Towards wide-area Ubiquitous Computing

Markus Endler Laboratory for Advanced Collaboration (LAC) PUC-Rio, Brazil

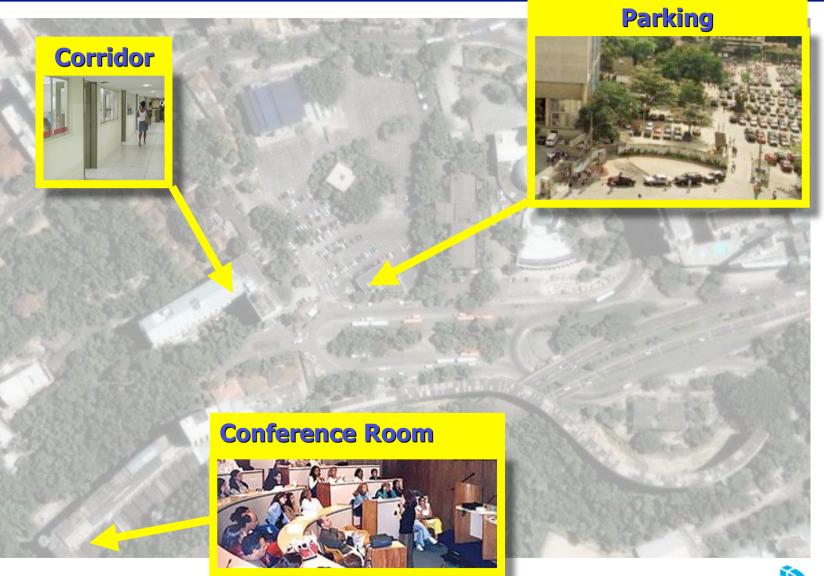
February 2008

- Some Facts about PUC-Rio
- Introduction
- Some research challenges
- Overview of MoCA
- Current research work
- Conclusion

Ubiquitous Computing

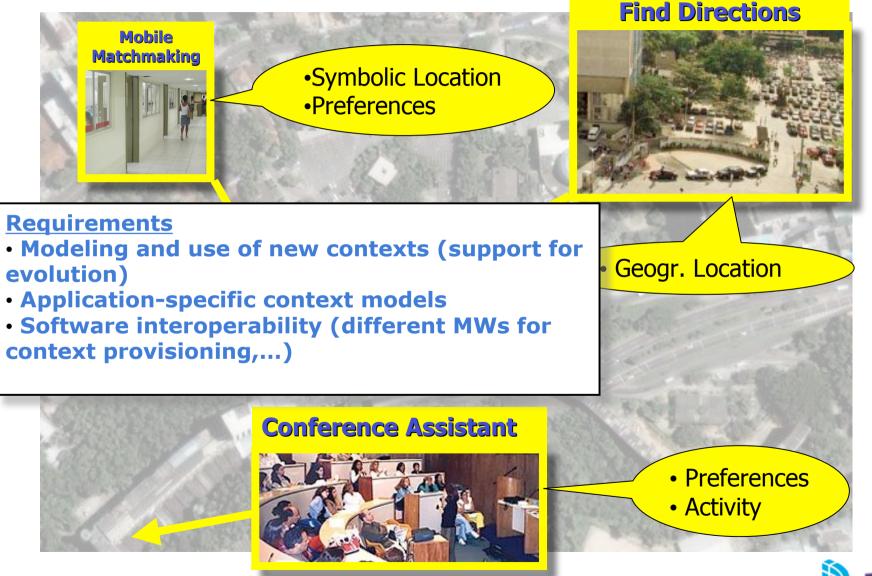
- Ubiquitous computing = integration of microprocessors into everyday objects + wireless communication among users and interaction with their environments
- Goal (according to *M.Weiser*): provide users with customized and invisible communication and information services at any place, at any time
- So far, most of the ubiquitous environments have focused at providing localized (intra-domain), "closed-world" and application- or task-specific ubiquity

Ubiquitous Computing


But users typically roam between different places.

And at each place they...

