cases of memory swaping upon the disk has not been

taken into account in our study. Concerning the evaluation more trace files with various system

utilizations should be used. In the same time the workload profiles could be taken into account

because it’s obvious that simple workloads with not a lot of variations and a small number of big

jobs could benefit more the moldable-besteffort approach than the malleable ones.

159

Chapter 6

Energy Efficient Management Techniques

Energy efficiency has become an important research domain in all areas of science. In Large-Scale

Distributed Systems and High Performance Computing, the energy consumption plays a significant

role in the evolution of these systems. The increase in computation performance has come with

an even greater increase in energy consumption. The last few years High Performance Computing

Systems has started to be limited by factors like power usage, heat dissipation and the resulting

bills for power and cooling.

Research efforts upon all different abstraction layers of computer science, from hardware upto

applications, strive to improve energy conservations. As far as the systems middleware concerns

the Resource and Job Management System (RJMS) can play an important role in this game since it

has both knowledge of the hardware components along with information upon the users workloads

and the executed applications. In previous chapters we have studied methods to take advantage of

otherwise idle resources in order to achieve better system utilization. According to prior work, idle

computing resources consume a very important amount of energy [19],[20]. This energy could be

gained if specific actions could take place. Hence in this chapter, we extend our research in order

to take advantage of otherwise idle resources so as to achieve energy-efficient system exploitation.

In particular we have implemented a resource management extension upon a versatile resource

and job management system so as to power-off otherwise idle computing machines of a cluster

under specific conditions, depending on the users workloads. Following this method a cluster can

benefit of its idle periods and perform energy reductions. Conversely, if a job demands powered-

off machines the RJMS boots them and allocates them when they are powered-on. Nevertheless,

the impact upon the jobs response time and applications performance should also be taken into

account as trading-off the energy reductions.

160

In an effort to take full advantage of the privileged position of the RJMS we extended the green

resource management optimizations so as to motor energy awareness on the user level. Hence,

we have implemented mechanisms upon the RJMS to help users achieve energy reductions on the

application layer.

Indeed a lot of efforts have been made on this layer to provide energy-efficient MPI program-

ming [21],[197] or special Dynamic Voltage and frequency scaling mechanisms for reducing en-

ergy on MPI programs [22],[198]. In order to encourage this kind of research on the application

layer we developed specific options upon the RJMS. In more detail, we have developed a par-

ticular type of jobs that can take advantage of adapted CPU voltage/frequency scaling and Hard

disk spin-down techniques upon modern platforms that provide this kind of hardware treatment.

Therefore, users are enabled to perform optimizations upon their applications programming or

executions, by having energy consumption in mind. Our study evaluates the trade-offs between

energy consumption and performance for various MPI applications.

6.1 Related Work

The increasing demands for energy on High Performance Computing the last few years have started

to provide an important issue to the evolution of these systems. Hence, a new axe of research upon

energy reduction on HPC emerged as an imminent neccesity. A way to treat this growing prob-

lem is to improve the energy efficiency at different layers of abstraction. Research upon hardware

[199], [200] and multiprocessor technologies [201, 202] result into less-energy demanding com-

ponents. Improvements on microchips architectures optimize the trade-offs between energy and

performance [203]. The evolution on the hardware level helped for the construction of new low-

power High Performance Computing Systems. Systems like Green Destiny [204] addressed these

problems by significantly reducing per-node power consumption.

While TOP500 list [3] maintains the 500 most powerfull computer systems in the world, a

new complementary list has been created called Green500 [18] that presents the 500 most energy-

efficient systems. This list has been created in an effort to provide focus not only in performance

(as measured in floating-point operations per second: FLOPS) and targeted by TOP500 list, but on

other metrics like performance per energy consumed (measured in FLOPS/Watt).

Important research has been made on the application layer in order to analyze and control the

energy efficiency of MPI programs [21],[197] or provide special Dynamic Voltage and frequency

scaling mechanisms for reducing energy upon MPI applications [22],[198]. Furthermore users are

161

starting to become more energy conscious and in the same time they know better the hardware

needs of their applications. There are programs that use more the CPU and the network without

disk I/O while others perform a lot of disk access and no message passing.

One common mechanism on newer microprocessors is the mechanism of on the fly frequency

and voltage selection called DVFS. Reducing CPU frequency leads to reducing energy consump-

tion. As observed on previous work adaptive use of frequency scaling may result in important

energy benefits for small performance losses [205]. A similar technique for reducing energy con-

sumption exists for hard disks. Disks are made to service requests at their maximum speeds. Even

if a disk is not servicing any requests, it continues to spin at the maximum rotational speed and

hence wastes energy. Therefore the possibility of spinning down the disk when not in use may

contribute in energy efficiency [206]. Our implementations for energy-reductions during jobs exe-

cution are based on these ideas and are presented in detail in section 6.4.

Concerning related work upon energy efficient Resource and Job Management Systems, Moab

1, PBSPro, LSF, Condor, SGE and Slurm 2 [102] advertise the support of adapted energy efficient

techniques, based on exploitation of idle resources. The basic ideas for energy-reductions through

the technique of machine power ON/OFF during unutilization periods, are the same upon all sys-

tems. Nevertheless, as far as our knowledge, there is no published work with evaluation of their

mechanisms. Moreover, no similar mechanisms have been found on other RJMS that allow the

exploitation of hardware DVFS techniques for individual job energy-conservations during execu-

tion. Only SLURM software offered a solution for CPUFREQ exploitation for energy-reductions

which was parametrized only by the administrator. In this chapter we present also experimenta-

tions with SLURM Energy conservation, automatic power ON/OFF, mechanisms and we evaluated

and compared its performance with our implemented Green Management techniques upon OAR

system.

Other research teams have been focused around the subject of dynamic thermal management

of data centers. Researchers on HP-labs have been studying and developing real-world schedul-

ing algorithms that take into account the real-time thermodynamic formulation of a data-center

room by spotting the hot and cold spots [207, 208]. Based on these information they explore

temperature-aware workload placement algorithms that can lead to lower temperatures and higher

energy consumptions in the data centers.

All our developments for energy-efficient computing took place upon OAR resource and job

management system. The research presented in this chapter is a part of an integrated framework

1http : //www.clusterresources.com/solutions/green − computing.php
2https : //computing.llnl.gov/linux/slurm/powersave.html

162

destined for energy conservations for High Performance Computing called Green-Net [209], [210]

3, which is a research collaboration between 3 laboratories.

6.2 Measuring Energy Consumption upon Grid5000

In the context of energy saving in HPC, users should be aware of what exactly their applications

consume. This requirement has led to developing new information systems for end users. For

instance, in a similar context Google with its PowerMeter [211] and Microsoft with its Hohm

project [212] will allow users to view precisely their energy consumption at home and to receive

advices on how to reduce their every days energy consumption. One key point of these two systems

is that they aggregate the data about energy usage over several months and even years, helping the

users to understand how their consumption evolves over time. Similar approaches can be taken in

the HPC systems contexts.

The Green-Net [209], [210] framework proposes a top-down approach on three levels. The first

level represents the information delivered to the users to raise their energy consumption awareness.

The second involves the users in trading performances to energy consumption. The last level

represents the automatic behavior and adaptation of the distributed system to gain energy. The

context of Green-Net 6.1 is the large scale distributed systems, more precisely grids and clouds,

where a local resource and job management system handles the resources and distributes them

among the users jobs.

In this environment our research is focused on the RJMS level and we use the interfacing part

of Green-Net to the energy consumption measuring capabilities of Gri5000 platform, in order to

effectuate the performance evaluations of our implementations.

6.2.1 The Hardware Energy-Meters

Current technology usually does not allow us to measure how much energy consume the individual

components of a computer. The only possibility is to measure the consumption of a whole com-

puter. Our experiments currently use two types of measurement appliances: the Hameg and the

Omegawatt box.

The Hameg is an electronic laboratory power meter (HAMEG HM8115-2) 4, which offers a

3This research is supported by the GREEN-NET INRIA Cooperative Research Action: http://www.ens-

lyon.fr/LIP/RESO/Projects/GREEN-NET/
4http://www.hameg.com/147.0.html

163

Figure 6.1: The GREEN-NET framework.

precision of 0.5%. It can measure the energy consumed by only one element (usually a computer),

but can provide all the relevant information (effective and reactive power, phase, etc). As this

power meter is calibrated for laboratory use, it is utilized for verification of the other systems.

The Omegawatt box 5 is a customized box produced by Omegawatt to measure the consumption

of several nodes at the same time. The current system monitors 162 nodes and is deployed on three

sites of Grid’5000, located at Grenoble, Lyon, and Toulouse. We use 6-port boxes in Grenoble and

Toulouse, and 48-port boxes in Lyon. These systems are able to take a measurement per second.

Each site contains a server responsible for logging the measurements using a dedicated library to

capture and handle the data.

The interface with Hameg and Omegawatt equipments uses serial ports, but scientists of Green-

Net project are currently investigating alternative hardware (i.e. Plogg) that communicate via

Bluetooth.

6.2.2 A Library to Interface with Energy-Meters

Obtaining energy consumption information from several heterogeneous sensors such as those de-

scribed above is a challenging task. Green-net projects researchers have chosen to develop a library

that simplifies the measurements. As requirements this library had to be optimized for near “real

time” data acquisition and be extensible to take into account future developments; hence, its im-

plementation has been done using the object-oriented language C++.

5http://www.omegawatt.fr/gb/2 materiel.html

164

Having completed the software layer to interface with sensors, a particular development had to

be made to implement client-side applications that collect and log energy comsumption measure-

ments from sensors at time intervals; and applications that access previously collected information.

Each measurement contains a time-stamp that specifies when it was performed. On a server re-

sponsible for controlling a number of energy sensors, a thread is associated with each sensor to

capture the energy consumption of the monitored devices at each second. An additional thread is

responsible for responding to requests made by client applications. Clients-server communications

are done via Remote Procedure Call (RPC).

• A Web page (Figure 6.2) that provides the energy consumption graphs over time for a num-

ber of monitored nodes. Using rrd-tools it shows at different time scales, from minutes to

months, the energy consumed by nodes without any context. It is mainly used to give a fast

and simple feedback to the user, who has to select only the nodes relevant to her application.

• A Web service that using XML provides the energy consumption data from nodes, based on

a list of nodes and a time frame given by the user. Hence, the user can obtain exactly the

relevant energy consumption data concerning a job that has run on the grid.

An example of energy monitoring through Green-Net interfaces upon Grid5000 platform is

shown in figure 6.2

6.3 Energy Reduction through idle resources manipulation

In this section we analyze the adaptation of a Resource and Job Management System with Energy

Efficient features.

According to prior work, idle computing resources consume an important amount of energy

[19],[20]. This energy could be gained if specific actions could take place while the machines are

not allocated by a user. Figure 6.3 shows a plot of Watt consumption for a single machine when

idle, powered-OFF and powered-ON again. It is interesting to observe the 60% difference on Watt

consumption between powered-OFF and idle powered-ON states. Intuitively, we can imagine that

the gain in energy would be large when we consider a big number of idle cluster computing nodes.

Nevertheless, the instant peaks of energy consumption observed in the end of the power-ON phase;

make us understand that the time a machine needs to stay in Power-OFF state has to be considerably

large so as to result in a gain of energy rather in loss. Another issue that needs to be taken into

account is the time that a particular machine needs in order to perform a complete power-on from

165

Figure 6.2: Web page example of energy monitoring of 18 nodes.

the instant that the command is issued until the moment that the machine is ready to start executing

a task. This can definitely influence the response time of a particular job which is waiting for a node

to wake-up to perform computations. Table6.1 shows the duration of the shutdown and poweron

phases for a particular cluster in Grid5000. These values change depending the architecture.

Cluster/PowerOFF-ON Shutdown Time Reboot Time

Capricorne 15sec 154sec

Table 6.1: Time for PowerOFF-ON

The privileged position of the resource and job management system, which collects information

for both resources availabilities and users workloads makes it an ideal tool for integrating actions

to be triggered upon the idle cluster resources for efficient energy consumption.

6.3.1 Adapting OAR to exploit idle resources for energy conservations

Under this context we have extended the resource management mechanisms of OAR [59] in order

to achieve energy-efficient system exploitation by manipulating idle resources. In particular we

166

0 500 1000 1500

0
50

10
0

15
0

20
0

25
0

30
0

Energy Consumption for Shutdown/Reboot phase on 1 node(2CPU−4cores)

Time [s]

E
ne

rg
y

co
ns

um
pt

io
n

[W
at

t]

Average Consumption : 155.409384498480 Watts

Figure 6.3: One Node Energy consumption Reboot phase

have implemented a resource management optimization upon OAR that powers-off idle computing

machines of a cluster under specific conditions. In contrast with the exploitation of idle resources,

for more efficient computations, as visioned on previous chapters; In this study our goal is to use

this resource idleness in order to achieve energy-efficiency. Following this method a cluster can

benefit of its idle periods and perform energy reductions. Conversely, if a job demands machines

which are in power-off states, OAR triggers a power-on command and allocates them for the job

when they are on Alive state.

