
Using Replication and Checkpointing for Reliable Task Management in
Computational Grids

Sangho Yi, Derrick Kondo
INRIA, France

{sangho.yi, derrick.kondo}@inria.fr

Bongjae Kim, Geunyoung Park, Yookun Cho
Seoul National University, Korea
{bjkim,gypark,cho}@os.snu.ac.kr

Abstract

In grid computing systems, providing fault-tolerance is
required for both scientific computation and file-sharing
to increase their reliability. In previous works, several
mechanisms were proposed for grid or distributed com-
puting systems. However, some of them used only space
redundancy (hardware replication), and others used only
time redundancy (checkpointing and rollback). For this
reason, the existing mechanisms are inefficient in terms
of their resource utilization on grid systems. In this pa-
per, we presentART, which is an Adaptive, Reliable, and
fault-Tolerant task management for grid computing envi-
ronments. The main goal ofART is reducing the num-
ber of replications by using checkpointing and rollback
scheme for each replication. InART, the minimum num-
ber of replications is adaptively selected based on analy-
sis of probability of successful execution within the given
deadline and reliability requirement of each task. Our
simulation results show thatART can significantly re-
duce the number of replications and improve scalability
compared with existing mechanisms.

1 Introduction

Rapid advancement in computer technologies enable
us to use distributed grid computing environments for
large scientific computation and resource-sharing ser-
vices. The grid environments consist of many partipant
nodes, and they have been used for weather forecasting
file-sharing real-time multimedia broadcasting [1], and
even nano-computing [2]. For example,K*Grid project
[3] is an initiative in grid researches in Korea. The main
goal of K*Grid is to provide an extremely powerful re-
search environment to both academies and industries. In
case ofTeraGrid’s [4, 5] computing environment, it con-
sists of over100, 000 processors, and they compute large
tasks collaboratively.

In above large-scale grid computing environments,

failure occurs very frequently, because the failure rate
is proportional to the number of processors (or, comput-
ing nodes). In [6], the authors studied that system failure
occured3 times per day on a large computing system
which has4, 096 processors. In addition, theTeraGrid
system suffered from system failures every2 minutes
[7]. Even if the number of failures or the failure rate
of each processor is very low, it may significantly affect
the whole system’s reliability. Without considering such
failures, the grid system cannot be used for reliability-
critical tasks. Therefore, large grid computing systems
should have some fault-tolerance mechanisms to allow
reliable execution of tasks.

Various research efforts have been made to provide
fault-tolerance mechanisms for large grid computing
environments. However, all of the existing schemes
adapted only either over-provisioning or checkpointing
and recovery mechanism. Some existing schemes [8, 9]
used checkpointing and recovery, and they did not con-
sider utilizing hardware replication. In [7, 10], they
used both over-provisioning and task migration schemes
to provide higher reliability, but they failed to mini-
mize the degree of over-provisioning of each task. The
two schemes seperately used in existing works,over-
provisioningandcheckpointingareorthogonal, because
the over-provisioning requires more hardware and space,
while the checkpointing requires more execution time.
For this reason, it is necessary to use both the two or-
thogonal schemes appropriately for maximizing the reli-
ability of large grid computing environments.

In this paper, we presentART, which is an Adaptive,
Reliable, and fault-Tolerant task management for large
grid computing environments.ARTcan reduce the num-
ber of replications (or, the degree of over-provisioning)
by using a checkpointing and rollback scheme for each
replication of a task. InART, the minimum number of
replications is adaptively selected based on probability
analysis of successful execution within the given dead-
line and reliability requirement of each task. We made

1

simulations forARTand existing fault-tolerance mecha-
nisms, and the results show thatART significantly im-
proves resource utilization and scalability when com-
pared with the existing mechanisms.

The remainder of this paper is organized as follows.
Section 2 shows previous work related to the fault-
tolerance and reliability of the grid computing environ-
ments. Section 3 presents the design and internal struc-
tures, probability analysis, and algorithm ofART in de-
tail. Section 4 evaluates performance ofART and the
previous fault-tolerance schemes in terms of the resource
utilization, scalability, and the number of replications.
Finally, section 5 presents some conclusions with pos-
sible future work.