- perform specific tasks/activities
- encounter different groups of people
- have connectivity through a specific wireless network
- are surrounded by different sorts of ambient devices (web-cams, projectors, smart boards,etc.)
- are constrained by local rules/ access rights
- have access to place-specific set of services



Scenario

Heterogeneity Applications and Context

The next generation of Ubiquity

NG Ubiquity will be:

- Distributed
- Heterogeneous in several aspects
 - Devices, sensors, platforms, wireless networks
 - Available middleware and application-specific services
 - Context models, semantic descriptions and knowledge bases
 - Concurrent applications with different requirements
 - Users with different demands, backgrounds, roles, and tasks
- Spread over several administrative domains and organizations
- Deployed at work, at home and in public spaces
- Must be prepared for dynamic and unknown user base
- These characteristics translate into a long list of new research challenges...

.

.

Reserach Challenges (a small list)

- How to ensure interoperability in spite of system's and platform's heterogeneity?
- How do context-sensitive applications (of roaming users) interact with local context providers and handle the uncertainty and ambiguity of context information?
- How is context represented/modeled and its semantics shared universally?
- How to give users effective control over disclosure of their context data (e.g. preferences)?
- How to handle service access control and user authentication in an open environment?
- How to design software and protocols for such dynamic and heterogeneous environments?
- How to accurately infer the user's intent and its relation to the visited place, or group of co-located uesrs?

Etc.

Our bottom-up Approach

- First, learn how to gather & distribute concrete context information*, and develop a robust & useful middleware
- Then, get experience with the design of some context- & location-aware applications
- After this, tackle the more complex problems of handling wide-area and open ubiquitous systems.

(*) We focused on system context data that can be obtained automatically from the device and network, and positioning information that can be automatically inferred.

MoCA's Research Goals

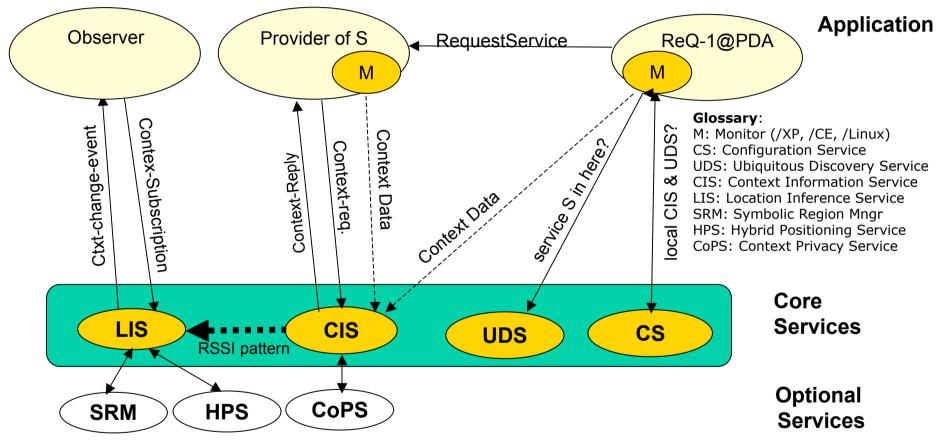
Main Goals:

- Design and implement a middleware to support the development and deployment of such collaborative applications;
- Experiment with new forms of context/locationaware collaboration, develop applications using the middleware, and evaluate their usability and usefulness.

Target setting:

- Structured wireless network (802.11)
- Users with laptops, palmtops or smart phones
- Intra-domain applications (e.g. for University campus-community, corporation)

Mobile Collaboration Architecture (MoCA)


MoCA consists of basic services for collecting and processing context information, synchronous & asyncronous communication and client/serverAPIs and a proxy Framework that facilitate the use of these services by developers of applications for mobile networks.

Essentially, the basic services provide

- Distributed monitoring, storage and complex queries about the dynamic execution context (state of mobile device & network resources).
- Symbolic location inference based on IEEE 802.11 signall strength
- Advertisement and location-aware discovery of applications and middleware services

Overview of MoCA

Other tools:

- ContextView Tool to debugg context-aware systems
- ECI- Event-based Communication

Monitor

- Monitor/ (XP/CE/Sim/Linux/Symbian)
 - is a *daemon* executing on the mobile device;
 - Periodically probes state information about the mobile device's resources and wireless connectivity, sends it to CIS and makes it available to local application clients e.g.:
 - Strength of RF signal received from all visible Access Points;
 - CPU utilization, available memory and energy;
 - MAC Address, IP address, IP mask and currently used Access Point;
 - other data....
 - RF signals are obtained through WiFi scan operations, in a uniform way, independently of the 802.11 network interface;
 - If the device has also a GPS receiver, GPS coordinates are sent as well
 - The Monitor also reports to the CIS any change of the current IP address or Access Point of the device (i.e. a handoff)

