Using Replication and Checkpointing for Reliable Task Management in
Computational Grids

Sangho Yi, Derrick Kondo Bongjae Kim, Geunyoung Park, Yookun Cho
INRIA, France Seoul National University, Korea
{sangho.yi, derrick.kond@inria.fr {bjkim,gypark,chp@os.snu.ac.kr
Abstract failure occurs very frequently, because the failure rate

,) . . is proportional to the number of processors (or, comput-
In grid computing systems, providing fault-tolerance is, nodes). In [6], the authors studied that system failure
required for both scientific computation and f'le'Sha”ngoccuredS times per day on a large computing system
to increase their reliability. In previous works, several which has4, 096 processors. In addition, tHeeraGrid
mephanisms were proposed for grid or distributed com-System suffered from system failures everyninutes
puting systems. However, Some of them used only SPaCEy) Even if the number of failures or the failure rate
redundancy (hardware replication), and others used onlyi¢ o 5 oy processor is very low, it may significantly affect
time redundan_cy_ (checkpom?mg and r_ollba_lc_k). I_:or tiSthe whole system’s reliability. Without considering such
reason, the existing mechanisms are inefficient in termgy res. the grid system cannot be used for reliability-
of their resource utilization on grid systems. In this Pa- critical tasks. Therefore, large grid computing systems

per, we presemRT, which is an Adaptive, Reliable, and g6, have some fault-tolerance mechanisms to allow
fault-Tolerant task management for grid computing envi- aliable execution of tasks.

ronments. The main goal &RT s reducing the num- Various research efforts have been made to provide

ber of replications by using checkpointing and rollback . ! .
L S fault-tolerance mechanisms for large grid computing
scheme for each replication. ART, the minimum num- . 2.
environments. However, all of the existing schemes

ber of replications is adaptively selected based on analy-

. . . e . adapted only either over-provisioning or checkpointing
sis of probability of successful execution within the given . 2
; oo . and recovery mechanism. Some existing schemes [8, 9]
deadline and reliability requirement of each task. Our

. : L — used checkpointing and recovery, and they did not con-
simulation results show tha&RT can significantly re sider utilizing hardware replication. In [7, 10], they

duce the number of replications and improve scalability S . '
compared with existing mechanisms. used bc_>th over-provisioning and task m|grat|on sch_emes
to provide higher reliability, but they failed to mini-
mize the degree of over-provisioning of each task. The
1 Introduction two schemes seperately used in existing woidger-
provisioningand checkpointingare orthogonal because
Rapid advancement in computer technologies enablée over-provisioning requires more hardware and space,
us to use distributed grid computing environments forwhile the checkpointing requires more execution time.
large scientific computation and resource-sharing serFor this reason, it is necessary to use both the two or-
vices. The grid environments consist of many partipanthogonal schemes appropriately for maximizing the reli-
nodes, and they have been used for weather forecastirpility of large grid computing environments.
file-sharing real-time multimedia broadcasting [1], and In this paper, we prese®RT, which is an Adaptive,
even nano-computing [2]. For exampk#Grid project Reliable, and fault-Tolerant task management for large
[3] is an initiative in grid researches in Korea. The main grid computing environment&\RT can reduce the num-
goal of K*Grid is to provide an extremely powerful re- ber of replications (or, the degree of over-provisioning)
search environment to both academies and industries. Iy using a checkpointing and rollback scheme for each
case ofTeraGrids [4, 5] computing environment, it con- replication of a task. IART, the minimum number of
sists of overl00, 000 processors, and they compute largereplications is adaptively selected based on probability
tasks collaboratively. analysis of successful execution within the given dead-
In above large-scale grid computing environments line and reliability requirement of each task. We made

simulations forART and existing fault-tolerance mecha- 58% for actual6 weeks of operation. In [10], Alonso et

nisms, and the results show th&RT significantly im- al. presented the impact of fault-tolerance mechanisms

proves resource utilization and scalability when com-on the real workflow management systems. In their re-

pared with the existing mechanisms. ports, they showed that several kinds of replication-based
The remainder of this paper is organized as follows.fault-tolerance mechanisms can significantly increase the