2 Related Work

In this section, we describe existing work related to task
scheduling in grid computing environments. Several ef-
forts have been made to provide reliability and fault-
tolerance for the grid computing environments.

In [7], Kandaswamy et al. proposedFTR, which
mainly uses over-provisioning to provide higher relia-
bility with given parameters including success probabil-
ity, execution time, failure probability of each comput-
ing node. They also considers using migration when the
computation has failed, but they failed to reduce the de-
gree of over-provisioning.

In [11], Elnozahy et al. summarized the recent roll-
back recovery protocols in message-passing systems. In
this work, they showed the survey of distributed check-
pointing scheme and recovery to the global consistent
state of the distributed systems.

In [12], Duda proved the optimal checkpointing inter-
val on the off-line when the checkpointing cost is con-
stant. In case of using regular (or, full) checkpointing
scheme, the checkpointing cost can be assumed as con-
stant, and thus, we can calculate optimal checkpoint-
ing period based on this work. However, in incremen-
tal checkpointing, the checkpointing cost is varied under
its amount of modified pages of a process, and the mod-
ification pattern of memory pages are not deterministic.
To solve the problem, in [13], Yi et al. proposed an effi-
cient and adaptive page-level incremental checkpointing
facility that is based on the interval determination mecha-
nism for minimizing the expected execution time. Using
those, we can take full or incremental checkpoints with
cost-efficient checkpointing interval.

In [14, 10], several fault-tolerance algorithms were
tested on distributed, decentralized, and grid comput-
ing environments. Especially, in [14], they measured
performance and reliability of the existing grid comput-
ing environments,TeraGrid. The results in [14] showed
that the success ratio of execution inTeraGrid is about

58% for actual6 weeks of operation. In [10], Alonso et
al. presented the impact of fault-tolerance mechanisms
on the real workflow management systems. In their re-
ports, they showed that several kinds of replication-based
fault-tolerance mechanisms can significantly increase the
whole systems’ reliability. Therefore, grid computing
environments should have fault-tolerance mechanisms to
increase their reliability.

3 ART: Adaptive, Reliable, and fault-
Tolerant Task Scheduler

In this section, we present some requirements for grid
computing environments and their applications. Then,
we present system model, assumptions, and design of the
ART in detail.

3.1 Requirements for Grid Computing En-
vironments

Table 1 shows specification of the several well-known
grid computing environments. In the most recent grid
computing environments, more than thousands of com-
puting nodes, or processors compose the whole system.
Such grid environments may be tightly or loosely cou-
pled according to their architectures or structures. In
those grids, the most important resource is the computing
power, or in other words, processors. Therefore, we need
to considerefficiency-in-task-schedulingas the most im-
portant thing on the grid.

The second most important feature on the grid com-
puting environments isreliable task management. On
the grids, failure occurs frequently, and such failure may
spoil performance and reliability. Research has shown
[6, 7], that multiple failures may occur in a day when the
number of processors is4, 096, and failure occurs every
2 minutes when there are more than100, 000 processors.
In these cases, the successful execution ratio is signifi-
cantly degraded by the frequent failures. Therefore, we
need to providereliable task managementby using some
appropriate reliability assurance mechanisms.

When we design a fault-tolerant task management for
the grid environments, we also need to consider their
scalability. This is closely related to the efficiency of
the task management. If we use over-provisioning and/or
checkpointing, some space or time overhead may be pro-
duced from the used fault-tolerance mechanisms. To
provide highscalabilitywith fault-tolerance, we need to
minimize such space or time overhead. In other words,
we need to determine the degree of over-provisioning
as small as possible while minimizing the checkpointing
and rollback overhead if we use checkpoints.

2

Table 1: Specification of well-known grid computing environments
Specification K*Grid TeraGrid LEAD Pegasus

Middleware MoreDream Globus ESML DAGMan
Structure hierarchical hierarchical hierarchical centralized
Number of 7 supercomputers

about116, 000 about4, 096 unknown
computing nodes 9 clusters
Fault-tolerance

checkpointing
migration replication migration

support & checkpointing & migration & retrying
Target bioinformatics astronomy apps meteorology genome analysis
application molecular simulation genome analysis forecasting data mining

3.2 System Model and Assumptions

Some common notations and functions used throughout
this paper are presented in Table 2.