Monitor for Windows Mobile

 Monitor/CE: Adapted GUI for usage at Palmtops

Moca Monitor CE				ok
	100 million			
CPU U	sage:		12	%
Free M	lemory:		32768 K	Bs
Energy	/:		80	%
Device	Network	GPS	MoCA	

0PD	LAC		
IP Address:	10.10.10.150		
Mask:	255.255.255.0		
MAC Address:	00:02:2D:A5:06:46		
Current AP:	00:02:2D:A5:06:7D		
Access I	oints		
	1	1	
BSSID	RSSI	SSID	
BSSID 00:02:2D:A5:06:7D 00:02:2D:A5:06:12	-32 -39	LAC LAC	
	-32 -39	LAC	

Moca Monitor CE 🛛 🙀					
	LAC				
Satellites:	4				
Used Satellites:	3				
Fix Quality:	GPS				
Latitude:	22°58'47.98" S				
Longitude:	43°14'01.41" W				
Altitude:	30 m				
GPS Position:	22°58'47.98"5 43°14'01.41"W 30m				
Disable GPS					
Device Network	GPS MoCA				

Context Information Service (CIS)

- Delivers context information to any application entity (e.g. server/client/proxies), through direct queries or subscriptions with context expressions.
- Context variables used in expressions
 - CPU
 - EnergyLevel
 - AdvertisementPeriodicity
 - APMacAddress
 - FreeMemory
 - DeltaT
 - OnLine
 - IPChange
 - Roaming
 - RF Signal Strength from each AP
 - LinkQuality
 - GPS lat, GPS long
- Usually, applications are interested in:
 - State of the device (e.g. available memory, enery level)

- Wireless connectivity status
- Aproximate position of the device

(Int - 0 to 100) % (Int - 0 to 100) % (Int - 0 to 100000) (String) (Long) in Kbytes (Long) in ms (Boolean) (Boolean) (Boolean) (dB) (dB)

CIS (cont.)

- Context Information Service (CIS) can be deployed as a pool of servers (each one collecting the context information from some Monitors);
- Each device has associated context information (index: MAC-Address);
- CIS Clients subscribe to the service informing the devices's MAC-Address (as the Subject) and an SQL92-like expression defining the state of context they are interested in.
- Example:
 - Subject="02:DA:20:3D:A1:2B",

Properties = "roaming = True" OR "FreeMem < 15%" OR "CPU > 90%";

.

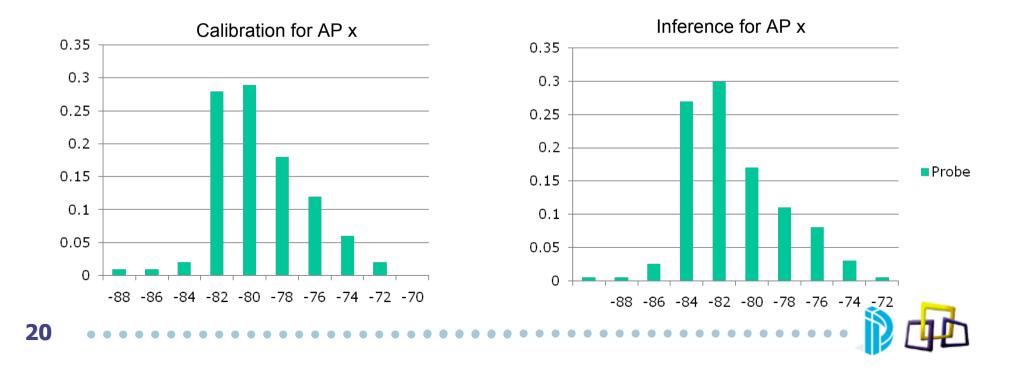
Location Inference Service (LIS)

LIS is a GPS-less positioning service for indoor applications, based on IEEE 802.11 signal strength *finger-printing* that uses a stochastic algorithm to correlate sinal patterns.