Figure 6.4 describes the simple algorithm of the Green Management mode. It uses specific vari-

ables that need to be parameterized by the administrator of the cluster. The Idle TIME represents

the duration that a machine has not been allocated by a job. Similarly the Sleep TIME represents

the duration that the machine will remain unallocated, which means that a job reservation is not

planned upon it. As shown on the figure, the Green Management algorithm examines the idleness

conditions, according to the parameterized variables, and executes the predefined actions upon the

machines. The executed commands depend on the platform and operating system but could be any

167

type of shutdown, standby or hibernate modes along with the relevant wake-up commands. In case

of sudden job arrival which needs the machine, the wake-up command should power-on the ma-

chine and OAR initiates the job when all machines are ready for utilization. Ofcourse a significant

jobs waiting-time is expected depending on the reboot time of the machines.

NOWTIME_LastJobFinished TIME_NextReservationStarts

Idle_TIME Sleep_TIME

Time
for 1node

 Node GoToSleep
 if $Idle_TIME > A_PreDefined_Idle_TIME
 AND
 $Sleep_TIME > A_PreDefined_Sleep_TIME
 then
 exec GoToSleep_Command

 Node WakeUp
 if SleepingNode_isNeeded then
 exec WakeUp_Command

Algorithm for OAR Green Management

Figure 6.4: Green Management mode upon OAR

The implementation of this mechanism upon OAR was rather straightforward with the defini-

tion of the logic upon the MetaScheduler module which calls the scheduling module as described

on chapter 3. The MetaScheduler makes the necessary checks to see if resources fullfill the condi-

tions to GoToSleep or if some need to be Waken-UP. The MetaScheduler takes the decisions and

another module is responsible for issuing the relevant commands. The commands need to include

specific Timeouts in order to guarantee that if a resource is not Alive after a particular time then it

has to be suspended and not used.

Newer versions of the OAR Green Management technique consider additional optimization

techniques of the initial implementation.In order to optimize response times for small or interactive

jobs that need small amount of resources some resources are kept alive during the process. Power-

off and power-on with groups of nodes in order to avoid sudden electricity variations. However

168

those features, which are already in production, were not finished at the time of the experimentation

so they have not been evaluated.

Another study that we conducted was to enhance the above algorithm with a predictor based

upon historical data. This was motivated by the fact that the load is likely to be more during the

week days than during nights or during the weekends. Hence we wanted to provide a model that

can anticipate which days and hours of the week will be idle periods in the cluster and use this

information for future reference in order to power-off nodes during periods with low workload

traffic and wake them up when the module predicts that the traffic will become larger. The pre-

diction model is based upon a past repository, which aids in maintaining the periodic load of the

system and an algorithm which scans for current and future workload and tries to correlate with

the past load. history. Even if the study resulted into an actual implementation by Kamal Sharma,

the particular prototype was never experimented or used in production [209].

6.3.2 Performance Evaluation of OAR Green Management technique

In order to evaluate our implementation for automatic energy reduction through OAR Green man-

agement we have executed experiments upon Grid5000 platform. For this, we have used workload

traces from the DAS2 [213] clusters. In particular we have extracted specific parts of the traces ac-

cording to the system utilization percentage and we have replayed those traces using OAR upon a

cluster of the same size deployed upon Grid5000. Our goal is to evaluate the different management

modes (Normal and Green) of OAR using different workloads. In this first series of experiments

our workloads consist of simple sleep jobs.

Our experiments were made upon Grid5000 on Lyon site and Capricorne cluster with AMD

Opteron 246 Dual CPU (2.0GHz/1MB/400MHz), 2GB memory and Gigabit Ethernet network.

Since the trace file was collected by a 32nodes(DualCPU) cluster, we have selected 33 nodes of

Lyon Capricorne cluster and deployed OAR frontal server upon the one of them and 32 OAR

computing nodes. In this first series of experiments our workloads consist of simple sleep jobs

since we are only interested to evaluate the system behaviour when idle nodes shutdown or not

during the experiments. Our goal is to observe the differences on energy consumption and jobs

waiting-time for the normal scheduling mode where idle machines remain powered-ON, compared

to the green scheduling mode where idle machines are notified to power-OFF if the particular

conditions are fullfilled.

For our tests we have used workload traces of 50.32% and 89.62% system utilization. Each

figure, 6.5 and 6.6 present two different experiment plots one with normal and one with green

169

management upon the same machines. It is interesting to see that the energy gain in both workload

cases is very important.

We can note that between the two figures there are differences in energy consumption of idle

state (difference of 2KW.h in Total consumption of Normal scheduling mode), even if we are using

the same cluster. This difference is due to the fact that we didn’t reserve exactly the same machines

for the experiments shown on the different figures. It is a fact that there is a significant difference

in instant energy consumption between the nodes of this same cluster. Indeed, in the particular

cluster it has been observed that nodes situated on the bottom consume less than those on higher

placing upon the shelves.

Parameters/Experiments Experiment 1 Experiment 2 Experiment 3 Experiment 4

Management Mode Normal Green Normal Green

System Utilization Percentage 50.32% 50.32% 89.62% 89.62%

Total Number of Jobs 309 309 188 188

Total Energy Consumed 42.7 KW.h 30.6 KW.h 40.7 KW.h 36.6 KW.h

Average Job Waiting time 8 sec 829 sec 1 sec 218 sec

Table 6.2: Total Energy consumption and Jobs Waiting Time for normal and

green modes

The significant peaks of energy consumption in the beginning of green scheduling mode of

figure 6.6 are due to the fact that machines were just rebooted when the execution has started,

whereas it was not the case in all other experiments of both figures. This event was irrelevant with

our experimentation and it influences slightly the total energy consumption.

Table 6.2 shows significant results of the experiment runs. As expected the gain on energy

consumption is followed by a loss on jobs waiting time. After observation of the workload file

we observe that the workload of 89.62% is mostly composed by small jobs whereas the 50.32%

workload is composed by a small number of large jobs. This explains the big difference we ob-

serve in the waiting times. Hence we observe a 28% gain in energy consumption for a waiting

time of about 14 minutes in average or a 10% gain for a waiting time of less than 4 minutes in

average. Furthermore, the waiting time includes the machines boot time which has been measured

as 154sec, in average, upon the specific machines. The study needs to be continued for other work-

loads and platforms but the first results show a good trade-off between the gain on overall energy

consumption and the loss on jobs waiting time.

In a second part of our experiments with OAR Green and Normal modes we have used a

170

Energy consumption of trace file execution with 50.32% of system utilization

0
10

00
20

00
30

00
40

00
50

00
60

00

C
on

su
m

pt
io

n
[W

at
t]

0 2000 5000 8000 11000 14000 17000 20000 23000 26000
Time [s]

Total Energy Consumed:

 42.7 KW.h Normal Management
30.6 KW.h Green Management

Figure 6.5: Energy Consumption for normal and green management with

50.32% system utilization

171

Energy consumption of trace file execution with 89.62% of system utilization

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

C
on

su
m

pt
io

n
[W

at
t]

0 2000 4000 6000 8000 11000 14000 17000 20000 23000 26000
Time [s]

Total Energy Consumed:

 40.7 KW.h Normal Management
36.6 KW.h Green Management

Figure 6.6: Energy Consumption for normal and green management with

89.62% system utilization

172

different cluster in the same site (Lyon) of Grid5000 platform. The cluster was Sagittaire and had

similar characteristics with the previous one (AMD Opteron 250 with 2.4GHz / 1MB / 400MHz ,2

GB of memory and Gigabit Ethernet Network). We have used the same workload for the 89.62% of

system utilization but this time the workloads perform real computations of NAS benchmarks. In

particular we have utilized BT application of NAS benchmarks and we have implemented a while

loop so as to execute BT benchmarks throughout the time that a single job has allocated resources.

This will allow us to see the variations of energy consumption with real computations taking place

upon the platform. The graph in figure 6.7 shows us the instant energy consumed for each mode

when submitting the same workload to the cluster.

It is interesting to observe that the total difference in energy comparison after 5hours of com-

putation is about 7.2KW which gives a gain of 13% of the total computation. Nevertheless we

need to observe also the side-effects of this gain in energy.

Figure 6.8 shows the impact on jobs waiting times. More specifically, this impact is provided

by a graph of Cumulated Distribution function on jobs Wait time. We can observe that on Normal

mode there is almost no wait at all for allocating the resources whereas on Green mode we have a

variation on waiting times from 2-3sec up to 400sec with most of the jobs being in an average of

about 200sec which is less than 4minutes.

This is an acceptable result, if we consider the gain of 13% of energy consumption for 200sec

of waiting time loss. We can also observe the difference on wait-times with the same workloads

and different platforms of the previous experiments. The explanation lies on the fact that Sagittarie

is a slightly newer cluster than Capricorne and it provides a faster power-on mechanism which

makes faster the response of nodes on the demand of OAR to power-on.

6.3.3 Comparison of OAR and SLURM Green Management techniques

In this suite of experiments we compare the Green Management technique of OAR along with that

of SLURM resource manager. Both of them provide the same capabilities for performing energy

reductions. The comparison was made with earlier versions where they did not yet support the

power-on/off with groups of nodes.

The experimental methodology and the platform are the same as in the second part of the

previous experiments. Thus the deployment takes place upon Sagittaire cluster (AMD Opteron

250 with 2.4GHz / 1MB / 400MHz ,2 GB of memory and Gigabit Ethernet Network) and the same

workload for the 89.62% of system utilization with real computations of NAS BT benchmarks.

Both Green modes are presented on figure 6.9 where we can observe that the final energy

173

Energy consumption of trace file execution with 89.62% of system utilization and NAS BT benchmark

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

C
on

su
m

pt
io

n
[W

at
t]

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000
Time [s]

Energy consumption of trace file execution with 89.62% of system utilization and NAS BT benchmark

Total Energy Consumed:

NORMAL Management 54.9010138611111 KWatts.hour
GREEN Management 47.7323715861111 KWatts.hour

Figure 6.7: Energy Consumption with trace file of 89.62% of system

utilization and NAS BT Benchmark upon a 32 nodes(biCPU)

cluster with OAR

consumption after 5hours of experimentation is the same even if the instant energy consumption

varies between the two cases. The variations between the two graphs representing the instant

energy consumption can be explained by slight differences in scheduling and tasks placement

decisions. Even if both RJMS have been configured to use the same scheduling policy which

is conservative backfilling and both used task placement techniques with fine granularities; the

packing of the jobs and the internal matching decisions can be different from one system to the

174

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF on Wait time with 89.62% of system utilization and NAS BT benchmark

Wait time [s]

Jo
bs

 [%
]

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF on Wait time with 89.62% of system utilization and NAS BT benchmark

Wait time [s]

Jo
bs

 [%
]

GREEN
NORMAL

Figure 6.8: Cumulated Distribution function on Wait time for 89.62% of

system utilization and NAS BT benchmark with OAR

other. Hence the exact same workload trace submitted to the same cluster with different resource

management systems can lead to different green management decisions.

Figure 6.10 show us the strech times for all the executed jobs for each case of RJMS (OAR and

SLURM). The strech times represent the turnaround time normalized by the job’s actual running

time. We can observe that there are nearly no differences between the both figures which explains

that the impact upon waiting times where the same between the two platforms.

The new versions of OAR which provide improvements have not been evaluated in this thesis.

Nevertheless, we expect that for particular conditions with small-sized jobs there will be an impor-

tant optimization concerning the waiting times, with perhaps less energy gains for the part of OAR

RJMS.

The reason that we use the same workload of 89.62% of utilization is the fact that large utiliza-

tion rates which stress the system with a lot of submissions can provide us with valuable observa-

tions concerning that cannot be seen few jobs or smaller rates. In addition it is rather straightfor-

ward that when using energy saving techniques with small utilization rates the energy gain will be

much more important than the side-effects upon response times. This will simplify our evaluation.

175

Energy consumption of trace file execution with 89.62% of system utilization and NAS BT benchmark

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

C
on

su
m

pt
io

n
[W

at
t]

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000
Time [s]

Energy consumption of trace file execution with 89.62% of system utilization and NAS BT benchmark

Total Energy Consumed:

SLURM Green Management 47.5550173555555 KWatts.hour
OAR Green Management 47.7321200194444 KWatts.hour

Figure 6.9: Energy Consumption with trace file of 89.62% of system

utilization and NAS BT Benchmark upon a 32 nodes(biCPU)

cluster with OAR and SLURM Green modes

In contrast our goal is to observe the trade-offs energy consumption versus jobs waiting times in

extreme situations even if they are not constantly the case.

176

1 8 16 26 36 46 56 66 76 86 96 107 119 131 143 155 167 179

Stretch Time for OAR GREEN

Jobs

S
tr

et
ch

 T
im

e
(s

ec
)

0
5

10
15

20
25

30
35

1 8 16 26 36 46 56 66 76 86 96 107 119 131 143 155 167 179

Stretch Time for SLURM GREEN

Jobs

S
tr

et
ch

 T
im

e
(s

ec
)

0
5

10
15

20
25

30
35

Figure 6.10: Strech times upon a 32 nodes(biCPU) cluster for

89.62%utilization and NAS BT benchmark with OAR and

SLURM Green modes

6.4 Supporting DVFS (Frequency Scaling) for user’s exploita-

tion

Nowadays users have become more energy conscious and want to be able to control the energy

consumption of the cluster during their computation. At the same time, applications can be pro-

grammed to provide if a device is not needed or if it can function slowly. Our choices of the

hardware devices that can be treated, were defined by the fact that they have to be either parame-

terized to function slower, consuming less energy, or provide the possibility of a complete power

off.