The following is a system model used for our reliabil-
ity analysis on the grid computing environments. Lettr
denote the work requirement time of a task, and the ex-
pected total execution timeT (tr) of a task is defined as
the processing time from the beginning of its execution
to its completion. Note that in the absence of any failures
without checkpointing,T (tr) = tr.

TheT (tr) can be calculated as the sum of all intervals’
expected execution time,Ti(ti, ci), where theti andci

are the work requirement time and checkpointing over-
head of anith interval. Note that, a checkpointing in-
terval is the duration between two checkpoints. Each in-
terval begins when a checkpoint is established and ends
when the next checkpoint is established.

td represents the deadline for a task, andPs is a
user-defined probability of successful execution of a task
within the deadline.P (tr, td) is probability of successful
execution of a task which hastr as the work requirement
time andtd as the deadline.

In this paper, we used the following assumptions. We
assume that two kinds of failures can occur on the grid
computing environment: including permanent and re-
coverable failures. The permanent failure is similar to
hardware failures, and thus, we cannot recover the con-
sistent state based on checkpointing and rollback mech-
anism if the permanent failure occurs on a system. On
the other hand, the recoverable failures can be recovered
by using the last checkpoint. We assume that the perma-
nent and recoverable failures occur according toPoisson
process at rateλfp andλfr, respectively. These are com-
monly accepted assumptions, particularly when failures
are known to occur as a result of many different reasons
[13]. Further, we assume that recoverable failures are
detected as soon as they occur.

3.3 Design of ART

ART provides fault-tolerant task processing based on
both the space and time redundancies1. The space redun-
dancy means the over-provisioning (or, hardware repli-
cation) technique, while the time redundancy means the
checkpointing and rollback scheme. InART, the mini-
mum set of replications is determined based on the prob-
ability of successful execution with checkpointing and
given deadline of each task.

3.3.1 Overview of ART

Deadline: td
User’s request

Probability for successful execution: P�

Ta s k s c he duling

Co m p u ti n g n o d e s

Ta s k e x e c ut i on w i t h

c he c k poi nt i ng

R
e
q

u
e
s

t
a

rr
iv

a
l

Return multiple results

R
e

tu
rn

 r
e
s

u
lt

 w
it

h
in

 d
e
a

d
li
n

e

�

�

�

�

�

Presence of failures: λλλλ�� � λλλλ�	

�
�
�
�
�
�
��
��
�
��
�

(r
e

p
li
c

a
ti

o
n

)

ART

Task

manager

��

�
�
�
�
��
�
�

�
�
�
�
��
�
�

Figure 1: Overall structures ofART

Figure 1 shows the overall structures and the exam-
ple flow of the proposed mechanism. Each computing
node uses checkpointing and rollback scheme to provide
fault-tolerance in the presence of failures. The task man-
agement inART uses over-provisioning to increase reli-
ability of executing task requests. When a user’s request
occurs, the request has the predefined values of dead-
line and required probability (or, reliability) for success-
ful execution. Then,ART’s task management routine se-

1The preliminary poster paper was presented in [15].

3

Table 2: List of notations used in this paper
Notation Description

tr total work requirement time of a task
td deadline time of a task
tl laxity time of a task
ti work requirement time of intervali
ci checkpointing cost of intervali
nc number of checkpoints of a task
r recovery cost of a task

λfp permanent failure rate
λfr recoverable failure rate

Tri
(ti, ci) expected recovery and reprocessing time of intervali of a task

Tr(tr) total expected recovery and reprocessing time of a task
φfr(tr, td) probabilistic density function of successful execution ofa task requirementtr within deadlinetd

in the presence of recoverable failures
Φfr(tr, td) cumulative density function of successful execution of a task requirementtr within deadlinetd

in the presence of recoverable failures
Φfp(tr) cumulative density function of successful execution of a task requirementtr

in the presence of permanent failures
Ps user-defined probability of successful execution of a task

P (tr, td) probability of successful execution of a task within deadline

lects computing nodes to schedule the task request while
meeting the two constraints in terms of the deadline and
the reliability.