Usage is in two phases:

Calibration:

- Within the area of interest (e.g. a building, part of a campus) several reference points (RP) are defined (each of which receives an identifier = symbolic region name).
- At each RP, the RSSI from all visible 802.11 Access Points is sampled (e.g. N samples), and stored in LIS's database,


Inference:

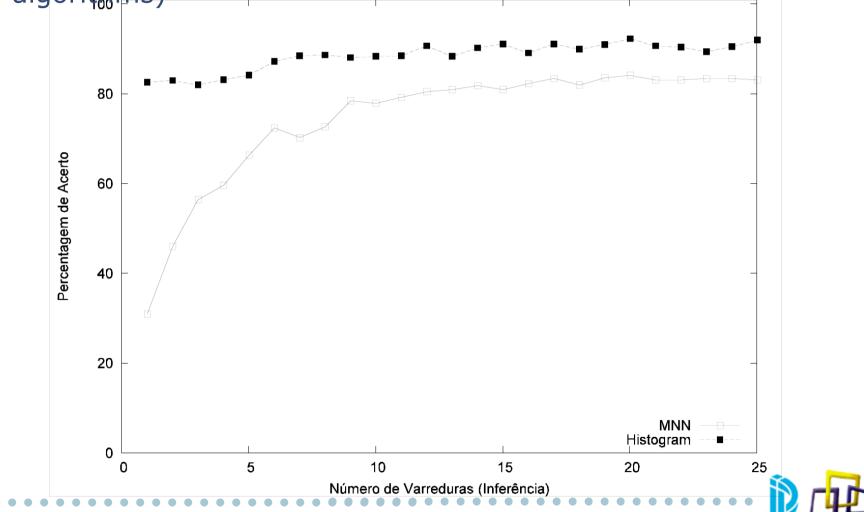
- At any time, LIS gets N samples of the signal strength at the current position and identifies the set of k RPs in the database that have the most similar signal distributions compared to the current distribution.
- It then infers that the device is located in the symbolic region determined by the majority of RPs.

LIS' Histogram Algorithm

- For each of the visible APs, compares the distribution of the last N RSSI probes of calibration versus inference
- Let d_i be the distribution difference for AP*i*, and v=(d₁, d₂, d₃) the difference vector (missing APs are not considered)
- If $|v| \leq L$, then the probes refer to same symbolic location

LIS – Sorts of Location Access

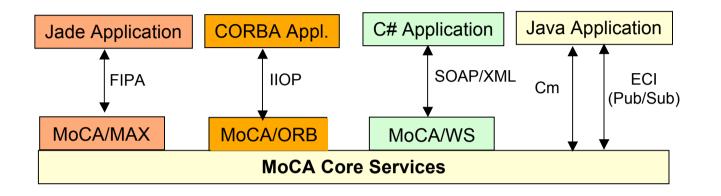
LIS supports: Syncronous access


- Symbolic region of a device *D*
- All Devices within a region *R*
- Asynchronous notifications
 - Application instantiates either a RegionListener or a DeviceListener
 - Whenever a device enters or leaves a region, LIS notifies all subscribed applications about the corresponding *regionID* or *deviceID*
- Definition and Management of hierarchies of symbolic regions

LIS Accuracy

24

 Percentage of successfull inferences depending on the number of probes (deterministic and Histrogram algorithms)



Some Prototype Applications

Some location-aware prototypes developed using MoCA:

W-Chat chat-tool with connectivity awareness Notes in the Air (NITA) notes to locations (virtual whiteboards) and location-based chat Mobile Matchmaking Service location-based matching of user interests on-line tracking of friend's locations BuddySpaceLive Wireless Marketing Service location-based discount coupons location-based reservation of a Virtual Lines position in a line Who Are You? (WAY) proximity-based exchange of business cards uGuide allows to open region-specific URLs in any browser Interactive Presenter for Handhelds, iPH co-edition options are enabled depending on location 26

MoCA's Personalities

- In order to widen the usability of MoCA's core services, we have developed three additional programming interfaces → personalities
- MoCA/MAX for use with Agent Framework Jade
- MoCA/WS a proxy that works as a Web Service
- MoCA/ORB a proxy talks IIOP