6.4.1 Adapting OAR to provide DVFS techniques

In an effort to allow the users to perform an efficient execution of their applications according

to their specific performance needs, we have developped specific options upon the Resource and

Job Management System OAR. These options enable the secure, on-the-fly manipulation of the

hardware performance.

OAR supports different kind of jobs, like besteffort jobs (lowest priority jobs used for global

computing [214]) or deploy type of jobs (used for environment deployment [215]). The implemen-

tation of a new powersaving type of job allows the user to control the device power consumption

of the computing nodes during their job execution. The open architecture of OAR along with its

177

flexibility permitted us to integrate this feature with a rather straightforward manner. Unlike most

Resource Management Systems, in OAR there is no specific daemon running on the computing

nodes of the cluster. Nevertheless, during the execution, the server communicates with every node

(participating in the job) where it can obtain root privileges and perform all the demanded power

saving modifications. The specific device modifications are stored into the database as different

device power states. At the end of the job all computing nodes return to their initial power states.

Our development upon OAR consists of a simple support of CPU frequency scaling and Hard

disk spin-down upon modern platforms that provide this kind of hardware treatment. For this we

have introduced a new type of jobs called Powersaving which allows the user to choose and control

the device performance and thus the power consumption of the computing nodes during their job

execution.

Currently only CPU and hard-disk speed scaling can be effectuated but other devices support

are also planned. The mechanisms make use of specific linux commands like cpufreq-set 6 for cpu

frequency scaling and sdparm 7 for hard disk spin down techniques.

6.4.2 Tradeoff DVFS Energy vs Performance

To experiment with this feature we conducted tests using MPI applications to compare the gain

in energy consumption when using the different options of powersaving jobs. In particular we

make the comparison between four cases: 1)a normal execution (no CPU frequency scaling or

HDD spin-down), 2)only CPU frequency scaling, 3)only HDD spin-down, 4)both CPU frequency

scaling and HDD spin-down. For this experimentation we use Grid5000 platform and more specif-

ically 9 nodes of Genepi cluster with Intel Xeon E5420 QC 2.5GHz DualCPU-QuadCore, 8GB

Memory and Infiniband 20G network. In our experiments we deploy one node as OAR server and

8 computing nodes. We execute NAS NPB benchmarks [66], which are widely used to evaluate

the performance of parallel supercomputers. In more detail we execute class D benchmarks with

their MPI3.3 implementation8 and 64 processes (one process per core).

We have calculated the percentage trade-off gains between energy consumption and perfor-

mance (execution time) for the different powersaving cases normalized with the normal execution

for the NPB benchmarks. These results presented in table 6.3 show that the use of powersaving

6http : //linux.die.net/man/1/cpufreq − set
7http : //linux.die.net/man/8/sdparm
8http : //www.nas.nasa.gov/Resources/Software/npb changes.html

178

Method HDD Spin CPU Freq HDD Spin + CPU Freq

Gain % Energy/Performance Energy/Performance Energy/Performance

EP 2.5% / 0% 10.3% / -18.9% 12.2% / -20.5%

SP 1.6% / 0.3% 8.5% / -1.3% 10.2% / -1.5%

BT 2% / -0.4% 9% / -5.4% 10.4% / -5.5%

LU 2.2% / 0.2% 9.5% / -7.6% 11.5% / -10.8%

CG 2% / -0.13% 8.2% / -1.4% 10% / -3.1%

IS 1.4% / 1.5% 6.4% / -1.5% 10% / -7.2%

MG 1.2% / -1.1% 8.2% / -0.5% 9.8% / -3.4%

Overall 1.8% / 0.05% 8.5% / -5.2% 10.5% / -7.4%

Table 6.3: Gain percentage Energy VS Performance (Execution Time)

options achieve good trade-offs between energy reduction and performance loss. Ofcourse the fi-

nal gain is marginal if someone is interested to have energy reduction with no performance loss.

Nevertheless, most of the times some energy benefits are followed by a rather small increase in ex-

ecution time. Similar results were also observed in previous works [21] which experimented only

with CPU frequency scaling. It is suprising to observe how SP,LU and especially IS benchmark

present a gain not only in energy reduction but also in performance when HDD spin-down tech-

niques are performed. This strange behaviour can be explained by the presence of system noise

and more particular it could be related with the processor cache and TLB (Translation Lookaside

Buffer) behaviour [216]. Nevertheless, recent studies that predict disk idle times and use multi-

speed disks have shown important energy savings with small loss in performance [217]. Finally

the only case that the trade-off energy reduction versus performance loss is not good is in the case

of EP benchmark.

The graphics on figure 6.11 show the impact of relation between energy consumption and exe-

cution for different options of powersaving jobs for the case of NAS SP benchmark. Each graphic

represent 4 different runs of the same benchmark with normal execution (no DVFS technique) and

3 green executions (HDD-spindown, CPU-lowfreq and the merge of both). We can observe that

CPU-lowfreq techniques have obviously larger energy consumption gains than the HDD-spindown

technique but with impact on waiting times.

The graphics on figure 6.11 show the impact of relation between energy consumption and exe-

cution for different options of powersaving jobs for the case of NAS SP benchmark. Each graphic

represent 4 different runs of the same benchmark with normal execution (no DVFS technique) and

3 green executions (HDD-spindown, CPU-lowfreq and the merge of both). We can observe that

179

NOsdparm NOcpufreq sdparm NOcpufreq NOsdparm MINcpufreq sdparm MINcpufreq

NAS SP 64 class D energy consumption, execution time (8nodes 2CPU−4Cores)

Use of sdparm and cpufreq parameteres

A
ve

ra
ge

 c
on

su
m

pt
io

n
[W

at
t]

0
50

0
10

00
15

00
20

00
25

00
2221 2184

2032 1995

Execution Time :

2799 seconds
2790 seconds
2836 seconds
2843 seconds

 1950

 2000

 2050

 2100

 2150

 2200

 2250

 2780 2800 2820 2840 2860 2880 2900 2920

A
ve

ra
ge

 E
ne

rg
y

C
on

su
m

pt
io

n
(W

at
t)

Execution Time (sec)

Energy-Performance TradeOFFs for NAS SP Benchmark (64 processes - Class D)

Normal Execution
Green Execution (only HDD)
Green Execution (only CPU)

Green Execution (HDD+CPU)

Figure 6.11: NAS SP benchmark executions through PowerSaving jobs with

sdparm and cpufreq variations Different representation of the

same results for energy-performance tradeoffs

CPU-lowfreq techniques have obviously larger energy consumption gains than the HDD-spindown

technique but with impact on waiting times. Similarly with BT and CG, SP benchmark provides

180

0 500 1000 1500 2000 2500

0
50

0
10

00
15

00
20

00
25

00

 NAS SP class D 64 energy consumption (8nodes−2CPU−4cores)

Time [s]

E
ne

rg
y

co
ns

um
pt

io
n

[W
at

t]

Average Consumption : 2220.59793307087 Watts

Execution Time : 2799 Seconds

0 500 1000 1500 2000 2500

0
50

0
10

00
15

00
20

00
25

00

 NAS SP class D 64 energy consumption (8nodes−2CPU−4cores)

Time [s]

E
ne

rg
y

co
ns

um
pt

io
n

[W
at

t]

Average Consumption : 2184.25319616460 Watts

Execution Time : 2790 Seconds

0 500 1000 1500 2000 2500

0
50

0
10

00
15

00
20

00
25

00

 NAS SP class D 64 energy consumption (8nodes−2CPU−4cores)

Time [s]

E
ne

rg
y

co
ns

um
pt

io
n

[W
at

t]

Average Consumption : 2032.32553107789 Watts

Execution Time : 2836 Seconds

0 500 1000 1500 2000 2500

0
50

0
10

00
15

00
20

00
25

00

 NAS SP class D 64 energy consumption (8nodes−2CPU−4cores)

Time [s]

E
ne

rg
y

co
ns

um
pt

io
n

[W
at

t]

Average Consumption : 1995.33328282828 Watts

Execution Time : 2843 Seconds

Figure 6.12: Instant energy consumption for NAS SP: Normal(top-

right),HDD-spindown(top-left),CPU-lowfreq(bottom-

right),HDD-spindown+CPU-lowfreq(bottom-left)

an improvement in performance when HDD-spindown techniques are performed. Finally figure

6.12 provide the instant energy consumption for the execution of NAS SP benchmark and different

cases of PowerSaving options.

6.5 Conclusions

In the general context of improving a systems’ exploitation, this chapter presents studies around en-

ergy efficiency in High Performance Computing and it provides development and experimentation

181

of resource management techniques which take advantage of unutilized periods of the computing

infrastructures in order to perform energy reductions. Our technique considers the idle periods be-

tween job executions of the workloads and if specific conditions are met the RJMS triggers actions

like Power-OFF upon the idle machines. The technique implies the Power-ON of a machine in

case it is needed by a submitted job. The waiting time in this case provides an interesting trade-off

to the energy reductions. The beneficial value of the technique partially depends on the various

workloads. Experimentation with real workloads presented results upon the trade-off energy re-

duction and waiting time, along with green management mechanisms comparison between the two

resource managers SLURM and OAR. The results showed similar behaviour as expected. How-

ever we argue that the new enhanced version of OAR Green Management Mode that dynamically

keeps alive some machines for interactive or small job rapid utilization may provide smaller wait-

ing times for similar energy reductions. Further experimentation in this context will compare this

strategy with the currently proposed ones.

In the same context and in an effort to enable energy reductions on the application level by

motivating energy consciousness on users we provided enhanced options through the expression

of the job attributes by definining a new type of job (PowerSaving) that enable the Dynamic Volt-

age and Frequency Scaling of hardware like the CPU and the hard disk. These options are sent as

job parameters through the submission of the job and they trigger the particular DVFS commands

upon the allocated computing nodes. Particular experiments using the NAS benchmarks showed

interesting trade-offs of the energy reduction and the application performance. The support of en-

ergy management of other type of hardware(like GPU, network interfaces, memory, etc), through

the technique of PowerSaving job parameters, will be provided in future versions of this feature.

Furthermore the motivation for energy consioucness upon the users could be also encouraged by

providing particular accounting options that consider their jobs energy consumption. By this way

the RJMS could provide fairness between jobs and users not only based upon their overall compu-

tation time but also upon their overall energy consumption. In this respect we propose to enhance

the swf format [24] described on chapter 2 with an additional value that will reflect the energy

consumption of the particular job.

182

Chapter 7

Conclusions and Future Research

Directions

7.1 Conclusions

High Performance Computing has made important advances during the last years, driven by the

evolutions in microprocessor technologies, high-speed networks and the applications increasing

needs for computing power. The Resource and Job Management systems maintain a very important

place in this context since they have knowledge of both the system and the applications and they

are responsible for actions like scheduling among jobs, matching of resources to user jobs and

application execution upon the allocated resources.

The research work presented in this dissertation has resulted into the following publications

[25, 26, 27, 28, 29, 30, 31]. In this thesis we have provided a thorough analysis of the internals of

the Resource and Job Management systems and we have studied their evolution towards efficiency

and scalability. We have effectuated a conceptual comparison among various open-source and

commercial RJMS, presented a quantifiable evaluation for their functionalities and a real-scale ex-

perimentation to compare particular components like scheduler and launcher efficiency, topology

aware placement and energy efficient management techniques. Experimental results revealed sig-

nificant insights about the characteristics of particular components of some RJMS. Based on these

results some system optimization ideas for improvements of OAR and SLURM systems have been

proposed.

Related studies upon workload logs of real production platforms showed that regardless the

efficiency of a RJMS the computing infastructures, in reality, may suffer of large unutilization

183

periods. Our motivation is to take advantage of these otherwise idle resources to enable improve-

ments for the exploitation of the cluster.

Initially placed in a context of a lightweight grid where unutilized cluster resources can be ag-

gregated for large-scale grid jobs our studies showed that even if the system utilization may arrive

at nearly 100%, the real valuable computations remain low because of interference failures that

interupt the jobs without letting them terminate their work. One of the contributions of this the-

sis was to improve the ratio of valuable versus wasted computations by proposing a fault-tolerant

technique based on the checkpoint/restart mechanisms particularly adapted for bag-of tasks appli-

cations.

In a similar context upon a single cluster, our motivation is to enable users to make use of

malleable jobs that can adapt themselves on system availabilities. Hence an upgrade of the previ-

ous approach was proposed by the development of malleability techniques upon a specific RJMS

which extends the concept of besteffort jobs with malleable jobs that consist of a rigid part: to

guarantee executions and a besteffort part: to dynamically adapt to resources availabilities. Our

results showed significant improvements on system utilization and efficient and valuable system

exploitation for both prototype malleability techniques

Nevertheless, high performance computing infrastructures are characterized by important en-

ergy consumptions. Hence, we argue that in place of using unutilized resources for additional

computations, we could take advantage of those resources to perform energy economies, since

they are not used by the principal workload. This alternative system exploitation can lead to im-

portant energy reductions and decrease of the computing systems electricity bills.