To decide how many replications are used in the task
execution, we need to calculate the expected execution
time and the probability for successful execution of the
task for each computing node within the given deadline.
We present the above calculation and probability analysis
in the following subsections.

3.3.2 Expected Recovery and Reprocessing Time in
ART

Figure 2 shows two examples of failures when execut-
ing a task on a computing node. In case of Fig. 2 (a), a
permanent failure occurs, and then the computing node
cannot be recovered by the checkpointing and rollback
mechanism. Figure 2 (b) shows an example of recov-
erable failure occurance on the computing node. When
a recoverable failure occurs during anith checkpointing
interval, the process can perform a rollback operation and
reprocess its execution from the beginning of theith in-
terval. If no failure occurs, the execution time of theith

interval is identical to(ti + ci). However, if a failure oc-
curs before the end of theith interval, the recovery timer
is required. The expected execution time of theith inter-
val with checkpointing,Tri

(ti, ci) is given as Theorem 1
[13].

Permanent
Failurek

ci-1ti-1 citi

Irrecoverable

(a) An example of a permanent failure

Recoverable
Failurek

r

ci-1ti-1 citi

(b) An example of a recoverable failure

Rollback to the last checkpoint

Figure 2: Two examples of failure occurance on a com-
puting node

Theorem 1 If we assume the recoverable failures occur
according to the Poisson process with rateλfr and that
failures can occur during checkpointing, the expected
execution time of theith interval with checkpointing,
Tri

(ti, ci) is given by

Tri
(ti, ci) =

(eλfr(ti+ci) − 1)(1 + λfrr) − λfr(ti + ci)

λfr

(1)

4

Proof 1 Formally, the conditional expected recovery
and reprocessing time is written as:

Tri
(ti, ci) =

{

0 if k ≥ ti + ci

k + r + Tri
(ti, ci) otherwise

By the law of total expectation,

Tri
(ti, ci) =

∫ ti+ci

0

(k + r + Tri
(ti, ci))fr(k)dk

Solving the above equation we obtain,

Tri
(ti, ci) =

∫ ti+ci

0
(k + r)fr(k)dk

1 −
∫ ti+ci

0
fr(k)dk

Finally the probabilistic density function of the recover-
able failurefr(k) is λe−λfrk, hence we obtain,

Tri
(ti, ci) =

(eλfr(ti+ci) − 1)(1 + λfrr) − λfr(ti + ci)

λfr

When the number of checkpointing intervals isnc for
the task requirementtr, the expected total execution time
with checkpointing can be expressed as follows.

Tr(tr) =

nc
∑

i=1

Tri
(ti + ci) (2)

In Eq.(1) and Eq.(2), when the checkpoints are equally
spaced and the checkpointing cost is constantc, the equa-
tions become much simpler. In case of using the full
checkpointing, the assumption of the constant check-
pointing costc can be almostly accepted. However, these
assumptions do not fully reflect the real characteristics
of incremental checkpointing. In that case, we can deter-
mine the efficient checkpointing intervals based on the
previous adaptive interval determination scheme [13].

3.3.3 Probability Analysis for Successful Execution
in ART

Using the above equations, we analyze the probability
for successful execution when using the checkpointing
mechanism. Since we assumed that failures occur ac-
cording to aPoissonprocess, the probabilistic density
function of the expected recovery and reprocessing time
follows thePoissondistribution2.

In Fig. 3 (a), the sum of colored (or, dashed) region
represents the probability for successful execution within
the deadline in the presence of recoverable failures. Fig-
ure 3 (b), shows the cumulative probability for successful

2We are currently focused on deriving proof of thePoissondistribu-
tion for probabilistic density function of the recovery andreprocessing
time.