Some uses of MoCA

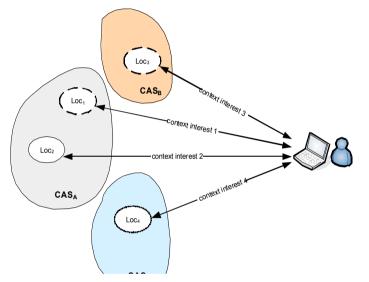
MoCA has been used as the fundamental building block for other specialized middleware, developed by other groups and universities in Brazil. Some examples:

- MoGrid: a middleware for mobile Grids (LNCC/RJ) PhD thesis
- Context-aware Exeption Handling for Ubiquitous environments (LES/PUC-Rio) - M.Sc. thesis
- ContextTV: a context-aware middleware for interactive digital TV on mobile devices (Fed. U. of Pernambuco) – *M.Sc. thesis*
- MAG/MoCA: Interface for Grid access through handheld devices (Fed. U. of Maranhão) – Integrade Research project

And MoCA is also being used in foreign universities:

- SMA group at LIP6, Paris
- L3S Institute Hannover, Germany

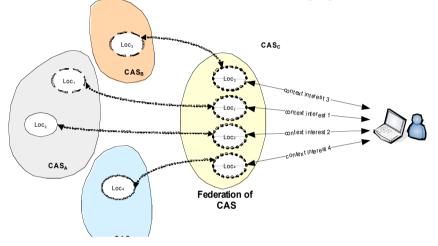
Context Management in Heterogeneous and Evolving Environments - by Ricardo Rocha


Middleware Requirements:

Distributed Management of Context	 Efficient dissemination of context information Requires context service discovery Transparent context access 	
Support for Seamless Evolution of Context-Aware Systems	 Creation and change of context instances/types without compromising the consistency of global context system types Seamless evolution for current clients, avoiding disruption 	
Dynamic Context Discovery	 Transparent resolution of dynamic context conflicts, accordingly to client interests (e.g. "location") Transparent resolution of the context instance that satisfies client interest Semantics of "Here" 	
Domains of Context Perception	 Context perception (types, instances) according to domains and client location Distribution does not guarantee this requirement 	

State of the Art

Distributed approach

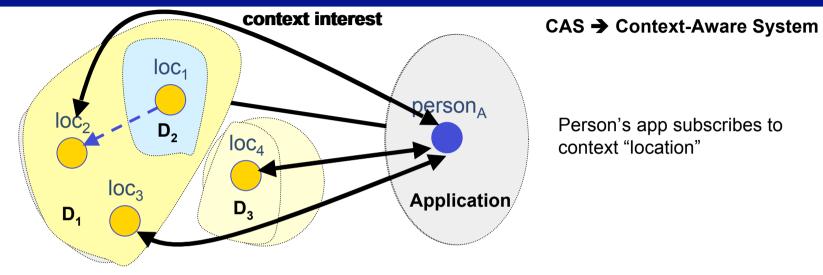


Examples: Confab, Gaia, AURA CIS, PACE, Contory

Limitations

- Client must have explicit knowledge of each CAS
- CAS addresses cannot be solved dynamically

Federation-based approach


Examples: CAMUS, SCaLaDE, Nexus, CoCo Limitations

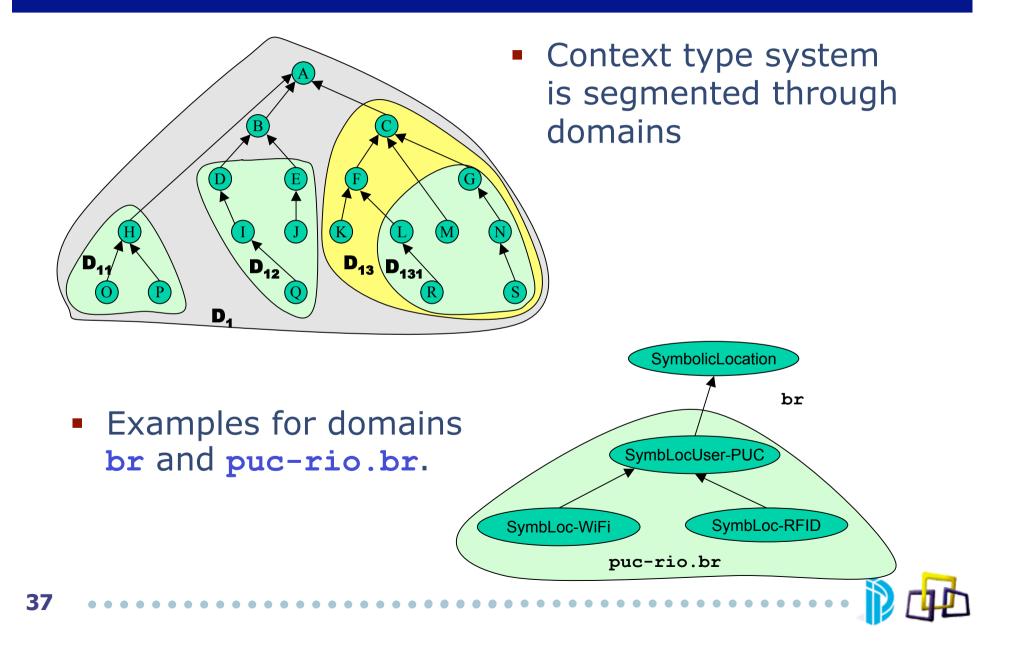
- Reduces the problem to an interoperability and context dissemination issue
- Does not implement context scoping and domain discovery
- Limits the type of abstraction sharing