Section 2 shows previous work related to the fault-whole systems’ reliability. Therefore, grid computing

tolerance and reliability of the grid computing environ- environments should have fault-tolerance mechanisms to

ments. Section 3 presents the design and internal struéacrease their reliability.

tures, probability analysis, and algorithm ART in de-

tail. Section 4 evaluates performance ART and the

previous fault-tolerance schemes in terms of the resourc8 ART: Adaptive, Reliable, and fault-

utilization, scalability, and the number of replications. Tolerant Task Scheduler

Finally, section 5 presents some conclusions with pos-

sible future work. In this section, we present some requirements for grid
computing environments and their applications. Then,

2 Rdated Work we present system model, assumptions, and design of the
ARTIn detalil.

In this section, we describe existing work related to task
scheduling in grid computing environments. Several ef-
forts have been made to provide reliability and fault-3.1 Requirementsfor Grid Computing En-
tolerance for the grid computing environments. vironments
In [7], Kandaswamy et al. proposddlR which
maimy uses Over_provisioning to provide h|gher relia- Table 1 shows Specification of the several well-known
bility with given parameters including success probabil-9rid computing environments. In the most recent grid
ity, execution time, failure probability of each comput- cOmputing environments, more than thousands of com-
ing node. They also considers using migration when thd?uting nodes, or processors compose the whole system.
computation has failed, but they failed to reduce the deSuch grid environments may be tightly or loosely cou-
gree of over-provisioning. pled according to their architectures or structures. In
In [11], Elnozahy et al. summarized the recent roll- those grids, the most important resource is the computing
back recovery protoco|s in message_passing Systems_ ppower, or in other WOde, processors. Therefore, we need
this work, they showed the survey of distributed check-t0 considerefficiencyin-taskschedulingas the most im-
pointing scheme and recovery to the global consistenportant thing on the grid.
state of the distributed systems. The second most important feature on the grid com-
In [12], Duda proved the optimal checkpointing inter- puting environments iseliable task managementOn
val on the off-line when the checkpointing cost is con-the grids, failure occurs frequently, and such failure may
stant. In case of using regular (or, full) checkpointing spoil performance and reliability. Research has shown
scheme, the checkpointing cost can be assumed as col, 7], that multiple failures may occur in a day when the
stant, and thus, we can calculate optimal checkpointhumber of processors i 096, and failure occurs every
ing period based on this work. However, in incremen-2 minutes when there are more thii, 000 processors.
tal checkpointing, the checkpointing cost is varied undern these cases, the successful execution ratio is signifi-
its amount of modified pages of a process, and the modeantly degraded by the frequent failures. Therefore, we
ification pattern of memory pages are not deterministicneed to provideeliable task managemehy using some
To solve the problem, in [13], Yi et al. proposed an effi- appropriate reliability assurance mechanisms.
cient and adaptive page-level incremental checkpointing When we design a fault-tolerant task management for
facility that is based on the interval determination mechathe grid environments, we also need to consider their
nism for minimizing the expected execution time. Using scalability. This is closely related to the efficiency of
those, we can take full or incremental checkpoints withthe task management. If we use over-provisioning and/or
cost-efficient checkpointing interval. checkpointing, some space or time overhead may be pro-
In [14, 10], several fault-tolerance algorithms were duced from the used fault-tolerance mechanisms. To
tested on distributed, decentralized, and grid computprovide highscalability with fault-tolerance, we need to
ing environments. Especially, in [14], they measuredminimize such space or time overhead. In other words,
performance and reliability of the existing grid comput- we need to determine the degree of over-provisioning
ing environmentsTeraGrid The results in [14] showed as small as possible while minimizing the checkpointing
that the success ratio of executionTiaraGrid is about and rollback overhead if we use checkpoints.