(b) Cumulative density function(a) Probabilistic density function

tl = td – �(ti+ci)

φfr(tr ,td)

time

1
Tr(tr)

0

ΦΦΦΦfr(tr ,tl)

ΦΦΦΦfr(tr ,td)

time

1.0

tl = td – �(ti+ci)

ΦΦΦΦfr(tr ,tl)

Figure 3: An example of the probabilistic density func-
tion (pdf) and cumulative density function (cdf) of the
recovery and reprocessing time of a task requirementtr
(wheretd is the given deadline andtl is the calculated
laxity time of the task requirement)

execution of the task requirementtr within the deadline
td. The probability for successful execution within the
deadline in the presence of both permanent and recover-
able failures is given as Theorem 2.

Theorem 2 If we assume both permanent and recover-
able failures occur according to the Poisson process with
rate λfp and λfr, respectively, the probability for suc-
cessful execution for the time requirementtr within the
deadlinetd, P (tr, td) is given by

P (tr, td) = e−λfptd ·
(

1 − e
−

td−

Pnc
i=1

(ti+ci)

Tr(tr)

)

(3)

Proof 2 According to thePoissondistribution, the prob-
ability density function (pdf) of the recovery and repro-
cessing time of a task requirementtr within the deadline
td, φfr(tr, td) is written as:

φfr(tr, td) =
1

Tr(tr)
· e−

td−

Pnc
i=1

(ti+ci)

Tr(tr)

By integrating the above equation we obtain,

Φfr(tr, td) = 1 − e
−

td−

Pnc
i=1

(ti+ci)

Tr(tr)

Also, the permanent failures occur according to the
Poissonprocess at rateλfp, the probabilistic density
function of the permanent failure at timetd becomes
λfpe

−λfptd . By integrating this, we obtain the cumu-
lative density function of a permanent failure occurance
at timetd as follows:

Ffp(td) = 1 − e−λfptd

Then,1 − Ffp(td) becomes the probability for suc-
cessful execution during the timetd when the permanent
failures can occur on a computing node at rateλfp. By
multiplying theΦfr(tr, td) and the1 − Ffp(td), we ob-
tain,

P (tr, td) = e−λfptd ·
(

1 − e
−

td−

Pnc
i=1

(ti+ci)

Tr(tr)

)

5

3.3.4 Selection of Replications in ART

The aboveP (tr, td) represents the reliability of each
computing node when processing a task requirementtr
within a deadlinetd. In general, grid computing environ-
ments consist of heterogeneous computing nodes, and
each node has different computing power. In addition,
the failure rates,λfp andλfr can be different each other.
For this reason, each node has a different value of the
P (tr, td). In this subsection, we present how to select
computing nodes to replicate the requested task.

Selecting an optimal set of computing nodes is aNP-
hard problem. For this reason, the existing scheme [7]
used a heuristic approach to get sub-optimal set of nodes
to replicate tasks. In this paper, we also use similar
heuristics to compare our method with it. We are cur-
rently extending our work to design better algorithm to
minimize resource consumption on the grid computing
environments.

Algorithm 1 Adaptive replication selection algorithm
Require:

(whereni is anith computing node, andm is the total
number of nodes)
for all nodesni (from 1 to m) do

Calculateni.P (tr, td) using Theorem 2
end for
Sort all nodes byni.P (tr, td) in descending order
Ptmp := 1
for all nodesni (from 1 to m) do

Ptmp := Ptmp · (1 − ni.P (tr, td))
if Ps < 1 − Ptmp then

k := i

break
end if

end for
for nodesni (from 1 to k) do

Do task replication
end for

Algorithm 1 describes the adaptive replication selec-
tion algorithm in detail. It consists of two parts; the first
part calculates theP (tr, td) for all computing nodes, and
the second pard is used to select some node to replicate
the requested task. Using this algorithm, we determine
the minimum set of replications at run-time.

3.4 Remaining Issues in ART

We assumed that failure occurs according to thePois-
sonprocess. If the failures occur with non-exponential
distribution, (e.g. Gamma, Weibull, etc.), the equations
on Theorems 1 and 2 should be changed to calculate
P (tr, td)). If it is very hard to use the existing proba-

bilistic distribution, we can get thenearest modelor the
combination of existing models based on the real failure
traces, which was already shown in [16, 17].

In addition, non-heuristic selection algorithm based on
the statistics or history may improve both the reliability
and efficiency of the grid computing environments.