CAS = Context-Aware System

Proposed Approach: Domain-based Context Management

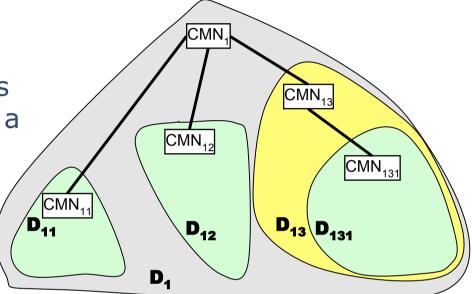
Key concept -> Context Domains

- Network segment that establishes responsibility for managing and distributing context, as well for serving a group of context consumers.
- A context domain establishes
 - A set of context types
 - Storage of instances for context
 - Storage of instances for context, when applied to domain entities.
 - Set of context-aware services
 - Sub-domains


D 🗗

Design Rationale and Approach's Strategies

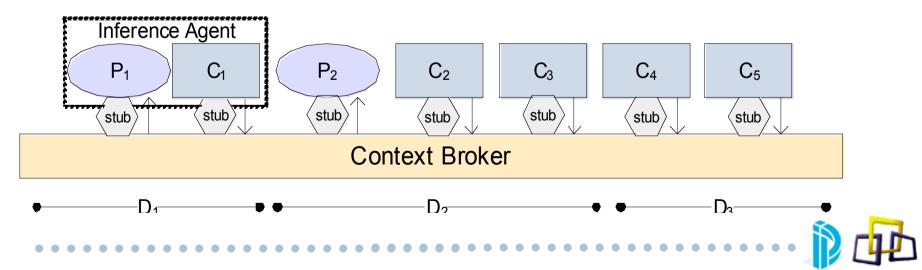
- Appropriate context modeling approach
 - Concepts (context types) of different domains may be interrelated through inheritance and association relationships
 Contextual interoperability
 - Decoupling between context models and inference mechanisms
- Deployment mechanism for context models that allows access to strongly typed context (types solved at development time), using OO concepts
- Middleware architecture supporting context domain concept
 - Distributed architecture
 - Distributed provision and storage of context
 - Transparent resolution and access to context repositories (local vs. remote)
 - It implements discovery of domains
- Programming abstractions for handling context interest based on domains (APIs for specific form of context subscriptions/queries)



Proposed Approach

Architecture of the Proposed Solution

 Context Management Nodes (CMN) are responsible for managing context, consumers (clients) and providers inside a domain.


- Services in a node:
 - Middleware for context management
 - Node discovery service
 - Discovers and registers clients in a domain, executing inter-domain hand-off.
 - Context Delivery Service
 - Delivers context to domain consumers (local entities)
 - Manages client mobility

Component Interaction

- Three components interact:
 - Context provider

- Context consumer
- Context Broker → an abstraction for distributed context management nodes
- Supports the decoupling among models and inference mechanisms