Table 1: Specification of well-known grid computing envinoents

Specification || K*Grid | TeraGrid [LEAD | Pegasus
Middleware MoreDream Globus ESML DAGMan
Structure hierarchical hierarchical hierarchical centralized
Number of 7 SUPErcomputers |\ 1+116,000 | aboutd,096 | wnknown
computing nodes 9 clusters
Fault-tolerance checkpointing migration replication migration
support & checkpointing| & migration & retrying
Target bioinformatics astronomy apps| meteorology| genome analysis
application molecular simulation genome analysis forecasting data mining
3.2 System Model and Assumptions 3.3 Design of ART

ART provides fault-tolerant task processing based on
Some common notations and functions used throughoutoth the space and time redundantidhe space redun-
this paper are presented in Table 2. dancy means the over-provisioning (or, hardware repli-
N ... cation) technique, while the time redundancy means the
The following is a system model used for our reliabil- checkpointing and rollback scheme. ART, the mini-

ity analysis on the gru_j comput_mg environments. Let mum set of replications is determined based on the prob-
denote the work requirement time of a task, and the ex-

R .) ability of successful execution with checkpointing and
pected total execution tini€(¢,.) of a task is defined as . y . P g
L L . - __given deadline of each task.
the processing time from the beginning of its execution
to its completion. Note that in the absence of any failures .
without checkpointing?'(t,) = t,.. 33.1 Overview of ART

TheT(t,) can be calculated as the sum of all intervals’
expected execution timé&;;(¢;, ¢;), where thet; and¢;
are the work requirement time and checkpointing over-
head of ani*” interval. Note that, a checkpointing in-
terval is the duration between two checkpoints. Each in-
terval begins when a checkpoint is established and end
when the next checkpoint is established. ®,

1 — {Deadine:ty]

User’s request
‘—{ Probability for successful execution: Ps \

ult within deadline

Q

Presence of failures: Ap, A

Request arrival

i @ Return res

1
ARTI

1 |eg]|=2=--
Task] S oTT
manager| ==

tq represents the deadline for a task, aBdis a
user-defined probability of successful execution of a task
within the deadlineP(¢,., t4) is probability of successful
execution of a task which has as the work requirement
time andt, as the deadline. P —T

Deadline
counting

In this paper, we used the following assumptions. We
assume that two kinds of failures can occur on the grid
computing environment: including permanent and re-
coverable failures. The permanent failure is similar to
hardware failures, and thus, we cannot recover the con-

S|s_tentlstate based on che_ckpomtmg and rollback mec Sle flow of the proposed mechanism. Each computing
anism if the permanent failure occurs on a system. O

. de uses checkpointing and rollback scheme to provide
the other hand, the recoverable failures can be recovereé:) b 9 b

b ina the last checkooint. Wi that th ult-tolerance in the presence of failures. The task man-
y using the fast checkpoint. Yve assume that the perma:igement iPART uses over-provisioning to increase reli-
nent and recoverable failures occur accordingasson

_ ability of executing task requests. When a user’s request
process at rat& s, andJ ¢, respectively. These are com- y I g q

)) X occurs, the request has the predefined values of dead-
monly accepted assumptions, particularly when failure

e known ¢ ; result of many different r N ine and required probability (or, reliability) for sucees
are kno O occur as a result of many diflerent réasons, | o o cytion. ThenARTSs task management routine se-
[13]. Further, we assume that recoverable failures are

detected as soon as they occur. 1The preliminary poster paper was presented in [15].

Figure 1: Overall structures &RT

Figure 1 shows the overall structures and the exam-

Table 2: List of notations used in this paper

Notation [[Description

t, total work requirement time of a task
tq deadline time of a task
t laxity time of a task
t; work requirement time of interval
c; checkpointing cost of intervall
N number of checkpoints of a task
r recovery cost of a task
Afp permanent failure rate
Afr recoverable failure rate
T, (t;,c;) || expected recovery and reprocessing time of interedla task
T-(t) total expected recovery and reprocessing time of a task
o#r(tr,tq) || probabilistic density function of successful executioraaésk requiremerit. within deadlinet;
in the presence of recoverable failures
o4, (tr,tq) || cumulative density function of successful execution ofsk teequirement,. within deadlinet,
in the presence of recoverable failures
Dy (tr) cumulative density function of successful execution ofsk t&quirement,.
in the presence of permanent failures
P, user-defined probability of successful execution of a task
Pt tq) probability of successful execution of a task within deaglli

lects computing nodes to schedule the task request whil
meeting the two constraints in terms of the deadline anc
the reliability.