Hence, combinations of the above techniques, through the use of idle cluster resources, could

indeed contribute to attain overall improvements for the exploitation of computing infrastructures,

either this is efficient computations or energy reductions. However, there is not one universal

solution and there are a lot of parameters that need to be taken into account. In particular the study

of workloads of the various systems can reveale valuable information about the particular needs

of the specific platform and can enable the correct decisions for improvements of the exploitation

of the system. In this thesis we have provided ways to study the behaviour of a system through

real-scale reproducible experimental methodologies based upon synthetic or real workload traces.

This is another significant contribution of this work, since up to our knowledge there is not a lot of

research done in this area of HPC using real-scale experimentation.

The particular ESP benchmark was adopted to our experimental methodology and it has been

extensively used in our evaluation procedures for resource and job management systems. This

184

benchmark provides a standard for evaluation of the scheduling and launching capabilities of an

RJMS. Under this context we proposed a modified version of ESP benchmark (called TOPO-ESP-

NAS) to evaluate particular resource management features like the efficiency of the topology aware

placement techniques.

7.2 Future Research Directions

Concerning future directions of our 3 main proposals, the marginal improvements of the first pro-

posed mechanism upon the lightweight grid context opened directions for future optimizations of

this method. In particular, the use of software that can explicitly calculate the duration of the

checkpointing operation of an application could enable the more accurate definition of the grace-

time delay that has to be used on the resource manager. In addition extensions to include migration

of checkpoints to different clusters of the same architectures can be taken into account.

The prototype support of malleable jobs upon a resource and job management system will be

enhanced to enable the submission of multiple malleable jobs and share the available unutilized

resources amongst them based on fair policies like equipartition. Moreover, the evaluation of this

method needs enhancements by considering various applications and workload traces.

Finally the energy efficient resource management techniques, besides the optimization of en-

ergy economies they can be further enhanced to include prediction algorithms to better deal with

the unutilized periods and decrease the waiting times of jobs that need the resources These algo-

rithms will take into account information concerning the workloads like peak moments of utiliza-

tion but also thermodynamical information of the infrastructures like external and internal temper-

atures of particular areas of the room or hardware components.

Future research directions also include the extension of this methodology with simulation: to

abstract particular components of the system and virtualization procedures: to evaluate the system

under realistic conditions with smaller number of physical machines and less energy consumption.

The results of these initial procedures will be taken into account in the real-scale experimentation

phase for better configuration of the whole testbed. Furthermore more enhancements can be made

on the ESP benchmark to take into account data staging information during the submission of jobs

in order to measure the interfacing capabilities of the RJMS with the different shared file systems.

The multi-level methodology comparison (concepts, functionalities and performance) for Re-

source and Job Management Systems that we presented in this thesis will be used and updated in

order to answer to the RJMS adaptations to the evolving technological and application needs. It

185

can be extended to include more RJMS and larger scale clusters and number of submitted jobs in

order to test the limits of each system.

Finally our study upon the scalability and efficiency issues of particular components of the

RJMS like scheduling, topology aware placement, energy-efficiency and fault tolerance can be

adapted to fit the needs for the constant hardware and application level evolutions. The continuous

study and evolution of these RJMS components is indespensable, especially for the preparation of

the near-future passage of High Performance Computing platforms from the petaflop to exaflop

scale.

186

Chapter 8

Annexes

8.1 RJMS Functionalities Comparison

In this section we present a functionalities comparison among some of the most known Resource

and Job Management Systems.

General Characteristics / SLURM CONDOR TORQUE OAR SGE MAUI MOAB LSF PBSPro LoadLeveler

RJMS Software

Version 2.2.0-pre8 7.5.3 2.6.0 2.5.0 6.2u5 3.2.16 5.4 7u6 10.2 4.1

Total Number of Code lines 331,282 552,384 237,951 58,010 658,107 113,225 - - - -

Architectures support

Intel/Opteron x86/x86 64 YES YES YES YES YES YES YES YES YES YES

Sun SPARC NO YES NO NO YES NO YES YES YES YES

PowerPC NO YES NO YES YES NO YES YES YES YES

Itanium IA64 YES YES YES YES YES YES YES YES YES YES

BlueGene YES NO NO NO NO NO YES YES YES YES

AIX NO YES YES NO YES NO YES YES YES YES

Operating Systems support

Windows NO YES NO NO YES YES YES YES YES YES

Linux YES YES YES YES YES YES YES YES YES YES

MacOS YES YES YES YES YES YES YES YES YES YES

Programming Languages

C 83.86% 11.2% 86.2% 4% 66.56% 99.83% - - - -

C++ - 73.3% - 4% - - - - - -

Perl 0.87% 11.9% 0.72% 66% - - - - - -

Java - 1% - - 24.42% - - - - -

Python 0.11% 0.3% - - - - - - - -

Sh/Bash 3.28% - 4.2% 9% 5.79% - - - - -

ruby - - - 7% - - - - - -

caml - - - 10% - - - - - -

Table 8.1: General characteristics comparison among various RJMS

Table 8.1 provides a comparison of some general characteristics of RJMS. We can observe how

187

Way/Level of Support Representation Evaluation Points

Advanced Support (Optimized) YYY 3

Simple Support (Normal) YY 2

Limited Support (Prototype) Y 1

No Support NO 0

Table 8.2: Symbols used in the comparsion table

Resource Management / SLURM CONDOR TORQUE OAR SGE MAUI MOAB LSF PBSPro LoadLeveler

RJMS Software

Resources Treatment

Hierarchical YY YY YY YYY YY NO NO YY YY YY

Partitions/Classes/Queues YY YY YY YY YY YY YY YYY YY YY

Resources Configuration YY YY YY YY YY NO YY YYY YYY YY

Multi-Cluster Support YY YY NO YY YY NO YY YY YY YY

Job Launching, Propagation

Optimized scalable Techniques YYY Y YY YYY YY YY YY YY YY YY

Execution control

Simple/Parallel Jobs YYY YY YY YY YY YY YY YY YY YY

Resources Monitoring/Reporting YY YY YY YY YY YY YYY YYY YYY YYY

Task Placement

Resources affinities(CPU,RAM,GPU,..) YYY YY YY YYY YY NO YY YY YYY YYY

Network Topology Aware Placement YYY NO YY YY YY NO NO YY YY YY

Hardware internal node Topology YYY YY YY YY YY NO NO YY YY YY

Aware Placement

High Availability YY YYY YY YY YYY NO YY YY YY YY

Energy Consumption

Nodes Power ON/OFF YY YY YY YYY YY NO YY YY YY NO

DVFS Techniques Y NO NO Y NO NO NO NO NO NO

Thermal load balancing NO NO NO NO NO NO YYY YY NO NO

Overall Points (/42) 30 22 22 29 25 8 22 29 27 24

Table 8.3: Resource Management Subsystem features comparison among

various RJMS

voluminous in programming code are systems like Condor and SGE. In contrary OAR system is

implemented by few lines of scripting languages code which prooves its easy development cycle

and flexibility. The systems Moab, LSF, PBSPro and LoadLeveler are proprietary so no access

to their source code is possible. Then the various functionalities have been seperated into groups

depending the particular abstraction layer that they belong according to the conceptual analysis in

chapter 3. Hence, each table provides the functionalities of an abstraction layer for each RJMS.

Table 8.3 provides a comparison of Resource Management features, table 8.4 of Job Management

features and table 8.5 a comparison of Scheduling features. The methodology of comparison is

based upon a simple evaluation procedure which is defined by assigning points from 0 until 3, to

each functionality according to table 8.2. As we can see in this table, for the sake of finer readability

188

Job Management / SLURM CONDOR TORQUE OAR SGE MAUI MOAB LSF PBSPro LoadLeveler

RJMS Software

Job Declaration

Parallel Jobs YY YY YY YY YY YY YY YY YY YY

Batch Jobs YY YY YY YY YY YY YY YY YY YY

Interactive Jobs YY YY YY YY YY YY YY YY YY YY

Array Jobs YY YY YY YY YY YY YY YY YY YY

Deployment/VM Jobs NO YY YY YY YY YY YY YY YY YY

Cosystem Jobs YY YY YY YY YY YY YY YY YY YY

Besteffort Jobs NO YY NO YY NO NO NO NO NO NO

Moldable Jobs NO NO NO YY NO NO YY YY NO NO

Evolving Jobs YY NO NO NO NO NO NO YY NO NO

Malleable Jobs NO NO NO Y NO NO NO YY NO NO

Job Control

Reprioritization YY YY YY YY YY YY YY YY YY YY

Signaling YY YYY YY YY YY YY YY YY YYY YY

Prolog/Epilog scripts YY YY YY YY YY YY YY YY YY YY

Start Time estimation YY NO NO YY YY NO YY YY YY YY

Monitoring

Vizualization YY YY YY YYY YYY NO YYY YYY YYY YY

Authentication

Secure communication YY YYY YY YY YY YY YY YY YY YY

Kerberos support YY YY YY NO YY NO NO YY YY YY

Quality Of Services

Accounting/Reporting YY YY YY YY YYY YY YYY YYY YYY YY

Application Checkpoint/Restart YY YYY YY YY YY YY YY YY YY YY

System Checkpoint/Restart YY YYY YY Y YY NO YY YY YY YY

Suspend/Resume YY YY YY YY YY YY YY YY YY YY

Data Staging NO YY YY Y Y NO YY YY YY YY

Interfacing

MPI Libraries YYY YY YY YY YY NO YY YY YY YY

Graphical GUI YY YYY YY YY YYY NO YYY YYY YYY YY

DRMAA API NO YY YY Y YYY NO YY YY YY NO

Web Services API NO YY NO YY YY NO YYY YY YY NO

Grids/Clouds YY YYY YY YY YYY NO YYY YYY YY NO

Overall Points (/78) 41 52 42 47 50 26 51 56 50 40

Table 8.4: Job Management Subsystem features comparison among various

RJMS

we use a representation with letters where value NO reflects that the feature is not supported and

is assigned with 0 evaluation points. The level of support from Prototype to Normal and finally to

Optimized is represented, in the comparison tables, by Y, YY or YYY which represent the level of

support of the RJMS for the particular feature, reflecting evaluation points from 1 to 3.

Due to lack of space we cannot enter into detail upon each functionality and how the score

is attributed for each RJMS. Nevertheless some examples are provided in order to make clearer

the evaluation procedure. For example in the case of the support of Malleable Jobs functionality

of table 8.4, most of the systems do not support it, except LSF which provides a normal support

and OAR which proposes a prototype implementation for the support of this feature. In table 8.3,

the support of Nodes Power ON/OFF feature is basically supported by most of the RJMS except

189

Scheduling / SLURM CONDOR TORQUE OAR SGE MAUI MOAB LSF PBSPro LoadLeveler

RJMS Software

Scheduling Algorithms

FIFO YY YY YY YY YY YY YY YY YY YY

Backfill YY NO YY YY YY YY YY YY YY YYY

Fairshare YY YY NO YY YY YY YY YY YY YY

Preemption YY YY YY NO YYY YY YY YYY YY YY

Multi-Priority YYY YY YY YY YYY YY YYY YYY YYY YY

Gang-Scheduling YY NO NO NO NO NO NO NO NO NO

TimeSharing NO NO NO YY NO NO NO NO NO NO

Queues Management

External Scheduler support YYY YY YY YYY Y NO NO NO YY YY

Scheduler per queue NO YY NO YY YY YY YY YY NO YY

Advanced Reservations YY YY NO YY YY YY YY YY YY YY

Application Licenses YY YY NO YY YY YY YY YYY YY YY

Overall Points (/33) 20 16 10 19 19 16 18 19 17 19

Table 8.5: Scheduling Subsystem features comparison among various RJMS

Overall Evaluation / SLURM CONDOR TORQUE OAR SGE MAUI MOAB LSF PBSPro LoadLeveler

RJMS Software

Overall Resource Management (/10) 7.1 5.2 5.2 6.9 5.9 1.9 5.2 6.9 6.4 5.7

Overall Job Management (/10) 5.1 6.5 5.1 5.5 6 3.1 6.1 6.8 6 4.9

Scheduling (/10) 6 5.3 3 5.7 5.7 5.5 5.7 5.7 5.1 5.7

Overall Evaluation Points (/10) 6.2 5.7 5.1 6 5.9 3.4 5.5 6.4 5.8 5.4

Table 8.6: Overall Evaluation comparison results among various RJMS

MAUI and Loadleveler which do not have publically available descriptions concerning this feature.

However OAR provide an advanced support for this feature. While it powers OFF nodes like the

other systems under specific conditions, when they are not utilized, it can dynamically keep some

nodes always ON in order to keep the waiting times for small interactive jobs as low as possible.

Another example, in table 8.5, the support of Preemption Scheduling Policy is implemented upon

all systems except OAR while SGE and LSF provide an optimized version of this support. SGE

proposes a slotwise preemption which improves the simple preemption with bestfit algorithms.

LSF provide methods for avoiding the over-preemption of parallel jobs by reducing the number of

jobs that are preempted in order to execute one larger higher priority job.

Our comparison method may provide an important failure rate because of various reasons. First

of all, systems may not provide analytical open documentations (commercial RJMS case) and even

if those exist they may not describe the internals of the system making the analysis difficult and the

evaluation uncertain. The systems evolve rapidly so even if we provide results about a particular

version new versions of the software may come out once a month which make the results easily

190

changeable. Finally, the choice of the particular features for comparison is made according to our

point of views and tries to reflect the general current needs for Resource and Job Management

Systems for High Performance Computing.