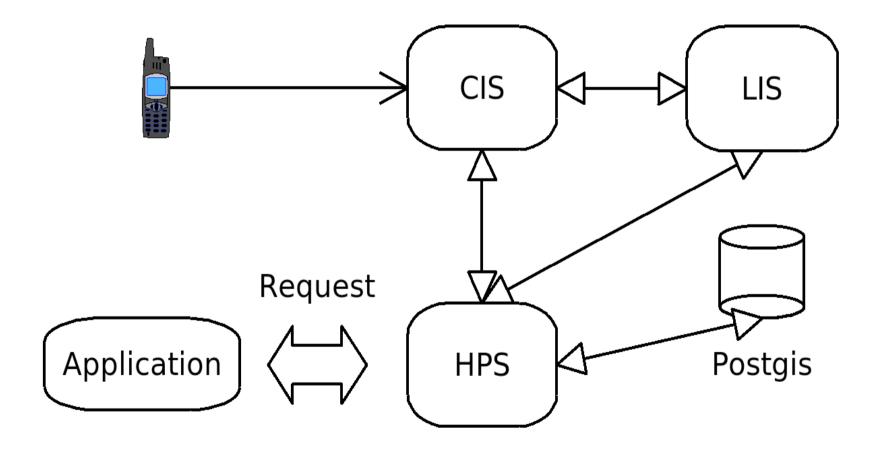
Hybrid Positioning Service by Victor Fusco

Motivation:

- Symbolic location is well-suited for most UbiComp applications
- Geographic location is needed for map-based applications and can be obtained from an increasing number of mobile devices (with GPS)

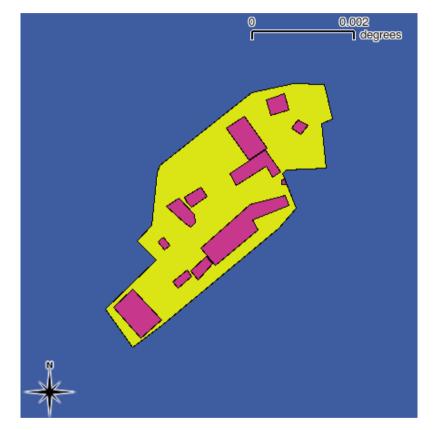
Main Goal: Implement a Positioning Service that

- Converts symbolic regions into latitude and longitude coordinates and converts GPS coordinates into symbolic regions.
- Provides uniform access to the mobile device's positioning data


• • • • • • • • • • • •

HPS Overview

- On request, the HPS collects the device's localization data from the MoCA's LIS/CIS, if available.
- This data can be symbolic regions (semantic position) or GPS coordinates (geographic position).
- With that information it queries a GIS database to find the missing data.
- Then, it provides the client both types of data and the source it came from.


Main components and their interaction

Main components and their interaction

- HPS gets either the symbolic location name from LIS, or GPS coordinates from CIS.
- With either such information, HPS does a query at vectorial data stored on the PostGIS database (geographic objects in PostgreSQL Object DB) "asking":
 - For (lat,long) gets polygon which contains that point.
 - For (symb.name) gets the centroid of the corresponding polygon

Example: Geo-referenced polygons representing PUC-RIO and some of its buildings.

Collaborative Research Projects

Project Campus (with SMA/LIP6)

Goal: Use Multi-Agent systems for developing interdomain Ambient Intelligence

Main issues: collaborative reasoning, ontology mediation Target application: Facilitating user collaboration in smart buildings and homes

Project Mobilis (with UFMG and TU Dresden)
Goal: Support context sharing as means of enriching user's collaborative activities and social networking
Main issues: uniform interface for accessing and sharing heterogeneous context and awareness information
Target application: Tourism and Elderly care

.

Conclusion

In order to enable wide-area Ubiquity many issues related to context distribution, interoperability and heterogeneity have to be solved.

- Our approach:
 - Support distributed context management, where the context type system is segmented through domains
 - Each domain is independently managed w.r.t. context types, context sources, places and services
 - Provide specialized services (e.g. context providers) which aggregate, synthesize, or infer new context information

• e.g. LIS, HPS

- Use ontologies for modeling and reasoning about context types & properties (precision, accuracy), as well as user and ambient properties and states
- Employ agent technology for decentralized context reasoning, and regulating interaction between users and places

Thank you!

For documentation and download of MoCA visit: www.lac.inf.puc-rio.br/moca Or Email to: info@lac.inf.puc-rio.br

For more information, please contact me: endler@inf.puc-rio.br

