
Good Practices for Reproducible Research

Luka Stanisic Arnaud Legrand

CNRS/Inria/University of Grenoble, France

Atelier en Evaluation de Performances, Sophia-Antipolis
June 13, 2014

1 / 4



Context

Hybrid machines with both multi-core CPUs
and GPUs are now commonplace

Portable performances across architectures is
extremely challenging ; adaptive task-based
runtime (StarPU,DAGuE, KAAPI, . . . )

StarPU

Conducting Experiments and Reporting Results

Prototype code + fragile machine con�guration ; results are hard to
reproduce

Parameter/algorithm modi�cation (granularity, scheduling, application
structure, . . . ) can have a huge impact on performances

Making sure new feature work on a wide variety of setups

2 / 4



Context

Hybrid machines with both multi-core CPUs
and GPUs are now commonplace

Portable performances across architectures is
extremely challenging ; adaptive task-based
runtime (StarPU,DAGuE, KAAPI, . . . )

StarPU

Conducting Experiments and Reporting Results

Prototype code + fragile machine con�guration ; results are hard to
reproduce

Parameter/algorithm modi�cation (granularity, scheduling, application
structure, . . . ) can have a huge impact on performances

Making sure new feature work on a wide variety of setups

2 / 4



Reproducible Research

article

analysis

data

experimentation

source code
3 / 4



Reproducible Research

article

analysis

data

experimentation

source code

Magical Org-mode articles

Statistical analysis and beautiful plots with R

Taking care of metadata+data

Git work�ow
Laboratory notebook (Labbook.org)

Experiment engines (Expo/XPFlow/Execo)

R
e
p
li
c
a
b
le

R
e
p
ro
d
u
c
ib
le

3 / 4



A Reproducible Article

Modeling and Simulation of a Dynamic

Task-Based Runtime System for Heterogeneous

Multi-Core Architectures

Luka Stanisic1, Samuel Thibault2, Arnaud Legrand1, Brice Videau1, and
Jean-François Méhaut1

1 CNRS/Inria/University of Grenoble, France, firstname.lastname@imag.fr
2 University of Bordeaux/Inria, France, samuel.thibault@labri.fr

Abstract. Multi-core architectures comprising several GPUs have be-
come mainstream in the �eld of High-Performance Computing. However,
obtaining the maximum performance of such heterogeneous machines is
challenging as it requires to carefully o�oad computations and manage
data movements between the di�erent processing units. The most promis-
ing and successful approaches so far rely on task-based runtimes that
abstract the machine and rely on opportunistic scheduling algorithms.
As a consequence, the problem gets shifted to choosing the task gran-
ularity, task graph structure, and optimizing the scheduling strategies.
Trying di�erent combinations of these di�erent alternatives is also itself
a challenge. Indeed, getting accurate measurements requires reserving
the target system for the whole duration of experiments. Furthermore,
observations are limited to the few available systems at hand and may be
di�cult to generalize. In this article, we show how we crafted a coarse-
grain hybrid simulation/emulation of StarPU, a dynamic runtime for
hybrid architectures, over SimGrid, a versatile simulator for distributed
systems. This approach allows to obtain performance predictions accu-
rate within a few percents on classical dense linear algebra kernels in a
matter of seconds, which allows both runtime and application designers
to quickly decide which optimization to enable or whether it is worth
investing in higher-end GPUs or not.

1 Introduction

High-Performance Computing architectures now widely include both multi-core
CPUs and GPUs. Exploiting the tremendous computation power o�ered by such
systems is however a real challenge. Programming them e�ciently is a �rst con-
cern, but managing the combination of computation execution and data transfers
can also become extremely complex, particularly when dealing with multiple
GPUs. In the past few years, it has become very common to deal with that
through the use of an additional software layer, a runtime system, based on the
task programming paradigm [3,4,7]. Applications are expressed as a task graph
with data dependencies, i.e., a Directed Acyclic Graph (DAG), and provide both
CPU and GPU implementations for the tasks. The runtime can then schedule

Conan Cholesky Attila LU

0

500

1000

1500

20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
Fl

op
/s

Experimental
Condition

SimGrid (naive
runtime modeling)
SimGrid (smart)

Native

Fig. 1. Illustrating the in�uence of modeling runtime. Careless modeling of runtime
may be perfectly harmless in some cases, it turns out to be misleading in others

of runtime proved to be the size of GPU memory. Such hardware limits force the
scheduler to swap data back and forth between the CPUs and GPUs. These data
movements saturate the PCI bus, producing a tremendous impact on overall per-
formance. It is thus critical to keep track of the amount of memory allocated
by StarPU during the simulation to make sure the scheduler will behave in the
same way for both real native executions and simulations.

Figure 1 illustrates the importance of taking into account the runtime pa-
rameters described above. Each curve depicts GFlop/s rate of experiments rep-
resenting 90 di�erent matrix dimensions (matrix dimension 80,000 corresponds
to ≈25GB). Solid line Native shows the execution of StarPU on the native ma-
chine, while the other two are the results of the simulation: naive for execution
without any runtime adjustments and smart with all of them included. The left
plot depicts a situation where all these optimizations have very little in�uence
as both naive and smart lines are almost overlapping with the native line. On
the other hand, for some other machines and applications (plot on the right),
having a precise modeling of runtime is critical as otherwise, simulation may
highly overestimate the performance for the larger matrix size. Nonetheless, we
remind that the excellent predictions achieved in these examples are also the
result of the careful modeling of communications and computations, which we
will present in the next Sections.

6 Modeling communication in hybrid systems

Due to the relatively low bandwidth of the PCI bus, applications running on
hybrid platforms often spend a signi�cant fraction of the total time transferring
data back and forth between the main RAM and the GPUs. Modeling com-
munication between computing resources is thus of primary importance. As a
�rst approximation (see Figure 2(a)), the transfer time between resources could
be modeled as a single link with a latency and a transfer rate corresponding
to typical characteristics of the PCI bus. However, such modeling does not ac-
count for many architectural aspects. First, the bandwidth between CPU and
GPU is asymmetrical. Second, communication characteristics are not uniform
among all pairs of CPUs and GPUs, as it depends on the chipset architecture.
We decided to account for it by using a dedicated uplink and a downlink with
di�erent characteristics for each pair of resources (see Figure 2(b)). Furthermore,

http://dx.doi.org/10.6084/m9.�gshare.928338

4 / 4

http://dx.doi.org/10.6084/m9.figshare.928338

	Intro