8.2 Dynamic MPI Malleability experiments

The graphs represent our measurements concerning Dynamic MPI Malleability technique of chap-

ter 5. The gain of malleable jobs versus moldable-besteffort jobs is obvious. The white vertical

lines of figures represent time between the finalization of a job and the starting of the another.

After 5500 sec. the execution of malleable jobs start to be influenced by jobs from the normal

workload (rigid jobs). Thus, the white lines (empty spaces) also mean that the OAR does not

assign processors that will be soon required by normal jobs.

191

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m

b
e
r

o
f
c
o
re

s
 u

s
e
d

Time of Cluster Execution (5 hours)

Moldable−Best Effort
Normal Workload (from DAS2)

Figure 8.1: Moldable-BestEffort jobs executing upon free cluster resources:

40/% of normal workload utilization and 32/% of

Moldable-BestEffort jobs system exploitation of the 60/% that

remains free.

192

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m

b
e
r

o
f
c
o
re

s
 u

s
e
d

Time of Cluster Execution (5 hours)

Malleable
Normal Workload (from DAS2)

Figure 8.2: Malleable jobs executing upon free cluster resources: 40/% of

normal workload utilization and 58/% of Malleable jobs system

exploitation of the 60/% that remains free.

193

Bibliography

[1] Jens Gustedt, Emmanuel Jeannot, and Martin Quinson, “Experimental Validation in Large-

Scale Systems: a Survey of Methodologies,” 2009.

[2] William TC Kramer, PERCU: A Holistic Method for Evaluating High Performance Com-

puting Systems, Ph.D. thesis, EECS Department, University of California, Berkeley, Nov

2008.

[3] “TOP500 Supercomputer Sites,” http://www.top500.org/.

[4] “http://www.cs.huji.ac.il/labs/parallel/workload/logs.html,” .

[5] Hui Li, David L. Groep, and Lex Wolters, “Workload Characteristics of a Multi-cluster

Supercomputer,” in JSSPP, Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn,

Eds. 2004, vol. 3277 of Lecture Notes in Computer Science, pp. 176–193, Springer.

[6] “http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Overview,” .

[7] “Green500 Energy Efficient Supercomputers,” http://www.green500.org/.

[8] Cosimo Anglano and Massimo Canonico, “Scheduling algorithms for multiple Bag-of-

Task applications on Desktop Grids: A knowledge-free approach,” in IPDPS. 2008, pp.

1–8, IEEE.

[9] David P. Anderson, “BOINC: A System for Public-Resource Computing and Storage,” in

GRID, Rajkumar Buyya, Ed. 2004, pp. 4–10, IEEE Computer Society.

[10] Franck Cappello, Samir Djilali, Gilles Fedak, Thomas Hérault, Frédéric Magniette, Vincent

Néri, and Oleg Lodygensky, “Computing on large-scale distributed systems: XtremWeb

architecture, programming models, security, tests and convergence with grid,” Future Gen-

eration Comp. Syst, vol. 21, no. 3, pp. 417–437, 2005.

194

[11] Walfredo Cirne, Francisco Vilar Brasileiro, Nazareno Andrade, Lauro Costa, Alisson An-

drade, Reynaldo Novaes, and Miranda Mowbray, “Labs of the World, Unite!!!,” J. Grid

Comput, vol. 4, no. 3, pp. 225–246, 2006.

[12] Ali Raza Butt, Rongmei Zhang, and Y. Charlie Hu, “A Self-Organizing Flock of Condors,”

in SuperComputing. 2003, p. 42, ACM.

[13] Dror G. Feitelson and Larry Rudolph, “Toward Convergence in Job Schedulers for Parallel

Supercomputers,” in Job Scheduling Strategies for Parallel Processing, pp. 1–26. Springer-

Verlag, 1996.

[14] Renaud Lepère, Denis Trystram, and Gerhard J. Woeginger, “Approximation Algorithms

for Scheduling Malleable Tasks Under Precedence Constraints.,” Int. J. Found. Comput.

Sci., vol. 13, no. 4, pp. 613–627, 2002.

[15] Sheikh K. Ghafoor, Modeling of an adaptive parallel system with malleable applications in

a distibuted computing environment, Ph.D. thesis, 2007, Supervisor-Banicescu, Ioana.

[16] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso, “Power provisioning for a

warehouse-sized computer,” in ISCA ’07: Proceedings of the 34th annual international

symposium on Computer architecture, New York, NY, USA, 2007, pp. 13–23, ACM.

[17] Jo Ebergen, Jonathan Gainsley, and Paul Cunningham, “Transistor Sizing: How to Control

the Speed and Energy Consumption of a Circuit,” Asynchronous Circuits and Systems,

International Symposium on, vol. 0, pp. 51–61, 2004.

[18] W. Feng and T. Scogland, “The Green500 List: Year one,” in IPDPS ’09: Proceedings of

the 2009 IEEE International Symposium on Parallel&Distributed Processing, Washington,

DC, USA, 2009, pp. 1–7, IEEE Computer Society.

[19] Anne-Cécile Orgerie, Laurent Lefèvre, and Jean-Patrick Gelas, “Save Watts in your Grid:

Green Strategies for Energy-Aware Framework in Large Scale Distributed Systems,” in 14th

IEEE International Conference on Parallel and Distributed Systems (ICPADS), Melbourne,

Australia, Dec. 2008.

[20] Anne-Cécile Orgerie, Laurent Lefèvre, and Jean-Patrick Gelas, “Chasing Gaps between

Bursts : Towards Energy Efficient Large Scale Experimental Grids,” in PDCAT 2008 : The

195

Ninth International Conference on Parallel and Distributed Computing, Applications and

Technologies, Dunedin, New Zealand, Dec. 2008.

[21] Vincent W. Freeh, David K. Lowenthal, Feng Pan, Nandini Kappiah, Rob Springer, Barry L.

Rountree, and Mark E. Femal, “Analyzing the Energy-Time Trade-Off in High-Performance

Computing Applications,” IEEE Transactions on Parallel and Distributed Systems, vol. 18,

no. 6, pp. 835–848, 2007.

[22] Barry Rountree, David K. Lownenthal, Bronis R. de Supinski, Martin Schulz, Vincent W.

Freeh, and Tyler Bletsch, “Adagio: making DVS practical for complex HPC applications,”

in ICS ’09: Proceedings of the 23rd international conference on Supercomputing, New

York, NY, USA, 2009, pp. 460–469, ACM.

[23] Eitan Frachtenberg and Uwe Schwiegelshohn, “New Challenges of Parallel Job Schedul-

ing,” in Job Scheduling Strategies for Parallel Processing, Eitan Frachtenberg and Uwe

Schwiegelshohn, Eds., pp. 1–23. Springer Verlag, 2007, Lect. Notes Comput. Sci. vol. 4942.

[24] Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, James Patton Jones, Scott T. Leuteneg-

ger, Uwe Schwiegelshohn, Warren Smith, and David Talby, “Benchmarks and Standards for

the Evaluation of Parallel Job Schedulers,” in Job Scheduling Strategies for Parallel Pro-

cessing, 13th IPPS/10th SPDP’99 Workshop (5th JSSPP’99), Dror G. Feitelson and Larry

Rudolph, Eds., San Juan, Puerto Rico, USA, Apr. 1999, vol. 1659 of Lecture Notes in Com-

puter Science (LNCS), pp. 67–90, Springer-Verlag (Berlin).

[25] Yiannis Georgiou, Olivier Richard, and Nicolas Capit, “Evaluations of the Lightweight Grid

CIGRI upon the Grid5000 Platform,” in E-SCIENCE ’07: Proceedings of the Third IEEE

International Conference on e-Science and Grid Computing, Washington, DC, USA, 2007,

pp. 279–286, IEEE Computer Society.

[26] Yiannis Georgiou, Nicolas Capit, Bruno Bzeznik, and Olivier Richard, “Simple, fault toler-

ant, lightweight grid computing approach for bag-of-tasks applications.,” 2008, Short paper

and Presentation in 3rd EGEE User Forum, Clermont Ferrand,France.

[27] Marcia C. Cera, Yiannis Georgiou, Olivier Richard, Nicolas Maillard, and Philippe O. A.

Navaux, “Supporting MPI Malleable Applications upon the OAR Resource Manager,”

2009, Short paper and poster in COLIBRI Informatics Conference, Brazil.

196

[28] Márcia C. Cera, Yiannis Georgiou, Olivier Richard, Nicolas Maillard, and Philippe

Olivier Alexandre Navaux, “Supporting Malleability in Parallel Architectures with Dy-

namic CPUSETsMapping and Dynamic MPI,” in ICDCN, 2010, pp. 242–257.

[29] Georges Da Costa, Marcos Dias de Assunção, Jean-Patrick Gelas, Yiannis Georgiou, Lau-

rent Lefèvre, Anne-Cécile Orgerie, Jean-Marc Pierson, Olivier Richard, and Amal Sayah,

“Multi-facet approach to reduce energy consumption in clouds and grids: the GREEN-NET

framework,” in e-Energy, 2010, pp. 95–104.

[30] Georges Da Costa, Jean-Patrick Gelas, Yiannis Georgiou, Laurent Lefèvre, Anne-Cécile

Orgerie, Jean-Marc Pierson, Olivier Richard, and K. Sharma, “The GREEN-NET frame-

work: Energy efficiency in large scale distributed systems,” in IPDPS, 2009, pp. 1–8.

[31] Georges Da-Costa, Jean-Patrick Gelas, Yiannis Georgiou, Laurent Lefèvre, Anne-Cécile

Orgerie, Jean-Marc Pierson, and Olivier Richard, “The GREEN-NET approach for support-

ing energy efficient solutions in Grids,” Short paper and Poster in Renpar 2009 : French

Meeting in Parallelism, Sept. 2009.

[32] Anthony Sulistio, Chee Shin Yeo, and Rajkumar Buyya, “A taxonomy of computer-based

simulations and its mapping to parallel and distributed systems simulation tools,” Softw,

Pract. Exper, vol. 34, no. 7, pp. 653–673, 2004.

[33] NS2, “The Network Simulator,” http://nsnam.isi.edu/nsnam.

[34] Jordi Pujol Ahulló and Pedro Garcı́a López, “PlanetSim: An Extensible Simulation Tool

for Peer-to-Peer Networks and Services,” in Peer-to-Peer Computing, Henning Schulzrinne,

Karl Aberer, and Anwitaman Datta, Eds. 2009, pp. 85–86, IEEE.

[35] Alberto Montresor and Márk Jelasity, “PeerSim: A Scalable P2P Simulator,” in Peer-to-

Peer Computing, Henning Schulzrinne, Karl Aberer, and Anwitaman Datta, Eds. 2009, pp.

99–100, IEEE.

[36] Rajkumar Buyya and M. Manzur Murshed, “GridSim: a toolkit for the modeling and sim-

ulation of distributed resource management and scheduling for Grid computing,” Concur-

rency and Computation: Practice and Experience, vol. 14, no. 13-15, pp. 1175–1220, 2002.

[37] Henri Casanova, Arnaud Legrand, and Martin Quinson, “SimGrid: a Generic Framework

for Large-Scale Distributed Experiments,” in 10th IEEE International Conference on Com-

puter Modeling and Simulation, Mar. 2008.

197

[38] Kashi Venkatesh Vishwanath, Amin Vahdat, Ken Yocum, and Diwaker Gupta, “Model-

Net: Towards a DataCenter Emulation Environment,” in Peer-to-Peer Computing, Henning

Schulzrinne, Karl Aberer, and Anwitaman Datta, Eds. 2009, pp. 81–82, IEEE.

[39] emulab, “http://www.emulab.net/,” .

[40] Huaxia Xia, Holly Dail, Henri Casanova, and Andrew A. Chien, “The MicroGrid: Using

Online Simulation to Predict Application Performance in Diverse Grid Network Environ-

ments,” in CLADE. 2004, p. 52, IEEE Computer Society.

[41] Louis-Claude Canon and Emmanuel Jeannot, “Wrekavoc: a tool for emulating heterogene-

ity,” in IPDPS. 2006, IEEE.

[42] PlanetLAB, “http://www.planet-lab.org/,” .

[43] GENI, “Global Environment for network innovations,” http://www.geni.net/.

[44] DAS3, “http://www.cs.vu.nl/das3/,” .

[45] Franck Cappello and Henri Bal, “Toward an International ”Computer Science Grid”,” Clus-

ter Computing and the Grid, IEEE International Symposium on, vol. 0, pp. 3–12, 2007.

[46] Brice Videau, Corinne Touati, and Olivier Richard, “Toward an Experiment Engine for

Lightweight Grids,” Apr. 02 2008.

[47] Walfredo Cirne and Francine Berman, “A Comprehensive Model of the Supercomputer

Workload,” in 4th Workshop on Workload Characterization, Dec. 2001, pp. 140–148.

[48] Walfredo Cirne and Francine Berman, “A Model for Moldable Supercomputer Jobs,” in Pro-

ceedings of the 15th International Parallel and Distributed Processing Symposium (IPDPS-

01), Los Alamitos, CA, 2001, pp. 59–59, IEEE Computer Society.

[49] Eitan Frachtenberg and Dror G. Feitelson, “Pitfalls in Parallel Job Scheduling Evaluation,”

in JSSPP, Dror G. Feitelson, Eitan Frachtenberg, Larry Rudolph, and Uwe Schwiegelshohn,

Eds. 2005, vol. 3834 of Lecture Notes in Computer Science, pp. 257–282, Springer.