4 Performance Evaluation

In this section, we evaluate the performance ofARTand
existing fault-tolerant mechanisms in terms of resource
utilization, successful execution ratio, and scalability.
We made simulations to evaluate the several mechanisms
from various point of view.

4.1 Simulation Environment

In this paper, we modified and used theSensorMaker
[18] simulation package, and we set the default values
of defined parameters as presened in Table 3.

In our simulation, each task request has different time
requirement and deadline. We used the fixed checkpoint-
ing interval, fixed costs for checkpointing and recovery,
and1−1.0·10−12 as the probability for successful execu-
tion. In addition, each computing node has different fail-
ure rates, and theλfr and theλfp were determined based
on previous researches [6, 7]. In Table 3,m is the total
number of computing nodes, andk is the task scheduling
request arrival interval. Finally, we assumed that each
computing node processes tasks in aFIFO manner (one
task at a time).

4.2 Simulation Results and Evaluation

Based on the default values presented in Table 3, we
made various simulations in many aspects by changing
values of several parameters.

Figure 4: Number of busy (running) computing nodes

Figure 4 shows the number of busy (or, running) com-
puting nodes when usingARTandFTR, respectively. In
this result,ARToutperforms the previous scheme for all
time, and reduces the number of used nodes significantly.

6

Table 3: Values of parameters used in performance evaluation
Parameter Value Description

tr 100 ∼ 500s each task has one of between100 and500s time requirement
td 200 ∼ 1000s two times oftr
ti 50s fixed checkpointing interval
ci 3s fixed checkpointing cost
r 2s fixed recovery cost
Ps 1 − 1.0 · 10−12 99.999...% probability for successful execution
λfr 2.26 ∼ 7.18 · 10−8 variable recoverable failure rate per second [6, 7]
λfp 2.26 ∼ 7.18 · 10−11 variable permanent failure rate per second
m 2, 000 total number of computing nodes
k 1s task scheduling request arrival interval

Figure 5: Number of busy computing nodes according to
the changed deadline

Figure 5 represents the number of busy nodes accord-
ing to the deadline,td. This result shows that, the longer
the value of the deadline, the greater the reduction in
computing node usage. For example, when the deadline
is1.18 times greater than the time requirement,ARTuses
only 2

3 of computing nodes as compared with the other
scheme.

Figure 6: Number of busy computing nodes according to
the changed probability for successful execution

Figure 6 shows the number of busy nodes according
to the changed probability for successful execution,Ps.
ThePs is positively proportional to the number of busy

computing nodes. For example, higherPs means higher
reliability, and then, the task scheduler need to use more
replication to fulfill the higher reliability. On the other
hand, whenPs becomes smaller, then smaller number of
computing nodes are used for replication.

Finally, Table 4 shows the maximum, minimum and
average number of busy nodes during300 ∼ 1, 200
rounds. In this table, efficiency ofART is significantly
better than the previous scheme. From the simulation re-
sults, we observe that the proposed scheme,ARToutper-
forms previous schemes in terms of both efficiency and
scalability.

5 Conclusions

In this paper, we proposedART (Adaptive, Reliable,
and fault-Tolerant task scheduler) for grid environments.
ART reduced the number of replications by using check-
pointing and rollback scheme for each replication. In
ART, adaptive selection of the minimum number of repli-
cations is performed by analyzing probability of success-
ful execution within the given deadline and reliability re-
quirement of each task. We made simulations forART
and existing fault-tolerance mechanisms. Based on the
results, we observe thatART significantly reduces the
number of replications and improves scalability com-
pared with existing mechanisms.

We are currently extending our work to design bet-
ter selection algorithm. In addition, we are designing
an appropriate checkpointing method which is required
for maximizing efficiency of the grid computing envi-
ronments in the future work.