To decide how many replications are used in the task
execution, we need to calculate the expected executio
time and the probability for successful execution of the
task for each computing node within the given deadline.

k

Permanent
Failure

tig

Cia

We present the above calculation and probability analysit
in the following subsections.

3.3.2 Expected Recovery and Reprocessing Timein
ART

k

Recoverable
Failure

tig

Cia

r

[of
/)

Rollback to the last checkpoi

nt

Figure 2 shows two examples of failures when execut- (b) An example of a recoverable failure

ing a task on a computing node. In case of Fig. 2 (a), a)

permanent failure occurs, and then the computing nod&igure 2: Two examples of failure occurance on a com-
cannot be recovered by the checkpointing and rollbackuting node

mechanism. Figure 2 (b) shows an example of recov-

erable failure occurance on the computing node. When

a recoverable failure occurs during #h checkpointing Theorem 1 If we assume the recoverable failures occur

interval, the process can perform a rollback operation a”%ccording to the Poisson process with ratg, and that

reprocess its execution from the beginning ofthein- faijures can occur during checkpointing, the expected
terval. If no failure occurs, the execution time of te execution time of thé' interval with checkpointing

interval is identical tq¢; + ¢;). However, if a failure oc- T,,(t;, c;) is given by
curs before the end of th#" interval, the recovery time)
is required. The expected execution time of tteinter-
val with checkpointing?’., (¢;, ¢;) is given as Theorem 1
[13].

(eAfr(tiJrCi) — 1)(1 +)‘frr) - Afr(ti + ci)
Afr

TT’q‘, (tia Ci) =
(1)

dre(tr 1ta) q)tr(tv 1)

Proof 1 Formally, the conditional expected recovery

AT | o
and reprocessing time is written as: 0 | O
i !
Tt ;) = 0 if k>t +c¢ Ot 1) |
Ty \Y1y “1) — k + r + Tri (ti,ci) OtherWiSe 0 f=tg-=ti+C) timei t=tg-zt+c) time
(a) Probabilistic density function i (b) Cumulative density function

By the law of total expectation,) o)
Figure 3: An example of the probabilistic density func-

titci tion (pdf) and cumulative density function (cdf) of the
Ty, (ti,ci) = / (k+7+T,,(t;, c:)) fr(k)dk recovery and reprocessing time of a task requirement
0 (wheret, is the given deadline and is the calculated
Solving the above equation we obtain, laxity time of the task requirement)

Jo € (k) fr (k)

1— [77 fo(k)d execution of the task requirementwithin the deadline

tq. The probability for successful execution within the
Flna.”y the prOba.biliStiC denSity function of the recover- deadline in the presence of both permanent and recover-
able failure f,.(k) is \e*/7¥, hence we obtain, able failures is given as Theorem 2.

Ty, (ti,ci) =

i

(eMrltited) 1)1+ \ppr) — Apo(t; +¢;) Theorem 2 If we assume both permanent and recover-
Ty (ti,ci) = \ able failures occur according to the Poisson process with
I rate Ay, and Ay, respectively, the probability for suc-
When the number of checkpointing intervalsisfor ~ cessful execution for the time requirementvithin the
the task requiremertt, the expected total execution time deadlinety, P(¢,,tq) is given by
with checkpointing can be expressed as follows.

tg =507 (tite;)

Pty ta) = et (1—e " Bt0) (3)

T, (tr) = Z T, (ti + ci) (2)
i=1 Proof 2 According to thePoissordistribution, the prob-

In Eq.(1) and Eq.(2), when the checkpoints are equall)ﬁb“ity de.nsity function (pdf) of the recovery and repro-
spaced and the checkpointing cost is constathie equa- c€SSIng time Qf a tgsk requirementwithin the deadline
tions become much simpler. In case of using the fullta: sr(tr,ta) is written as:
checkpointing, the assumption of the constant check- 1 ra— X7 (tien)
pointing cost can be almostly accepted. However, these Gr(tr,ta) = i) N I CO R
assumptions do not fully reflect the real characteristics . . T))
of incremental checkpointing. In that case, we can deter- BY integrating the above equation we obtain,
mine the efficient checkpointing intervals based on the ta=3% (titeq)
previous adaptive interval determination scheme [13]. Dpp(tp, tg) =1—e — ol