[50] “http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Home.GWA,” .

[51] Allen B. Downey and Dror G. Feitelson, “The Elusive Goal of Workload Characterization,”

Performance Evaluation Rev., vol. 26, no. 4, pp. 14–29, Mar. 1999.

198

[52] Adrian T. Wong, Leonid Oliker, William T. C. Kramer, Teresa L. Kaltz, and David H. Bailey,

“ESP: A System Utilization Benchmark,” in SC2000: High Performance Networking and

Computing. Dallas Convention Center, Dallas, TX, USA, November 4–10, 2000, ACM, Ed.,

pub-ACM:adr and pub-IEEE:adr, 2000, pp. 52–52, ACM Press and IEEE Computer Society

Press.

[53] Adrian T. Wong, Leonid Oliker, William T. C. Kramer, Teresa L. Kaltz, and David H. Bailey,

“System Utilization Benchmark on the Cray T3E and IBM SP,” in Job Scheduling Strategies

for Parallel Processing, IPDPS 2000 Workshop, (6th JSSPP 2000), Dror G. Feitelson and

Larry Rudolph, Eds., Cancun, Mexico, May 2000, vol. 1911 of Lecture Notes in Computer

Science (LNCS), pp. 56–67, Springer-Verlag (New York).

[54] Dror G. Feitelson, “A Critique of ESP,” in JSSPP, Dror G. Feitelson and Larry Rudolph,

Eds. 2000, vol. 1911 of Lecture Notes in Computer Science, pp. 68–73, Springer.

[55] Sheeba Prakas and Barry Spielberg, “Effective System Performance Suite on IBM e-server

pSeries,” Tech. Rep.

[56] NERSC, “Effective System Performance (ESP) Benchmark,”

http://www.nersc.gov/projects/esp.php.

[57] Dror G. Feitelson, “Metric and Workload Effects on Computer Systems Evaluation,” IEEE

Computer, vol. 36, no. 9, pp. 18–25, 2003.

[58] Dror G. Feitelson, “Experimental Computer Science: The Need for a Cultural Change,” .

[59] Nicolas Capit, Georges Da Costa, Yiannis Georgiou, Guillaume Huard, Cyrille Martin,

Grégory Mounié, Pierre Neyron, and Olivier Richard, “A batch scheduler with high level

components,” in 5th Int. Symposium on Cluster Computing and the Grid, Cardiff, UK, 2005,

pp. 776–783, IEEE.

[60] OAR, “Resource and Job Management System,” http://oar.imag.fr/.

[61] OARGRID, “OAR Wrapper for Grid level allocation,”

http://gforge.inria.fr/projects/oargrid/.

[62] Yiannis Georgiou, Julien Leduc, Brice Videau, Johann Peyrard, and Olivier Richard, “A

Tool for Environment Deployment in Clusters and light Grids,” in Second Workshop on

199

System Management Tools for Large-Scale Parallel Systems (SMTPS’06), Rhodes Island,

Greece, April 2006.

[63] kadeploy, “Environment Deployment tool,” http://gforge.inria.fr/projects/kadeploy.

[64] Dror G. Feitelson, “Experimental Computer Science: The Need for a Cultural Change,” .

[65] “http://www.cs.huji.ac.il/labs/parallel/workload/index.html,” .

[66] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice

Yarrow, “The NAS Parallel Benchmarks 2.0,” Report NAS-95-020, Numerical Aerody-

namic Simulation Facility, NASA Ames Research Center, Mail Stop T 27 A-1, Moffett

Field, CA 94035-1000, USA, Dec. 1995.

[67] Jaspal Subhlok, Shreenivasa Venkataramaiah, and Amitoj Singh, “Characterizing NAS

Benchmark Performance on Shared Heterogeneous Networks,” in IPDPS ’02: Proceed-

ings of the 16th International Parallel and Distributed Processing Symposium, Washington,

DC, USA, 2002, p. 91, IEEE Computer Society.

[68] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart, LINPACK User’s Guide, SIAM,

Philadelphia, PA, 1979.

[69] R. F. Barrett, T. H. F. Chan, Eduardo F. D’Azevedo, E. F. Jaeger, K. Wong, and R. Y.

Wong, “Complex version of high performance computing LINPACK benchmark (HPL),”

Concurrency and Computation: Practice and Experience, vol. 22, no. 5, pp. 573–587, 2010.

[70] Christophe Pinte, Francois Menard, Gaspard Duchene, and Pierre Bastien, “Monte Carlo

radiative transfer in protoplanetary disks,” 2006.

[71] xionee, “Xionee Workload Trace Analysis, Visualization and Replay Toolkit,”

https://gforge.inria.fr/projects/xionee/.

[72] Niels Fallenbeck, Hans joachim Picht, Matthew Smith, and Bernd Freisleben, “Xen and

the art of cluster scheduling,” in Super Computing 06, Virtualization Workshop. 2006, pp.

237–244, IEEE Press.

[73] Joseph A. Kaplan and Michael L. Nelson, “A Comparison of Queueing, Cluster and Dis-

tributed Computing Systems,” NASA TM-109025 (Revision 1), NASA Langley Research

Center, Hampton, VA 23681-0001, june 1994.

200

[74] Mark A. Baker, Geoffrey C. Fox, and Hon W. Yau, “Cluster Computing Review,” 1995.

[75] James Patton Jones and Cristy Brickell, “Second Evaluation of Job Queuing/Scheduling

Software: Phase 1 Report,” Tech. Rep., NASA Ames Research Center, june 1997.

[76] Yonghong Yan and Barbara Chapman, “Comparative Study of Distributed Resource Man-

agement Systems SGE, LSF, PBS Pro, and LoadLeveler,” 2004.

[77] Tarek A. El-Ghazawi, Kris Gaj, Nikitas A. Alexandridis, Frederic Vroman, Nguyen

Nguyen, Jacek R. Radzikowski, Preeyapong Samipagdi, and Suboh A. Suboh, “CONCEP-

TUAL COMPARATIVE STUDY OF JOB MANAGEMENT SYSTEMS,” Nsa lucite, 2001.

[78] Tarek A. El-Ghazawi, Kris Gaj, Nikitas A. Alexandridis, Frederic Vroman, Nguyen

Nguyen, Jacek R. Radzikowski, Preeyapong Samipagdi, and Suboh A. Suboh, “A per-

formance study of job management systems,” Concurrency - Practice and Experience, vol.

16, no. 13, pp. 1229–1246, 2004.

[79] Nicolas Capit, Georges Da Costa, Yiannis Georgiou, Guillaume Huard, Cyrille Martin,

Grégory Mounié, Pierre Neyron, and Olivier Richard, “A batch scheduler with high level

components,” in 5th Int. Symposium on Cluster Computing and the Grid, Cardiff, UK, 2005,

pp. 776–783, IEEE.

[80] Susanne M. Balle and Daniel J. Palermo, “Enhancing an open source resource manager with

multi-core/multi-threaded support,” in JSSPP’07: Proceedings of the 13th international

conference on Job scheduling strategies for parallel processing, Berlin, Heidelberg, 2008,

pp. 37–50, Springer-Verlag.

[81] sched setaffinity manpages, “http://linuxmanpages.com/man2/schedgetaffinity.2.php,”

2006.

[82] CPUSET-BULL, “http://www.bullopensource.org/cpuset/,” 2007.

[83] Cgroups, “http://www.mjmwired.net/kernel/Documentation/cgroups.txt,” 2008.

[84] François Broquedis, Jérôme Clet-Ortega, Stephanie Moreaud, Nathalie Furmento, Brice

Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst, “hwloc: A Generic

Framework for Managing Hardware Affinities in HPC Applications,” in PDP, Marco Dane-

lutto, Julien Bourgeois, and Tom Gross, Eds. 2010, pp. 180–186, IEEE Computer Society.

201

[85] libtopology INRIA, “http://libtopology.ozlabs.org/,” 2008.

[86] PLPA-OpenMPI, “http://www.open-mpi.org/projects/plpa/,” 2008.

[87] Abhinav Bhatele and Laxmikant V. Kalé, “An evaluative study on the effect of contention

on message latencies in large supercomputers,” in IPDPS, 2009, pp. 1–8.

[88] Abhinav Bhatele, Eric J. Bohm, and Laxmikant V. Kalé, “Topology aware task mapping

techniques: an api and case study,” in PPOPP, 2009, pp. 301–302.

[89] C. E. Leiserson, “Fat-Trees: Universl Networks for Hardware-Efficient Supercomputing,”

IEEE Transactions on Computers, vol. c-34, no. 10, Oct. 1985.

[90] Javier Navaridas, Jose Antonio Pascual, and José Miguel-Alonso, “Effects of Job and

Task Placement on Parallel Scientific Applications Performance,” in PDP, Didier El Baz,

François Spies, and Tom Gross, Eds. 2009, pp. 55–61, IEEE Computer Society.

[91] Abhinav Bhatele and Laxmikant V. Kalé, “Application-specific topology-aware mapping

for three dimensional topologies,” in IPDPS. 2008, pp. 1–8, IEEE.

[92] Javier Navaridas, José Miguel-Alonso, Francisco Javier Ridruejo, and Wolfgang Denzel,

“Reducing complexity in tree-like computer interconnection networks,” Parallel Comput-

ing, vol. 36, no. 2-3, pp. 71–85, 2010.

[93] Bilardi and Bay, “An Area Lower Bound for a Class of Fat-Trees,” in ESA: Annual European

Symposium on Algorithms, 1994.

[94] Bay and Bilardi, “Deterministic On-Line Routing on Area-Universal Networks,” JACM:

Journal of the ACM, vol. 42, 1995.

[95] Vijay Subramani, Rajkumar Kettimuthu, Srividya Srinivasan, Jeanette Johnston, and P. Sa-

dayappan, “Selective Buddy Allocation for Scheduling Parallel Jobs on Clusters,” in Proc.

2002 IEEE International Conference on Cluster Computing (4th CLUSTER’02), Chicago,

IL, USA, Sept. 2002, pp. 107–, IEEE Computer Society.

[96] Yariv Aridor, Tamar Domany, Oleg Goldshmidt, Edi Shmueli, José E. Moreira, and Larry

Stockmeier, “Multi-toroidal Interconnects: Using Additional Communication Links to Im-

prove Utilization of Parallel Computers,” in JSSPP, Dror G. Feitelson, Larry Rudolph,

and Uwe Schwiegelshohn, Eds. 2004, vol. 3277 of Lecture Notes in Computer Science, pp.

144–159, Springer.

202

[97] CiteSeerX, “On Enhancing the Reliability of Job Schedulers,” 2008.

[98] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He, “Sym-

metric Active/Active High Availability for High-Performance Computing System Services:

Accomplishments and Limitations,” in CCGRID, 2008, pp. 813–818.

[99] Christian Engelmann, Stephen L. Scott, Chokchai Leangsuksun, and Xubin He, “Transpar-

ent Symmetric Active/Active Replication for Service-Level High Availability,” in CCGRID,

2007, pp. 755–760.

[100] Kai Uhlemann, Christian Engelmann, and Stephen L. Scott, “JOSHUA: Symmetric Ac-

tive/Active Replication for Highly Available HPC Job and Resource Management,” in

CLUSTER, 2006.

[101] Weikuan Yu, Jiesheng Wu, and Dhabaleswar K. Panda, “Fast and Scalable Startup of MPI

Programs in InfiniBand Clusters,” in HiPC, 2004, pp. 440–449.

[102] Andy B. Yoo, Morris A. Jette, and Mark Grondona, “SLURM: Simple Linux Utility for

Resource Management,” in Job Scheduling Strategies for Parallel Processing, Dror G. Fei-

telson, Larry Rudolph, and Uwe Schwiegelshohn, Eds., pp. 44–60. Springer Verlag, 2003,

Lect. Notes Comput. Sci. vol. 2862.

[103] gexec remote execution, “http://www.theether.org/gexec/,” 2010.

[104] pdsh remote shell, “https://computing.llnl.gov/linux/pdsh.html,” 2010.

[105] Cyrille Martin, Olivier Richard, and Guillaume Huard, “Déploiement adap-

tatif d’applications parallèles. Algorithme de vol de travail appliqué au déploiement

d’applications parallèles sur des grappes de grande taille,” Technique et Science Informa-

tiques, vol. 24, no. 5, pp. 547–565, 2005.

[106] Taktuk, “Adaptive Execution Deployment,” http://taktuk.gforge.inria.fr/.

[107] Benoit Claudel, Guillaume Huard, and Olivier Richard, “TakTuk, adaptive deployment of

remote executions,” in HPDC ’09: Proceedings of the 18th ACM international symposium

on High performance distributed computing, New York, NY, USA, 2009, pp. 91–100, ACM.

[108] Eitan Frachtenberg, Fabrizio Petrini, Juan Fernández, Scott Pakin, and Salvador Coll,

“STORM: lightning-fast resource management,” in SC, 2002, pp. 1–26.

203

[109] Eitan Frachtenberg, Fabrizio Petrini, Juan Fernández, and Scott Pakin, “STORM: Scalable

Resource Management for Large-Scale Parallel Computers,” IEEE Trans. Computers, vol.