6 Acknowledgments

This research was supported by the ANR project
Clouds@home (ANR-09-JCJC-0056-01), and the Ba-
sic Science Research Program through the National Re-

7

Table 4: Maximum, minimum, and average number of busy computing nodes during300 ∼ 1, 200 rounds
Number of busy nodes ART FTR

Ps 1 − 10−16 1 − 10−15 1 − 10−11 1 − 10−16 1 − 10−15 1 − 10−11

Maximum 904 634 632 1, 255 1, 115 943
Minimum 340 228 224 456 425 342
Average 790 554 549 1, 100 977 827

search Foundation of Korea(NRF) funded by the Min-
istry of Education, Science and Technology (KRF-2008-
314-D00335).

References

[1] PeerLive,http://www.peerlive.org, website.

[2] C.-H. Huang, “High-performance parallel bio-
computing,” Parallel Computing, vol. 30, pp.
1037–1055, September-October 2004.

[3] K*Grid, http://www.gridcenter.or.kr/, website.

[4] C. Catlett, “The philosophy of teragrid: Building an
open, extensible, distributed terascale facility,” in
2nd IEEE/ACM International Symposium on Clus-
ter Computing and the Grid (CCGRID’02), 2002,
p. 8.

[5] D. A. Reed, “Grids, the teragrid, and beyond,”
Computer, vol. 36, pp. 62–68, January 2003.

[6] B. Schroeder and G. Gibson, “A large-scale study
of failures in high-performance-computing sys-
tems,” in International Conference on Dependable
Systems and Networks (DSN’06), June 2006.

[7] G. Kandaswamy, A. Mandal, and D. A. Reed,
“Fault tolerance and recovery of scientific work-
flows on computational grids,” in8th IEEE/ACM
International Symposium on Cluster Computing
and the Grid (CCGRID’08), 2008, pp. 777–782.

[8] J. Weissman, “Fault tolerant computing on the grid:
what are my options?” in8th International Sympo-
sium on High Performance Distributed Computing
(HPDC’99), August 1999, pp. 351–352.

[9] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and
S. Tuecke, “Condor-g: A computation management
agent for multi-institutional grids,”Cluster Com-
puting, vol. 5, pp. 237–246, July 2002.

[10] G. Alonso, C. Hagen, D. Agrawal, A. E. Ab-
badi, and C. Mohan, “Enhancing the fault tolerance
of workflow management systems,”IEEE Concur-
rency, vol. 8, pp. 74–81, July 2000.

[11] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson, “A survey of rollback-recovery proto-
cols in message-passing systems,”ACM Computing
Surveys, vol. 34, pp. 375–408, September 2002.

[12] A. Duda, “The effects of checkpointing on pro-
gram execution time,”Information Processing Let-
ters, vol. 16, no. 1, pp. 221–229, Jul. 1983.

[13] S. Yi, J. Heo, Y. Cho, and J. Hong, “Taking
point decision mechanism for page-level incremen-
tal checkpointing based on cost analysis of pro-
cess execution time,”Journal of Information Sci-
ence and Engineering, vol. 23, no. 5, pp. 1325–
1337, September 2007.

[14] O. Khalili, J. He, C. Olschanowsky, A. Snavely,
and H. Casanova, “Measuring the performance and
reliability of production computational grids,” in
7th IEEE/ACM International Conference on Grid
Computing, September 2006.

[15] S. Yi, H. Min, B. Kim, J. Kim, and C. O. Sung,
“Art: Adaptive, reliable, and fault-tolerant task
management for computational grids,” in2010
ACM Symposium on Applied Computing (ACM
SAC’10), 2010, pp. 238–239.

[16] B. Javadi, D. Kondo, J. Vincent, and D. Ander-
son, “Mining for statistical availability models in
large-scale distributed systems: An empirical study
of seti@home,” in17th IEEE/ACM International
Symposium on Modelling, Analysis and Simula-
tion of Computer and Telecommunication Systems
(MASCOTS), September 2009.

[17] D. Kondo, B. Javadi, A. Iosup, and D. Epema, “The
failure trace archive: Enabling comparative anal-
ysis of failures in diverse distributed systems,” in
10th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid), May
2010.

[18] S. Yi, S. Lee, Y. Cho, and J. Hong, “SensorMaker:
A wireless sensor network simulator for scalable
and fine-grained instrumentation,”Lecture Notes in
Computer Science, vol. 5072, pp. 800–810, 2008.

8