Also, the permanent failures occur according to the
3.3.3 Praobability Analysis for Successful Execution Poissonprocess at rate\,, the probabilistic density
in ART function of the permanent failure at timg becomes

Appe~Mrta By integrating this, we obtain the cumu-

Using the above equguons, we an alyze the pmbab'.“nfative density function of a permanent failure occurance
for successful execution when using the checkpomtmgélt timet., as follows:
d .

mechanism. Since we assumed that failures occur ac-
cording to aPoissonprocess, the probabilistic density Fpy(ta) = 1 — e oot
function of the expected recovery and reprocessing time fpitd -~
follows thePoissondistribution?. Then,1 — Fy,(ta) becomes the probability for suc-
In Fig. 3 (a), the sum of colored (or, dashed) regionce_ssful execution during the tlm@When the permanent
represents the probability for successful execution withi fallures can occur on a computing node at ratg,. By
the deadline in the presence of recoverable failures. Figultiplying the® s, (., ¢4) and thel — Fy;(ta), we ob-
ure 3 (b), shows the cumulative probability for successfultain,

2We are currently focused on deriving proof of f@issordistribu- g (bt
tion for probabilistic density function of the recovery amgrocessing P(tr; td) — e Aspta . (1 _ 6*%)
time.

3.3.4 Selection of Replicationsin ART bilistic distribution, we can get theearest modebr the
combination of existing models based on the real failure
traces, which was already shown in [16, 17].
In addition, non-heuristic selection algorithm based on
the statistics or history may improve both the reliability
d efficiency of the grid computing environments.

The aboveP(t,,t;) represents the reliability of each
computing node when processing a task requirement
within a deadling,. In general, grid computing environ-
ments consist of heterogeneous computing nodes, a
each node has different computing power. In addition,
the failure rates)r, and, can be different each other.]
For this reason, each node has a different value of thd Performance Evaluation
P(t,,tq). In this subsection, we present how to select

computing nodes to replicate the requested task. In this section, we evaluate the performanc&BRT and

Selecting an optimal set of computing nodes NR: existing fault-tolerant mechanisms in terms of resource

hard problem. For this reason, the existing scheme mutilization, _succe_ssful execution ratio, and scalabili_ty
used a heuristic approach to get sub-optimal set of node&/® made simulations to evaluate the several mechanisms
to replicate tasks. In this paper, we also use similaffOM various point of view.

heuristics to compare our method with it. We are cur-

rently extending our work to design better algorithm to4.1 Simulation Environment

minimize resource consumption on the grid computing

environments. In this paper, we modified and used tBensorMaker

[18] simulation package, and we set the default values
of defined parameters as presened in Table 3.

In our simulation, each task request has different time
requirement and deadline. We used the fixed checkpoint-
ing interval, fixed costs for checkpointing and recovery,
and1—1.0-10~'2 as the probability for successful execu-
tion. In addition, each computing node has different fail-
ure rates, and they, and the , were determined based

Algorithm 1 Adaptive replication selection algorithm
Require:
(wheren; is ani*® computing node, andh is the total
number of nodgs
for all nodesn; (from 1 tom) do
Calculaten;.P(t,, tq) using Theorem 2

end for _ !

Sort all nodes byi;. P(t,. t) in descending order on previous researches [6, 7]. In Tablen3,is the total

P, =1 ' " number of computing nodes, akds the task scheduling
tmp «—

request arrival interval. Finally, we assumed that each
computing node processes tasks iIRIBEO manner (one
task at a time).

for all nodesn; (from 1 tom) do
Ptmp = Ptmp . (1 — ’I’LZP(trﬂfd))
if Py <1— Py, then

k=1
break 4.2 Simulation Results and Evaluation
end if Based on the default values presented in Table 3, we
end for

made various simulations in many aspects by changing

for nodesn; (from 1 to k) do
values of several parameters.