55, no. 12, pp. 1572–1587, 2006.

[110] Dror G. Feitelson and Larry Rudolph, “Parallel Job Scheduling: Issues and Approaches,”

in JSSPP, Dror G. Feitelson and Larry Rudolph, Eds. 1995, vol. 949 of Lecture Notes in

Computer Science, pp. 1–18, Springer.

[111] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik, and Parkson

Wong, “Theory and Practice in Parallel Job Scheduling,” in Job Scheduling Strategies

for Parallel Processing, (3rd JSSPP’97), IPPS’97 Workshop, Dror G. Feitelson and Larry

Rudolph, Eds., Geneva, Switzerland, Apr. 1997, vol. 1291 of Lecture Notes in Computer

Science (LNCS), pp. 1–34, Springer-Verlag (New York).

[112] Eitan Frachtenberg and Uwe Schwiegelshohn, “New Challenges of Parallel Job Schedul-

ing,” in JSSPP, 2007, pp. 1–23.

[113] Martin W. Margo, Kenneth Yoshimoto, Patricia Kovatch, and Phil Andrews, “Impact of

reservations on production job scheduling,” in JSSPP’07: Proceedings of the 13th interna-

tional conference on Job scheduling strategies for parallel processing, Berlin, Heidelberg,

2008, pp. 116–131, Springer-Verlag.

[114] Joseph Skovira, Waiman Chan, Honbo Zhou, and David A. Lifka, “The EASY -

LoadLeveler API Project,” in IPPS ’96: Proceedings of the Workshop on Job Scheduling

Strategies for Parallel Processing, London, UK, 1996, pp. 41–47, Springer-Verlag.

[115] David Talby and Dror G. Feitelson, “Supporting Priorities and Improving Utilization of the

IBM SP Scheduler Using Slack-Based Backfilling,” in IPPS/SPDP. 1999, p. 513, IEEE

Computer Society.

[116] Ahuva Mu’alem Weil and Dror G. Feitelson, “Utilization, Predictability, Workloads, and

User Runtime Estimates in Scheduling the IBM SP2 with Backfilling,” IEEE Trans. Parallel

Distrib. Syst, vol. 12, no. 6, pp. 529–543, 2001.

[117] Avi Nissimov and Dror G. Feitelson, “Probabilistic Backfilling,” in JSSPP, Eitan Frachten-

berg and Uwe Schwiegelshohn, Eds. 2007, vol. 4942 of Lecture Notes in Computer Science,

pp. 102–115, Springer.

204

[118] J. K. Ousterhout, “Scheduling Techniques for concurrent systems,” in 3rd International

Conference on Distributed Computing Systems, Miami, FL, Oct. 1982, pp. 22–30, IEEE.

[119] Dror G. Feitelson and Morris A. Jette, “Improved Utilization and Responsiveness with

Gang Scheduling,” in JSSPP, Dror G. Feitelson and Larry Rudolph, Eds. 1997, vol. 1291

of Lecture Notes in Computer Science, pp. 238–261, Springer.

[120] Aurelien Bouteiller, Hinde-Lilia Bouziane, Thomas Hérault, Pierre Lemarinier, and Franck

Cappello, “Hybrid Preemptive Scheduling of Message Passing Interface Applications on

Grids,” IJHPCA, vol. 20, no. 1, pp. 77–90, 2006.

[121] G. Berry, “Preemption in Concurrent Systems,” in Proceedings of Foundations of Software

Technology and Theoretical Computer Science, Rudrapatna K. Shyamasundar, Ed., Berlin,

Germany, Dec. 1993, vol. 761 of LNCS, pp. 72–93, Springer.

[122] Quinn Snell, Mark J. Clement, and David B. Jackson, “Preemption Based Backfill,” in Job

Scheduling Strategies for Parallel Processing, 8th International Workshop, (8th JSSPP’02),

Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, Eds., Edinburgh, Scotland,

UK, July 2002, Revised Papers 2003, vol. 2537 of Lecture Notes in Computer Science

(LNCS), pp. 24–37, Springer-Verlag (New York).

[123] Edi Shmueli and Dror G. Feitelson, “Uncovering the Effect of System Performance on

User Behavior from Traces of Parallel Systems,” in MASCOTS. 2007, pp. 274–280, IEEE

Computer Society.

[124] Achim Streit, “A Self-Tuning Job Scheduler Family with Dynamic Policy Switching,” in

JSSPP, Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, Eds. 2002, vol. 2537

of Lecture Notes in Computer Science, pp. 1–23, Springer.

[125] Eitan Frachtenberg, Dror G. Feitelson, Fabrizio Petrini, and Juan Fernandez, “Adaptive

Parallel Job Scheduling with Flexible Coscheduling,” IEEE Transactions on Parallel and

Distributed Systems, vol. PDS-16, no. 11, pp. 1066–1077, Nov. 2005.

[126] IBM, “http://www-03.ibm.com/systems/software/adleveler/index.html,” .

[127] IBM, “http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.loadl41j.resmgr.doc/c2367040.pdf,

.

205

[128] IBM, “http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.loadl41j.admin.doc/c2366811.pdf,

.

[129] Fang Wang, Hubertus Franke, Marios C. Papaefthymiou, Pratap Pattnaik, Larry Rudolph,

and Mark S. Squillante, “A Gang Scheduling Design for Multiprogrammed Parallel Com-

puting Environments,” in IPPS ’96: Proceedings of the Workshop on Job Scheduling Strate-

gies for Parallel Processing, London, UK, 1996, pp. 111–125, Springer-Verlag.

[130] Songnian Zhou, Xiaohu Zheng, Jingwen Wang, and Pierre Delisle, “Utopia: A Load Sharing

Facility for Large, Heterogeneous Distributed Computer Systems,” Tech. Rep., 1993.

[131] Hewlett-Packard Development Company, “HP XC System Software,”

http://docs.hp.com/en/5991-7400/5991-7400.pdf.

[132] Don Mize1 Robert Stober2 Dave Field1, Deron Johnson1, “Scheduling to Overcome the

Multi-Core Memory Bandwidth Bottleneck,” .

[133] Don Mize1 Robert Stober2 Dave Field1, Deron Johnson1, “Green HPC Dynamic Power

Management in HPC,” .

[134] Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno, “NPACI Rocks: Tools and Tech-

niques for Easily Deploying Manageable Linux Clusters,” Cluster Computing, IEEE Inter-

national Conference on, vol. 0, pp. 258, 2001.

[135] Moab Scheduler-Cluster Resources, “http://www.clusterresources.com/products/mwm/docs/,”

.

[136] Maui Scheduler-Cluster Resources, “http://www.clusterresources.com/products/maui/docs/mauiadmin.shtml,

.

[137] David B. Jackson, Quinn Snell, and Mark J. Clement, “Core Algorithms of the Maui Sched-

uler,” in JSSPP ’01: Revised Papers from the 7th International Workshop on Job Scheduling

Strategies for Parallel Processing, London, UK, 2001, pp. 87–102, Springer-Verlag.

[138] David B. Jackson, “New Issues and New Capabilities in HPC Scheduling with the Maui

Scheduler,” .

[139] PBS Works, “http://www.pbsworks.com/,” .

206

[140] Robert L. Henderson, “Job Scheduling Under the Portable Batch System,” in IPPS ’95:

Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing, London,

UK, 1995, pp. 279–294, Springer-Verlag.

[141] Condor Project, “http://www.cs.wisc.edu/condor/,” .

[142] Douglas Thain, Todd Tannenbaum, and Miron Livny, “Distributed computing in practice:

the Condor experience,” Concurrency - Practice and Experience, vol. 17, no. 2-4, pp. 323–

356, 2005.

[143] X. Evers, R. Boontje, D. H. J. Epema, and R. Van Dantzig, “Condor Flocking: Load Sharing

Between Pools of Workstations,” Tech. Rep., Feb. 11 1993.

[144] Michael J. Litzkow, Miron Livny, and Matt W. Mutka, “Condor - A Hunter of Idle Workstat-

ions,” in Proceedings of the 8th International Conference on Distributed Computer Systems,

Washington, D.C., June 1988, pp. 104–111, IEEE Press.

[145] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny, “Condor: a distributed

job scheduler,” pp. 307–350, 2002.

[146] Oracle-Sun Sun Grid Engine Manual, “http://wikis.sun.com/display/gridengine62u6/Home,”

.

[147] Wolfgang Gentzsch, “Sun Grid Engine: Towards Creating a Compute Power Grid,” in Proc.

First IEEE International Symposium on Cluster Computing and the Grid (1st CCGRID’01),

Brisbane, Australia, May 2001, pp. 35–39, IEEE Computer Society (Los Alamitos, CA).

[148] Daniel Templeton, “Begginners guide to Sun Grid Engine 6.2 Installation and Configura-

tion,” .

[149] Torque Resource Manager-Cluster Resources, “http://www.clusterresources.com/products/torque/docs/,”

.

[150] Brett Bode, David M. Halstead, Ricky Kendall, Zhou Lei, and David Jackson, “The Portable

Batch Scheduler and the Maui Scheduler on Linux Clusters,” in Proceedings of the 4th

Annual Showcase and Conference (LINUX-00), Berkeley, CA, 2000, pp. 217–224, The

USENIX Association.

[151] SLURM, “Resource and Job Management System,” https://computing.llnl.gov/linux/slurm/.

207

[152] Grid5000, “Experimental grid platform,” http://grid5000.fr.

[153] Joris Bremond, “High Availability Documentation on OAR - Admin Guide,” Tech. Rep.,

2009.

[154] Jason Duell, “The design and implementation of Berkeley Lab’s linux checkpoint/restart,”

apr 2005.

[155] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, Eds., The Grid: Blueprint for a New

Computing Infrastructure, Morgan-Kaufmann, 1999.

[156] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” Interna-

tional Journal of Supercomputer Applications and High Performance Computing, vol. 11,

no. 2, pp. 115–128, 1997, ftp://ftp.globus.org/pub/globus/papers/globus.pdf.

[157] Raphaël et al. Bolze, “Grid’5000: a large scale and highly reconfigurable experimental Grid

testbed.,” International Journal of High Performance Computing Applications, vol. 20, no.

4, pp. 481–494, NOV 2006.

[158] James Frey, Todd Tannenbaum, Miron Livny, Ian T. Foster, and Steven Tuecke, “Condor-G:

A Computation Management Agent for Multi-Institutional Grids,” Cluster Computing, vol.

5, no. 3, pp. 237–246, 2002.

[159] Ian Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems,” 2006.

[160] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer, “SETI-

home: An Experiment in Public-Resource Computing,” Comm. ACM, vol. 45, no. 11, pp.

56–61, Nov. 2002.

[161] Dayi Zhou and Virginia Mary Lo, “WaveGrid: a scalable fast-turnaround heterogeneous

peer-based desktop grid system,” in IPDPS. 2006, IEEE.

[162] Marco Aurélio Stelmar Netto, Rodrigo N. Calheiros, Rafael K. S. Silva, César A. F. De

Rose, Caio Northfleet, and Walfredo Cirne, “Transparent Resource Allocation to Exploit

Idle Cluster Nodes in Computational Grids,” in eScience. 2005, pp. 238–245, IEEE Com-

puter Society.

[163] Raissa Medeiros, Walfredo Cirne, Francisco Vilar Brasileiro, and Jacques Philippe Sauvé,

“Faults in Grids: Why are they so bad and What can be done about it?,” in GRID, Heinz

Stockinger, Ed. 2003, pp. 18–24, IEEE Computer Society.

208

[164] George Kola, Tevfik Kosar, and Miron Livny, “Phoenix: Making Data-Intensive Grid Appli-

cations Fault-Tolerant,” in GRID, Rajkumar Buyya, Ed. 2004, pp. 251–258, IEEE Computer

Society.

[165] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Ramendra K. Sahoo, José E.

Moreira, and Manish Gupta, “Filtering Failure Logs for a BlueGene/L Prototype.,” in

DSN ’05: Proceedings of the 2005 International Conference on Dependable Systems and

Networks (DSN’05), Washington, DC, USA, 2005, pp. 476–485, IEEE Computer Society.

[166] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny, “Checkpoint and Mi-

gration of UNIX Processes in the Condor Distributed Processing System,” Technical Report

CS-TR-1997-1346, University of Wisconsin, Madison, Apr. 1997.

[167] Felix Heine, Matthias Hovestadt, Odej Kao, and Axel Keller, “Provision of Fault Tolerance

with Grid-enabled and SLA-aware Resource Management Systems,” in Parallel Computing:

Current & Future Issues of High-End Computing, vol. 33 of John von Neumann Institute

for Computing Series, pp. 113–120. sep 2005.

[168] Patricio Domingues, Artur Andrzejak, and Luis Moura Silva, “Using Checkpointing to En-

hance Turnaround Time on Institutional Desktop Grids,” in E-SCIENCE ’06: Proceedings

of the Second IEEE International Conference on e-Science and Grid Computing, Washing-

ton, DC, USA, 2006, p. 73, IEEE Computer Society.

[169] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski, “Fault-aware scheduling for

Bag-of-Tasks applications on Desktop Grids,” in Grid Computing, 7th IEEE/ACM Interna-

tional Conference on, Vol., Iss., 28-29 Sept. 2006 Pages:56-63.