Do task replication
end for o
§

700
600
500

Algorithm 1 describes the adaptive replication selec-
tion algorithm in detail. It consists of two parts; the first
part calculates th&'(t,., t4) for all computing nodes, and : "
the second pard is used to select some node to replica § o
the requested task. Using this algorithm, we determine ™ ™

g S S S S S S S S S

the minimum set of replications at run-time. om0 0 %0 a0 e B0 om0 sl 1200

Round of execution ()

£husy computing nodes

3.4 Remaining Issuesin ART Figure 4: Number of busy (running) computing nodes

We assumed that failure occurs according to Foés-

sonprocess. If the failures occur with non-exponential Figure 4 shows the number of busy (or, running) com-
distribution, (e.g. Gamma, Weibull, etc.), the equationsputing nodes when usinrgRT andFTR, respectively. In

on Theorems 1 and 2 should be changed to calculatthis result ART outperforms the previous scheme for all
P(t,,tq)). If itis very hard to use the existing proba- time, and reduces the number of used nodes significantly.

Table 3: Values of parameters used in performance evafuatio

Parameter] Value | Description

t, 100 ~ 500s each task has one of betwety) and500s time requirement
tq 200 ~ 1000s two times oft,.

t; 50s fixed checkpointing interval

C 3s fixed checkpointing cost

r 2s fixed recovery cost

P, 1-1.0-10"12 99.999...% probability for successful execution
Afr 2.26 ~ 7.18 - 10~% | variable recoverable failure rate per second [6, 7]
Afp 2.26 ~ 7.18 - 10~ | variable permanent failure rate per second

m 2,000 total number of computing nodes

k 1s task scheduling request arrival interval

oy ey -y T ——”r T T computing nodes. For example, highteérmeans higher

1000 —*— ART (£;=1.17xt,) —*— ART(t5=1.18xs,) —+— FIR

reliability, and then, the task scheduler need to use more
replication to fulfill the higher reliability. On the other
hand, whenP, becomes smaller, then smaller number of
computing nodes are used for replication.

Finally, Table 4 shows the maximum, minimum and
7 average number of busy nodes duris@) ~ 1,200
330 a2 510 600 600 720 870 260 rounds. In this table, efficiency #HRTis Significantly
B better than the previous scheme. From the simulation re-
Figure 5: Number of busy computing nodes according tcSUltS: We observe that the proposed schekf] outper-
the changed deadline forms previous schemes in terms of both efficiency and

scalability.

900

800

700

600

Nuniber of busy computing nodes

500

. Conclusions
Figure 5 represents the number of busy nodes accordl§

ing to the deadling,,. This result shows that, the longer |, this paper, we proposedRT (Adaptive, Reliable,

the value of the deadline, the greater the reduction inyng fault-Tolerant task scheduler) for grid environments.
computing node usage. For example, when the deadlinRRTreduced the number of replications by using check-
is 1.18 times greater than the time requireméXRTuses ointing and rollback scheme for each replication. In
only 3 of computing nodes as compared with the otheraRT, adaptive selection of the minimum number of repli-

scheme. cations is performed by analyzing probability of success-
ful execution within the given deadline and reliability re-
1500 . . .
O A A quirement of each task. We made simulationsA&®T
= = ART(P=1-101) -.O- FIR(P=1-101) = o = ART(P=1-1019) FTR (P=1-101%)

1200 e e 1. and existing fault-tolerance mechanisms. Based on the
o ot i D) =T ; results, we observe th#&RT significantly reduces the
number of replications and improves scalability com-
pared with existing mechanisms.
e ;“g We are currently extending our work to design b_et-
o - PP ter selection algorithm. In addition, we are designing
= @ o O ooty a0 o0 an appropriate checkpointing method which is required
for maximizing efficiency of the grid computing envi-
Figure 6: Number of busy computing nodes according toonments in the future work.
the changed probability for successful execution

1000 |
500
800

F00

Nuniber of busy computing nodes

6 Acknowledgments

Figure 6 shows the number of busy nodes accordingrhis research was supported by the ANR project
to the changed probability for successful executiBn, Clouds@home (ANR-09-JCJC-0056-01), and the Ba-
The Py is positively proportional to the number of busy sic Science Research Program through the National Re-

Table 4: Maximum, minimum, and average number of busy comgutodes duringg00 ~ 1, 200 rounds

Number of busy nodes ART FTR
12 1-10°T1-10""J1-10"" [1-10""[1-10"" [1-10"""
Maximum 904 634 632 1,255 1,115 943
Minimum 340 228 224 456 425 342
Average 790 554 549 1,100 977 827

search Foundation of Korea(NRF) funded by the Min-[11] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
istry of Education, Science and Technology (KRF-2008-
314-D00335).