[170] Derrick Kondo, Andrew A. Chien, and Henri Casanova, “Resource Management for Rapid

Application Turnaround on Enterprise Desktop Grids,” in SC. 2004, p. 17, IEEE Computer

Society.

[171] Chuliang Weng and Xinda Lu, “Heuristic scheduling for bag-of-tasks applications in com-

bination with QoS in the computational grid,” Future Generation Comp. Syst, vol. 21, no.

2, pp. 271–280, 2005.

[172] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine, “The

LAM/MPI checkpoint/restart framework: System-initiated checkpointing,” in in Proceed-

ings, LACSI Symposium, Sante Fe, 2003, pp. 479–493.

209

[173] Berkeley Lab Checkpoint/Restart BLCR, “https://ftg.lbl.gov/CheckpointRestart/CheckpointRestart.shtml,

.

[174] Nicolas Capit, Georges Da Costa, Yiannis Georgiou, Guillaume Huard, Cy rille Martin,

Grgory Mouni, Pierre Neyron, and Olivier Richard, “A batch scheduler with high level

components,” in Cluster computing and Grid 2005 (CCGrid05), 2005.

[175] Blaise Omer Yenke, Jean-François Méhaut, and Maurice Tchuente, “Scheduling Deadline-

Constrained Checkpointing on Virtual Clusters,” in APSCC, 2008, pp. 257–264.

[176] Christopher R. Anderson, “An Implementation of the Fast Multipole Method without Mul-

tipoles,” SIAM Journal on Scientific and Statistical Computing, vol. 13, no. 4, pp. 923–947,

July 1992.

[177] Kelvin K. Droegemeier, Keith Brewster, Ming Xue, Daniel Weber, Dennis Gannon, Beth

Plale, Daniel A. Reed, Lavanya Ramakrishnan, Jay Alameda, Robert Wilhelmson, Tom

Baltzer, Ben Domenico, Donald Murray, Mohan Ramamurthy, Anne Wilson, Richard D.

Clark, Sepideh Yalda, Sara J. Graves, Rahul Ramachandran, John A. Rushing, and Ev-

erette Joseph, “Service-Oriented Environments for Dynamically Interacting with Mesoscale

Weather,” Computing in Science and Engineering (CiSE), vol. 7, no. 6, pp. 12–29, Nov.

2005.

[178] Laxmikant V. Kal, Sameer Kumar, and Jayant DeSouza, “A Malleable-Job System for Time-

shared Parallel Machines,” Cluster Computing and the Grid, IEEE International Symposium

on, vol. 0, pp. 230, 2002.

[179] Jan Hungershöfer, “On the Combined Scheduling of Malleable and Rigid Jobs,” in SBAC-

PAD, 2004, pp. 206–213.

[180] Gladys Utrera, Julita Corbalán, and Jesús Labarta, “Implementing Malleability on MPI

Jobs,” in 13th Int. Conference on Parallel Architectures and Compilation Techniques. 2004,

pp. 215–224, IEEE.

[181] Jens-Michael Wierum Jan Hungershföer, Achim Streit, “Efficient Resource Management

for Malleable Applications,” Tech. Rep.

[182] Kaoutar El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski, and Carlos A. Varela,

“Malleable iterative MPI applications,” Concurrency and Computation: Practice and Ex-

perience, vol. 21, no. 3, pp. 393–413, 2009.

210

[183] Kaoutar El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski, and Carlos A. Varela,

“Dynamic Malleability in Iterative MPI Applications,” in 7th Int. Symposium on Cluster

Computing and the Grid. 2007, pp. 591–598, IEEE.

[184] Travis Desell, Kaoutar El Maghraoui, and Carlos A. Varela, “Malleable applications for

scalable high performance computing,” Cluster Computing, vol. 10, no. 3, pp. 323–337,

2007.

[185] J. Buisson, O.O. Sonmez, H.H. Mohamed, and D.H.J. Epema, “Scheduling Malleable Ap-

plications in Multicluster Systems,” in Int. Conference on Cluster Computing. 2007, pp.

372–381, IEEE.

[186] Laxmikant V. Kalé, Sameer Kumar, Jayant DeSouza, Mani Potnuru, and Sindhura Band-

hakavi, “Faucets: Efficient Resource Allocation on the Computational Grid,” in Proceed-

ings of the 2004 International Conference on Parallel Processing, August 2004.

[187] LSF, “Platform LSF: Features and Benefits,” http://www.platform.com/grids/platform-

lsf/features-benefits.

[188] Cluster Resources, “Dynamic and Malleable Jobs,”

http://www.clusterresources.com/products/mwm/docs/21.3dynamicjobs.shtml.

[189] David Goodell1 William Gropp2 Jayesh Krishna1 Ewing Lusk1 Pavan Balaji1, Dar-

ius Buntinas1 and Rajeev Thakur1, “PMI: A Scalable Parallel Process-Management In-

terface for Extreme-Scale Systems,” .

[190] PMI v2 API, “http://wiki.mcs.anl.gov/mpich2/index.php/PMI v2 API,” .

[191] R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres, B. Barrett, and G .E. Fagg, “The

Open Run-Time Environment (OpenRTE): A Transparent Multi-Cluster Environment for

High-Performance Computing,” in Proceedings, 12th European PVM/MPI Users’ Group

Meeting, Sorrento, Italy, September 2005.

[192] Richard L. Graham, Sung-Eun Choi, David J. Daniel, Nehal N. Desai, Ronald G. Min-

nich, Craig E. Rasmussen, L. Dean Risinger, and Mitchel W. Sukalski, “A network-failure-

tolerant message-passing system for terascale clusters,” Int. J. Parallel Program., vol. 31,

no. 4, pp. 285–303, 2003.

211

[193] Darius Buntinas, George Bosilca, Richard L. Graham, Geoffroy Vallée, and Gregory R.

Watson, “A Scalable Tools Communications Infrastructure,” in HPCS. 2008, pp. 33–39,

IEEE Computer Society.

[194] Jeffrey M. Squyres and Andrew Lumsdaine, “A Component Architecture for LAM/MPI,”

in Proceedings, 10th European PVM/MPI Users’ Group Meeting, Venice, Italy, September /

October 2003, number 2840 in Lecture Notes in Computer Science, pp. 379–387, Springer-

Verlag.

[195] William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI-2 Advanced Features of the

Message-Passing Interface, The MIT Press, Cambridge, Massachusetts, USA, 1999.

[196] Mrcia Cera, Guilherme Pezzi, Elton Mathias, Nicolas Maillard, and Philippe Navaux, “Im-

proving the Dynamic Creation of Processes in MPI-2,” in 13th European PVMMPI Users

Group Meeting, Bonn, Germany, 2006, vol. 4192/2006 of LNCS, pp. 247–255.

[197] Xizhou Feng, Rong Ge, and Kirk W. Cameron, “Power and Energy Profiling of Scientific

Applications on Distributed Systems,” in IPDPS ’05: Proceedings of the 19th IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS’05) - Papers, Washington,

DC, USA, 2005, p. 34, IEEE Computer Society.

[198] S. Huang and W. Feng, “Energy-Efficient Cluster Computing via Accurate Workload Char-

acterization,” in CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM International Sym-

posium on Cluster Computing and the Grid, Washington, DC, USA, 2009, pp. 68–75, IEEE

Computer Society.

[199] Jo Ebergen, Jonathan Gainsley, and Paul Cunningham, “Transistor Sizing: How to Control

the Speed and Energy Consumption of a Circuit,” Asynchronous Circuits and Systems,

International Symposium on, vol. 0, pp. 51–61, 2004.

[200] Jung Ho Ahn, Jacob Leverich, Robert Schreiber, and Norman P. Jouppi, “Multicore DIMM:

an Energy Efficient Memory Module with Independently Controlled DRAMs,” IEEE Com-

puter Architecture Letters, vol. 8, pp. 5–8, 2009.

[201] Taeho Kgil, Shaun D’Souza, Ali G. Saidi, Nathan L. Binkert, Ronald G. Dreslinski,

Trevor N. Mudge, Steven K. Reinhardt, and Krisztián Flautner, “PicoServer: using 3D

stacking technology to enable a compact energy efficient chip multiprocessor,” in ASPLOS,

2006, pp. 117–128.

212

[202] Reinaldo Bergamaschi, Guoling Han, Alper Buyuktosunoglu, Hiren Patel, Indira Nair, Gero

Dittmann, Geert Janssen, Nagu Dhanwada, Zhigang Hu, Pradip Bose, and John Darringer,

“Exploring power management in multi-core systems,” in ASP-DAC ’08: Proceedings of

the 2008 Asia and South Pacific Design Automation Conference, Los Alamitos, CA, USA,

2008, pp. 708–713, IEEE Computer Society Press.

[203] Rahul Nagpal, Rahul Nagpal, Y. N. Srikant, and Y. N. Srikant, “Exploring Energy-

Performance Trade-offs for Heterogeneous Interconnect Clustered VLIW Processors,”

Tech. Rep., In Proc. of Intl. Conf. on High Performance Computing, 2005.

[204] Michael S. Warren, Eric H. Weigle, and Wu-Chun Feng, “High-density computing: a 240-

processor Beowulf in one cubic meter,” in Supercomputing ’02: Proceedings of the 2002

ACM/IEEE conference on Supercomputing, Los Alamitos, CA, USA, 2002, pp. 1–11, IEEE

Computer Society Press.

[205] Min Yeol Lim, Vincent W. Freeh, and David K. Lowenthal, “Adaptive, transparent fre-

quency and voltage scaling of communication phases in MPI programs,” in SC ’06: Pro-

ceedings of the 2006 ACM/IEEE conference on Supercomputing, New York, NY, USA,

2006, p. 107, ACM.

[206] Yung-Hsiang Lu and Giovanni de Micheli, “Adaptive Hard Disk Power Management on

Personal Computers,” in GLS ’99: Proceedings of the Ninth Great Lakes Symposium on

VLSI, Washington, DC, USA, 1999, p. 50, IEEE Computer Society.

[207] Ratnesh K. Sharma, Cullen E. Bash, Chandrakant D. Patel, Richard J. Friedrich, and Jef-

frey S. Chase, “Balance of Power: Dynamic Thermal Management for Internet Data Cen-

ters,” IEEE Internet Computing, vol. 9, no. 1, pp. 42–49, 2005.

[208] Justin D. Moore, Jeffrey S. Chase, Parthasarathy Ranganathan, and Ratnesh K. Sharma,

“Making Scheduling ”Cool”: Temperature-Aware Workload Placement in Data Centers,” in

USENIX Annual Technical Conference, General Track, 2005, pp. 61–75.

[209] Georges Da-Costa, Jean-Patrick Gelas, Yiannis Georgiou, Laurent Lefèvre, Anne-Cécile

Orgerie, Jean-Marc Pierson, Olivier Richard, and Kamal Sharma, “The GREEN-NET

Framework: Energy Efficiency in Large Scale Distributed Systems,” in HPPAC 2009 :

High Performance Power Aware Computing Workshop in conjunction with IPDPS 2009,

Rome, Italy, May 2009.

213

[210] Georges Da-Costa, Marcos Dias de Assuncao, Jean-Patrick Gelas, Yiannis Georgiou, Lau-

rent Lefèvre, Anne-Cécile Orgerie, Jean-Marc Pierson, Olivier Richard, and Amal Sayah,

“Multi-facet approach to reduce energy consumption in clouds and grids: The GREEN-

NET Framework,” in e-Energy 2010 : First International Conference on Energy-Efficient

Computing and Networking, Passau, Germany, Apr. 2010.

[211] “Google Powermeter project,” accessed Nov 1, 2009, http://www.google.org/powermeter/.

[212] “Microsoft Hohm project,” accessed Nov 1, 2009, http://www.microsoft-hohm.com/.

[213] Hui Li, David L. Groep, and Lex Wolters, “Workload Characteristics of a Multi-cluster

Supercomputer,” in JSSPP, Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn,

Eds. 2004, vol. 3277 of Lecture Notes in Computer Science, pp. 176–193, Springer.

[214] Yiannis Georgiou, Olivier Richard, and Nicolas Capit, “Evaluations of the Lightweight Grid

CIGRI upon the Grid5000 Platform,” in E-SCIENCE ’07: Proceedings of the Third IEEE

International Conference on e-Science and Grid Computing, Washington, DC, USA, 2007,

pp. 279–286, IEEE Computer Society.

[215] F. Cappello et al, “Grid’5000: A Large Scale, Reconfigurable, Controlable and Monitorable

Grid Platform,” in 6th IEEE/ACM International Workshop on Grid Computing, Grid’2005,

Seattle, Washington, USA, Nov. 2005.

[216] Collin McCurdy, Alan L. Coxa, and Jeffrey Vetter, “Investigating the TLB Behavior of

High-end Scientific Applications on Commodity Microprocessors,” in ISPASS ’08: Pro-

ceedings of the ISPASS 2008 - IEEE International Symposium on Performance Analysis of

Systems and software, Washington, DC, USA, 2008, pp. 95–104, IEEE Computer Society.

[217] Rajat Garg, Seung Woo Son, Mahmut Kandemir, Padma Raghavan, and Ramya Prabhakar,

“Markov Model Based Disk Power Management for Data Intensive Workloads,” in CC-

GRID ’09: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster

Computing and the Grid, Washington, DC, USA, 2009, pp. 76–83, IEEE Computer Society.

214