References

[1]

PeerLive http://www.peerlive.orgwebsite.

(12]

[2] C.-H. Huang, “High-performance parallel bio- [13]

[3]
[4]

5]

[6]

[7]

[8]

computing,” Parallel Computing vol. 30, pp.
1037-1055, September-October 2004.

K*Grid, http://www.gridcenter.or.kriwebsite.

C. Catlett, “The philosophy of teragrid: Building an
open, extensible, distributed terascale facility,” in
2nd IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGRID’022002,

p. 8.

D. A. Reed, “Grids, the teragrid, and beyond,”
Computervol. 36, pp. 62—68, January 2003.

B. Schroeder and G. Gibson, “A large-scale study
of failures in high-performance-computing sys-
tems,” inInternational Conference on Dependable
Systems and Networks (DSN’08)ine 2006.

G. Kandaswamy, A. Mandal, and D. A. Reed,
“Fault tolerance and recovery of scientific work-
flows on computational grids,” i®th IEEE/ACM
International Symposium on Cluster Computing
and the Grid (CCGRID’08)2008, pp. 777-782.

J. Weissman, “Fault tolerant computing on the grid:
what are my options?” iBth International Sympo-

(14]

(19]

(16]

sium on High Performance Distributed Computing [17]

(HPDC’99), August 1999, pp. 351-352.

[9] J. Frey, T. Tannenbaum, M. Livny, |. Foster, and

[10]

S. Tuecke, “Condor-g: A computation management
agent for multi-institutional grids,Cluster Com-
puting vol. 5, pp. 237-246, July 2002.

(18]

G. Alonso, C. Hagen, D. Agrawal, A. E. Ab-
badi, and C. Mohan, “Enhancing the fault tolerance
of workflow management system$EEE Concur-
rency, vol. 8, pp. 74-81, July 2000.

Johnson, “A survey of rollback-recovery proto-
cols in message-passing syster&;M Computing
Surveysvol. 34, pp. 375—-408, September 2002.

A. Duda, “The effects of checkpointing on pro-
gram execution time Information Processing Let-
ters vol. 16, no. 1, pp. 221229, Jul. 1983.

S. Vi, J. Heo, Y. Cho, and J. Hong, “Taking
point decision mechanism for page-level incremen-
tal checkpointing based on cost analysis of pro-
cess execution timeJournal of Information Sci-
ence and Engineeringvol. 23, no. 5, pp. 1325-
1337, September 2007.

O. Khalili, J. He, C. Olschanowsky, A. Snavely,
and H. Casanova, “Measuring the performance and
reliability of production computational grids,” in
7th IEEE/ACM International Conference on Grid
Computing September 2006.

S. Yi, H. Min, B. Kim, J. Kim, and C. O. Sung,
“Art: Adaptive, reliable, and fault-tolerant task
management for computational grids,” 2010
ACM Symposium on Applied Computing (ACM
SAC’10) 2010, pp. 238-239.

B. Javadi, D. Kondo, J. Vincent, and D. Ander-
son, “Mining for statistical availability models in
large-scale distributed systems: An empirical study
of seti@home,” in17th IEEE/ACM International
Symposium on Modelling, Analysis and Simula-
tion of Computer and Telecommunication Systems
(MASCOTS)September 2009.

D. Kondo, B. Javadi, A. losup, and D. Epema, “The
failure trace archive: Enabling comparative anal-
ysis of failures in diverse distributed systems,” in
10th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid)May
2010.

S.Yi, S. Lee, Y. Cho, and J. Hong, “SensorMaker:
A wireless sensor network simulator for scalable
and fine-grained instrumentatioh,gcture Notes in
Computer Sciengerol. 5072, pp. 800-810, 2008.

